当前位置:文档之家› 循环水泵节能变频改造分析

循环水泵节能变频改造分析

循环水泵节能变频改造分析
循环水泵节能变频改造分析

循环水泵节能变频改造分析

摘要:在满足企业生产情况下,通过电机变频技术,并在设备原有的基础上做局部的改动,达到节能降耗的结果,提升设备运行电能使用效率,为企业节约大量的电费,同时为节能减排做出贡献。

关键词:循环水系统水泵电机高压变频器

中图分类号:te08 文献标识码:a 文章编号:

公司循环水装置主要功能是负责向公司各级生产设备输送合格的循环水,用以冷却工艺介质,确保生产装置运行正常。

1.工艺概况

该循环水系统由三台型号规格相同的水泵及与之匹配的三台电机组成,其工艺流程示意图如下:

循环水泵使用规律为“两用一备”,其“启动、停止”控制由远方操作室值班人员完成,启动方式为直接启动。工艺设计该循环水系统的循环水供应能力为3500 m3/h,管网压力0.6mpa。在实际运行过程中,循环水的实际需求量为2500~3000m3/h,其中一台循环水泵阀门为全开,另一台水泵阀门开度为30%左右,电机运行电流为55a,总管网压力为0.6mpa。

2.改造前系统分析

(1)循环水泵设计输送能力远大于实际需求,电能浪费严重。

凝结水泵变频改造与应用

凝结水泵变频改造与应用 【摘要】我公司热电车间的发电汽轮机现有两台4N6X-2抽凝式凝结水泵,由于该车间投产比较早,自动化程度比较低,除氧器和热井水位仍要依靠运行人员手动调节,不仅增加了工人的劳动强度,而且严重影响了机组的安全经济运行,针对这一问题,提出了其中一台凝泵由工频泵改为变频泵,补水由“除氧器式”改为“凝汽器式”,不仅提高了自动化程度,而且提高了经济效益。 【关键词】自动化;变频;安全;节能 1研发的必要性及意义 我公司热电车间的发电汽轮机装有两台4N6X-2抽凝式凝结水泵,由于投产时间早,自动化程度较低。凝结水泵是汽水系统中一个重要组成部分,它在凝汽器和除氧器之间,负责把经过汽轮机做功后的蒸汽在凝汽器凝结成的水,经过一系列设备输送到除氧器。现在所有电厂的凝结水泵都采用工频泵,汽水系统中有关凝汽器和除氧器的水位调节分别由化学补水调节阀和凝结水泵出口调节阀调节。除氧器和热水井水位仍要依靠运行人员手动进行调整。 凝结水泵属中低压冷水泵,其吸入侧为真空状态。机组设计一台运行,一台备用。现有凝泵维护量大,盘根易漏空气,导致真空低停机,并且以运行6年,效率低,耗电大。 为确保汽水工艺系统安全稳定运行,设计只用一台变频器控制一台泵,而另一台凝结水泵继续进行工频运行,用来防止变频器故障时备用投入,变频调速系统的自动调节控制部分采用PLC控制器。 2研发的主要内容 化学补充水由“除氧器式”改为“凝汽器式”的可行性计算,研究补充水的补入点及补充水量,若补水量过大,将无法将补充水中的含氧量降到要求值以下,造成凝结水含氧量超标,从而腐蚀凝结水管道;上述问题可采用合理的补水方式解决,我们采用雾化状态补水,扩大淋水面积,预计可得到较好的除氧效果,从凝汽器喉部补水,并使用喷嘴,强化补充水与排汽间的换热,使补充水易达到饱和,为气体从水滴中溢出扩散出来,创造了条件,同时,又防止出现补水沿着凝汽器内壁流动的现象。 3研究达到的目标及主要技术指标 1)总体设计目标 (1)将化学补充水由“除氧器式”改为“凝汽器式”,充分利用凝汽器的结构特性,最大限度地降低凝汽器的真空度。 (2)采用变频调速装置来控制凝结水泵(一工频一变频),实现除氧器和热水井水位的自动控制,使热水井水位保持在低位运行状态,并使除氧器保持稳定水位运行,达到高效除氧的目的。 2)主要技术指标 (1)保持凝汽器的真空是电厂节能的重要内容。 据估算,中小型机组真空每提高1%,机组功率可增加1%,煤耗下降1%,若一台6MW机组,以每年运行7000h计,每年可多发电42万kW.h,节约标煤210吨。 我们通过取证、分析,确定了水的补入状态应雾化从喉部补入,最好能形成一个“雾化带”。这样可以强化补充水与排汽间的换热,使补充水易达到饱和,为

变频水泵节能原理及分析

前言 离心式水泵在我国当前的工农业生产和人民日常生活中起到很大的作用,水泵使用三相异步电动机进行拖动,其流量和压力等控制对象大多采用管道阀门截流的调节方式。这种人为增加管阻的调节方式虽然满足了生产生活所需的对流量的控制,但是浪费了大量的电能,不是一种经济的运行方式。在电力能源越发短缺的今天,找寻并普及一种既经济又方便的水泵运行方式,对节能工作有着重大的意义。 1、离心式水泵工作特性 1.1 离心式水泵工作原理 离心式水泵是一种利用水的离心运动的抽水机械。由泵壳、叶轮、泵轴、泵架等组成。起动前应先往泵里灌满水,起动后旋转的叶轮带动泵里的水高速旋转,水作离心运动,向外甩出并被压入出水管。水被甩出后,叶轮附近的压强减小,在转轴附近就形成一个低压区。这里的压强比大气压低得多,外面的水就在大气压的作用下,冲开底阀从进水管进入泵内。冲进来的水在随叶轮高速旋转中又被甩出,并压入出水管。叶轮在动力机带动下不断高速旋转,水就源源不断地从低处被抽到高处。 1.2 泵类负载特性分析 为适应用户用水量的变化,调节出水流量,现通常采用两种方法来完成流量的连续调节。一种是利用控制阀或节流阀进行节流,以改变出水流量;另一种是泵的调速控制,调节泵的转速来改变出水流量。图1为水泵调速时的全扬程特性(H—Q)曲线。 图1 水泵调速时的H-Q曲线

在上图中,曲线n0表示,管路中阀门开度不变时,水泵在额定转速下的扬程—流量曲线。R1表示水泵转速不变时,全扬程与流量之间的关系曲线,又称管阻特性曲线。H0为供水量Q接近0时,所需的扬程等于实际扬程,其物理意义是:如果全扬程小于实际扬程,系统将不能供水。 由上图可知,水泵的扬程特性曲线和管网的管阻特性曲线有交叉点,这个点就是水泵工作时既满足扬程特性又满足管阻特性,供水系统工作于平衡状态,系统稳定运行。 在使用管道阀门控制时,当流量要求从QA减小到QB,就必须减小阀门开度。这时供水管道的阻力变大,管阻特性曲线从R1移到R2,扬程则从HA上升到HB,运行工况点从A点移到B点。 在使用水泵调速控制时,当流量要求从QA减小到QB,由于阀门开口度不变,管道的阻力曲线R不变,此时水泵的特性取决于其转速。如果把速度从n0降到n1,运行工况点则从A点移到C点,扬程从HA下降到HC。 根据离心泵特性曲线公式: 其中:P——为泵使用的工况点轴功率(KW); Q——为使用工况点的水压或流量(m2/s); H——为使用工况点的扬程(m); ρ——为输出介质的密度(kg/m3); η——为使用工况点的泵的效率(%)。 由公式1,可得出在使用阀门调节时,水泵运行在B点的轴功率,和用转速调节时,水泵运行在C点的轴功率分别为:

450kW水泵高压变频技术方案(1)

深圳瑞普泰科技节电有限公司辽阳石油化纤公司化工厂 (循环水泵、路灯) 技术方案 Technical Proposal 设备:变频器RPOWERT-HIVERT-Y06/061 路灯节电器RPOWERT-ZNLD 时间:2017年10月25日

第一部分:循环水泵 1. 概述 深圳瑞普泰科技节电有限公司是一家专业开发、生产各种负载节电器及高压大功率变频器的民营高科技企业。其变频器系列产品广泛应用于火力发电、城市供水、采油采矿、化工、冶金、水泥、造纸等领域,可实现对各类高压电动机驱动的风机、水泵、空气压缩机等负载的调速、节能、软启动和智能控制,综合效益十分显著。 深圳瑞普泰科技节电有限公司拥有国内一流的专业研发和管理队伍,员工中博、硕士比例约占20 %,约65 %的员工具有本科以上的学历。公司十分重视人才的培育和制度建设,力求使自己成为一支目标精准、反应迅速、高效务实、温馨和谐的团队。 精益求精的技术设计、稳定可靠的产品品质、独具优势的性价比率和先人后己的服务心态是深圳瑞普泰科技节电有限公司的经营特色和致胜法宝。深圳瑞普泰科技节电有限公司愿与国内外同行一道,共同致力于开创中国工业的绿色能源时代。 公司RPOWERT-HIVERT系列高压大容量变频器已于2003年3月通过国家电力科学研究院、国家电控配电设备质量监督检验中心等权威部门的严格测试。在质量保证体系方面,通过了ISO9001-2000认证。 RPOWERT-HIVERT变频器已有很好的运行业绩,得到了用户的认可,并在业界取得了不少国内客户青睐。 采用RPOWERT-HIVERT-Y系列高压变频器实现恒压供水,具有以下特点: ●优良的调速性能,可实现恒压供水,提高供水质量; ●良好的节能效果,可提高系统运行效率; ●实现电机软启动,减小启动冲击,降低维护费用,延长设备使用寿命; ●压力恒定,避免晚间流量小时压力过高而造成的管线损坏; ●减小跑、冒、滴、漏造成的损失; ●控制方便、灵活,自动化水平高,无须人工倒泵和调节阀门,减轻劳动强度; ●系统安全、可靠,确保负载连续运行; ●输入谐波含量小,不对电网造成污染; ●输出谐波含量低,适合所有改造项目的异步电动机,无须降容使用。 2. 用户条件及要求 贵厂现共装有主循环水泵三台,两用一备,并网运行,一台阀门全开,另一台阀门开度约52%。拟对阀门开度52% 的水泵进行变频改造,采用调速方式,实现供水,保证恒压。 3. 变频器选型及性能特性 根据电机容量,选用深圳瑞普泰科技节电有限公司自主研发和生产,适合驱动高压异步电动

水泵深度变频节能改造分析

水泵深度变频节能改造分析 发表时间:2018-03-20T11:41:12.230Z 来源:《电力设备》2017年第29期作者:刘辉 [导读] 摘要:目前多数火力发电厂都采用“一拖一”“一拖二”方案对凝结水泵进行变频改造,对提高电厂经济性的同时也给凝结水系统的控制及操作提出了新要求。 (安徽晋煤中能化工股份有限公司安徽阜阳 236400) 摘要:目前多数火力发电厂都采用“一拖一”“一拖二”方案对凝结水泵进行变频改造,对提高电厂经济性的同时也给凝结水系统的控制及操作提出了新要求。本文以凝结水变频控制系统出发,并结合实际生产数据分析,提出凝结水泵变频调节系统节能改造的相关建议。 关键词:凝结水泵;变频运行;节能效果 1凝结水系统概述 凝结水泵是火电厂的重要辅机,其耗能在厂用电中占一定的比重。凝结水泵工频方式运行时耗能高、节流损失大、压力高,使凝结水系统的整体效率偏低。目前,大多数火电厂都对凝结水泵进行了变频改造,多采用“变频一拖一”“变频一拖二”运行方式,一般可节电30%左右,且设备运行可靠,可明显提高电厂的技术和经济指标,所以凝结水泵变频改造技术己成为电力行业广泛推广的节能项目之一。本文以华能营口热电厂凝结水泵的深度变频改造为例,分析其节能效果。 某厂两台330MW机组,每台机组配备3台50%容量的凝结水泵,2台运行1台备用,其中A泵采用“变频一拖一”控制,B,C泵采用“变频一拖二”控制,同时给水管道上配置了除氧器给水主调节阀和给水辅调节阀。凝结水泵采用抽芯式结构,部件可拆装更换,泵壳设计成全真空型。凝结水泵深度变频改造的同时也给凝结水系统的控制带来一系列的新问题: (1)改造后,水泵的保护、联锁及凝结水系统相关调节阀的控制回路都需要做改动和优化,保证在各种异常工况下泵及相关调节阀的正确动作,来维持凝结水位的稳定运行; (2)改造后,泵由变频控制,原有调节阀调节系统压力难以满足原有凝结水用户对压力的需求,所以必须根据机组的工况设定合适的压力,来满足整个系统安全性和经济性的要求。 2凝泵变频控制系统的改进 2.1凝泵变颓控制系统的改进 改造之前,低负荷运行时,一台凝结水泵运行,用再循环门的开度和加减补水量的方式来控制凝汽器水位;高负荷时,两台凝结水泵运行,用调整再循环门的开度和加减补水量的方式来控制凝汽器水位。 改造后,整个除氧器水位自动控制系统设计为典型的两段式控制,即两套控制回路,其中一套为凝泵出口母管压力控制回路,靠凝结水泵变频控制,其中母管压力设定值为机组负荷的折线函数;另一套为除氧器水位控制回路,由除氧器主、辅调节阀控制,并且控制方式采用了单冲量和三冲量。当凝结水流量大于350t/h时,凝结水泵需提高转速以满足系统需要,此时凝泵变频器投入水位自动控制,调节门自动切换为凝泵出口压力控制。由于除氧器容积较大,作为被调量的除氧器水位存在较大惯性,负荷增减过程中给水流量变化较大时有可能出现“虚假水位”现象,使得给水流量和凝结水流量的不平衡增大,延长了调节时间,故凝泵变频器调节除氧器水位设计三冲量控制回路以解决这一问题,主调节器调节除氧器水位,副调节器调节除氧器入口凝结水流量,同时将总给水流量作为副调节器的前馈信号。当凝结水流量发生扰动时,通过内回路的作用可以迅速消除:当给水流量发生扰动时,通过内回路的作用可以使凝结水流量迅速跟踪给水流量的变化。 2.2报泵变颇独制系统改进后调节手段 (1)机组启机自第一台凝结水泵启动至150MW负荷时,凝泵变频不得投自动,手动调整凝泵变频保持凝泵出口压力在1.OMPa以上,此时除氧器水位由除氧器水位主调阀投自动(除氧器辅调阀不能投自动)或手动调整保持。 (2)机组负荷大于150MW且凝结水流量大于350 tlh,两台凝结水泵均变频启动运行正常,进入凝汽器疏水扩容器的疏水门全部关闭后可考虑将凝泵变频器投入自动运行。 (3)凝泵变频器投入自动运行前,应检查凝泵出口压力给定值与凝泵出口实际压力基本相同,但不得小于0.70 MPao (4)凝泵变频器投入自动运行后应检查凝泵出口压力和除氧器水位平稳,无较大波动,除氧器水位主调阀和凝泵变频器自动调整正常,两台汽泵密封水压差在正常范围。 (5)机组负荷大于170MW,除氧器水位主调阀接近全开后,手动将除氧器水位辅调阀逐渐开启,以满足公司节能要求。 (6)机组正常运行凝泵定期轮换应在负荷低于250MW以下进行。先解除备用泵联锁,缓慢转移出力后停运一台运行泵,再变频启动备用泵,操作过程中注意保持凝泵出口压力稳定。 此次改造方案实施前凝结水泵虽采取变频运行,但出口压力不能降低很多,变频深度受到影响,正常运行除氧器水位调整门开度未能全部打开,存在节流现象,凝泵变频的节电优势没有很好发挥。为充分发挥凝泵变频运行的节能、节电潜力,为了充分体现价值工程,汽机、热工专业技术人员经过多次试验,并对数据进行分析,提出除氧器水位由凝结水泵变频控制的改造方案,经多专业密切配合,进行了现场实施。 3凝泵深度变频运行节能效果 制约凝结水泵变频改造节能效果的最主要因素是凝结水泵出口压力允许最低值,其是由众多凝结水用户共同决定的。最常见的凝结水用户为给水密封水、低压旁路减温水和低压缸轴封减温水等。 3.1报泵深度变翻运行效果 图1为机组负荷与凝泵出口压力关系曲线,根据试验结果看出,#1,#2机凝结水泵变频调节除氧器水位改造方案实施后,凝泵出口压力由最低的的1.2MPa降低至0.75MPa,由最高的2.1MPa降低至1.7MPa o

水泵节能技术方案

水泵节能技术方案 李树森 [摘要]基于煤矿井下水泵排水用电量大,耗电量占煤炭生产总耗电量18%-40.9%这一实际情况,本文提出一种利用弹力驱动器驱动水泵排水的技术方案,是一种通过取消电动机来减少排水用电量的技术方案,方法是水泵通过联轴器与升速器连接,升速器与弹力驱动器内、外齿轮配合连接,利用弹力驱动器中的弹簧对远离回转轴的滚轮和滚轴施加弹力,形成驱动主轴转动的力矩,依靠滚轮在滚轮内环轨道中滚动,滚轴在滚轴内环轨道中滚动所形成的行程差,带动主轴连续转动,并通过升速器带动水泵运转,将井内的存水排到地面。 [关键词]矿山水泵排水弹力驱动器驱动节电制动器 引言 在煤矿开采过程中,矿用排水用电量占总耗电量的18%-40.9%[1],由于耗电量占比大,水泵节电技术成为科技人员关注的课题,众多研究成果表明,影响水泵排水系统效率的因素为:排水系统的有效扬程与水泵实际扬程之比,水泵效率、电动机效率,为解决这些问题,科研人员作了诸多改进,己接近提升的极值,但收效有限,[2]为更好的解决这些问题,本文推出一种用弹力驱动器驱动水泵排水的解决方案,这一方案的实施,可以取消泵房到地面之间的输电线路,降低线路投入成本,减少电缆放炮、漏电等不安全隐患,还可以取消电动机的采购,免去电动机购买资金,相应降低排水成本,减少采煤用电量。 1.减少排水用电量技术方案的具体措施 就是利用弹力驱动器替代电动机驱动水泵运转排水,弹力驱动器[3]是一种可以提供旋转运动的发动机,将这种旋转运动传递到水泵上,就可以带动水泵转动并向地面排水,由于弹力驱动器自身的转速达不到电动机的转速,这样,就在弹力驱动器3与水泵9之间设置了一台升速器5,形成了水泵9-联轴器8-升速器5-弹力驱动器3-皮带2-发电机1这么一种连接方式,并且,在水泵9与升速器5之间的联轴器8上的刹车盘7部位设置了制动器6,如附图1所示,设置制动器的目的,是在不需要排水时,用制动器形成的制动力矩迫使弹力驱动器停止转动,这是根据弹力驱动器工作特征决定的,弹力驱动器的工作方式比较特殊,即常态是转动,停止运转需制动器工作,当继续排水时,只要松开制动器,弹力驱动器就可以继续转动并通过升速器带动水泵转动排水了,设置

循环水泵节能改造方法措施与案例

在石油、化工、冶金、医药、电力等行业都大量应用循环水泵,其耗电量不容小视。对循环水泵系统进行节能改造,对企业降耗增效具有很大经济价值。 我公司长期致力于水泵系统节能服务,改造了数十台循环水泵,有丰富的实践经验和体会,在此和大家交流、分享。 我们把水泵系统节能原理概括为一句话,就是“用高效水泵在高效点工作,降低管路损失尤其是降低或消除节流损失”。 这句话包含了高效水泵(水泵效率)、高效点、管路损失三个关键词,也是水泵系统节能的三个关键点。 (1)高效水泵(水泵效率):要节能,水泵效率必须高。水泵效率高低首先取决于设计水平,其次取决于制造精度和质量; (2)高效点:同一台水泵,在不同的流量点其效率是不同的,一般在额定工况附近效率最高,如果偏离额定工况较多,水泵额定效率即便很高,其实际运行效率也不高。 再延伸一点说,高效点还要考虑电机的负荷率和电机高效区,也就是说要使整个水泵系统总效率处于综合高效点。 (3)管路损失:管路损失要尽可能降低,尽量消除节流损失。 我们就是通过紧紧瞄准水泵效率、高效点、管路损失这三个关键点,对水泵实际运行工况进行科学分析和诊断,利用先进理论和科学方法,找出水泵系统存在的问题,有针对性地采取切实有效的措施,全面深入挖掘各项潜力,提高水泵额定效率、使水泵实际工作参数处于高效点、最大限度地降低管路损失,通过三方面的有机结合,实现节能目标,这就是我们

的节能原理。 我公司的具体节能措施有以下几点: 1、现场调研,正确诊断系统存在问题,有的放矢,精准确定设计参数。 2、凭借高超设计水平和节能理念,提高设计工况点的额定效率。 广泛学习和利用三元流等先进设计理论,结合CFD流场分析和动态模拟,瞄准特定工作范围,借鉴优秀水利模型,采用先进CAD设计软件,最重要的是我们有经验丰富的高级设计师,将几十年的设计经验和体会融入其中,使设计的水泵及叶轮效率接近特定工况的极限值,用高效水泵或高效叶轮(三元流叶轮)替换旧泵或旧叶轮。 3、消除工况偏移造成的效率低下。 普通水泵都是系列化定型产品,用适当间隔的有限的规格参数,来满足千差万别的工况,不可能针对某厂具体需要参数来设计制造。 水泵产品型谱的有限性和实际生产工况参数千差万别的多样性,必然会造成水泵性能参数和实际生产工艺需求及管路实际阻力之间的不完全匹配,这就导致水泵偏离高效运行区间;由于各种原因造成水泵负荷的变化也会导致水泵偏离高效区;这都会导致效率低下,造成能源浪费。 我们根据具体情况,采取各种措施消除工况偏移状况,使水泵重回高效区工作。 4、量身定做,专门设计制造,消除无用功耗。 设计院在工程设计时,一般没有对每台水泵的流量需求、管道阻力进行精确计算,普遍采用类比估算,为了安全可靠相对比较保守。

水泵变频节能改造项目技术要求

一、能源机房冷却水泵变频改造 改造内容:将现有3台冷却泵的软启动控制柜更换为变频控制柜,并在冷却水回水管安装3套温度传感器和控制线,根据冷却水回水温度控制水泵运行频率。 控制功能:每台泵均配变频器,实现恒温变频控制。当冷却水回水温度低于27℃时水泵根据水温高低变频运转,使水温趋近27℃,变频运行时,通过设置合理的响应时间,避免水温频繁波动,同时设定一频率下限,避免冷却水断流。当水持续升高、超过27℃时,水泵以工频运行;在水温处于28℃-32℃区间时,继续使用现有的风机变频功能实现冷却水温度控制。 重点说明:现场调试时,由于新增冷却泵温度传感器与原风机温度传感器存在误差,需根据具体情况测试、修正,实现冷却泵、风机根据上述温度控制区间有序变频运行,达到冷却水系统的安全运行和节能运行要求。 待改造配电柜一览表 二、游泳馆水泵控制改造 改造内容:在地板采暖补水泵出口管道安装压力变送器,改造控制柜,在软化水箱中安装浮球式液位控制器,试现场情况安装敷设控制线,改造阀门、压力表、温度计等附件。 控制功能:补水泵出口管道压力为地板采暖二次水定压值,即静水压线。设定启泵压力为0.1Mpa、停泵压力为0.15Mpa,报警压力为0.9Mpa;采用10寸触摸屏plc控制柜,通过压力变送器实现2台补水泵自动启停及欠压报警功能。同时具备低软化水箱低水位自动停泵及报警功能,避免水泵损坏。 重点说明:2台补水泵功率为0.37kw,一用一备,实现自动轮换运行或手动选择开启;为便于调试、观察,压力变送器自身需具备压力显示功能;控制柜采用声光报警器实现报警功能,并设手动按钮消除报警;为便于调试,控制柜的触摸屏软件可对报警压力、启/停泵压力值进行修改。 三、体育馆中水泵、变频柜改造。 改造内容:拆除CR10-05立式泵1台,安装格兰富CR45-2立式泵1台(扬程:35.8m,流量:45m3/h,转速:2900转,功率:7.5kw);更换水泵出、入口阀部件、仪表及管道;改造11kw变频控制柜1台,在中水水箱中安装浮球式液位控制器。

变频水泵节能原理及分析

变频水泵节能原理及分 析 Revised as of 23 November 2020

前言 离心式水泵在我国当前的工农业生产和人民日常生活中起到很大的作用,水泵使用三相异步电动机进行拖动,其流量和压力等控制对象大多采用管道阀门截流的调节方式。这种人为增加管阻的调节方式虽然满足了生产生活所需的对流量的控制,但是浪费了大量的电能,不是一种经济的运行方式。在电力能源越发短缺的今天,找寻并普及一种既经济又方便的水泵运行方式,对节能工作有着重大的意义。 1、离心式水泵工作特性 离心式水泵工作原理 离心式水泵是一种利用水的离心运动的抽水机械。由泵壳、叶轮、泵轴、泵架等组成。起动前应先往泵里灌满水,起动后旋转的叶轮带动泵里的水高速旋转,水作离心运动,向外甩出并被压入出水管。水被甩出后,叶轮附近的压强减小,在转轴附近就形成一个低压区。这里的压强比大气压低得多,外面的水就在大气压的作用下,冲开底阀从进水管进入泵内。冲进来的水在随叶轮高速旋转中又被甩出,并压入出水管。叶轮在动力机带动下不断高速旋转,水就源源不断地从低处被抽到高处。 泵类负载特性分析 为适应用户用水量的变化,调节出水流量,现通常采用两种方法来完成流量的连续调节。一种是利用控制阀或节流阀进行节流,以改变出水流量;另一种是泵的调速控制,调节泵的转速来改变出水流量。图1为水泵调速时的全扬程特性(H—Q)曲线。

图1 水泵调速时的H-Q曲线 在上图中,曲线n0表示,管路中阀门开度不变时,水泵在额定转速下的扬程—流量曲线。R1表示水泵转速不变时,全扬程与流量之间的关系曲线,又称管阻特性曲线。H0为供水量Q接近0时,所需的扬程等于实际扬程,其物理意义是:如果全扬程小于实际扬程,系统将不能供水。 由上图可知,水泵的扬程特性曲线和管网的管阻特性曲线有交叉点,这个点就是水泵工作时既满足扬程特性又满足管阻特性,供水系统工作于平衡状态,系统稳定运行。 在使用管道阀门控制时,当流量要求从QA减小到QB,就必须减小阀门开度。这时供水管道的阻力变大,管阻特性曲线从R1移到R2,扬程则从HA上升到HB,运行工况点从A点移到B点。 在使用水泵调速控制时,当流量要求从QA减小到QB,由于阀门开口度不变,管道的阻力曲线R不变,此时水泵的特性取决于其转速。如果把速度从n0降到n1,运行工况点则从A点移到C点,扬程从HA下降到HC。 根据离心泵特性曲线公式: 其中:P——为泵使用的工况点轴功率(KW); Q——为使用工况点的水压或流量(m2/s); H——为使用工况点的扬程(m); ρ——为输出介质的密度(kg/m3); η——为使用工况点的泵的效率(%)。 由公式1,可得出在使用阀门调节时,水泵运行在B点的轴功率,和用转速调节时,水泵运行在C点的轴功率分别为:

中央空调节能改造可行性方案

筑 龙 网 w w w . z h u l o n g . c o m 中央空调节能改造可行性方案 随着我国国民经济的不断发展,人民生活水平的不断提高,中央空调已进入宾馆、饭店、工矿企业、办公楼等各领域。常规中央空调系统是按照最大冷热负荷进行选型设计。而全年最热及最冷的天气只有几天,因而中央空调大多数时间是在低于机组额定负荷即部分负荷状态下运行,造成了电能极大的浪费,随着科技的发展,变频器已广泛应用于各行各业,其价格便宜,技术成熟,特别是对风机、水泵的节能改造目前已在工业领域中广泛推广,其平均节电在30%以上。 一、中央空调节能最佳方法 由于中央空调主要设备是风机水泵,所以节能最佳方法就是采用变频器。目前大多数中间空调还采用以往旧的控制方式,即:通过改变压缩机机组、水泵、风机启停台数,以达到调节温度的目的。 该调节方式缺点集中表现为如下几点: ● 设备长时间全开或全闭,轮流运行,浪费电能惊人。 ● 电机直接工频启动,冲击电流大,严重影响设备使用寿命。 ● 温控效果不佳。当环境或冷热负荷发生变化时,只能通过增减冷热水泵的数量或使用挡风板来调节室内温度,温度波动大,舒适感差。 中央空调采用变频器后有如下优点: ● 变频器可软启动电机,大大减小冲击电流,降低电机轴承磨损,延长轴承寿命。 ● 调节水泵风机流量、压力可直接通过更改变频器的运行频率来完 成,可减少或取消挡板、阀门。 ● 系统耗电大大下降,噪声减小。 ● 若采用温度闭环控制方式,系统可通过检测环境温度,自动调节风量,随天气、热负荷的变化自动调节,温度变化小,调节迅速。 ● 系统可通过现场总线与中央控制室联网,实现集中远程监控。 二、供水系统变频节能改造 无论是溴化锂机组或电制冷(氟利昂)机组的中央空调系统,主机自身的能量消耗有机组控制,机外的电力消耗组不能控制,而这部分的成本是相当高的,却通常被人忽视了。尤其是溴化锂机组,在额定状态制冷运用行时,机外水泵、冷却塔的电机耗电量约占总体能源消耗成本的30%(以每公斤油2元、每度电1元计算)。无论从环境保护角度还是用户切身利益角度,都应将中央空调系统设计成最节能的系统。采用变频器来控制机外水泵电机、冷却塔电机是最简单、最有效的节能措施。一般情况节电20%~50%,每年可节省机组及系统总运行费用的12%~20%,十分惊人。

循环水泵变频方案

山东鑫胜热电有限公司循环水泵中压变频项目 编制:张勇 审核:师伟华 批准:王培彬

1 项目介绍 1.1 改造项目介绍 1.2 工况调查数据 2 变频改造的节能分析 2.1 变频调速节能原理 2.2 变频改造节能分析 2.3 变频调速其他附加好处 3 项目建议改造方案 3.1 改造电气原理 3.2 控制接口与控制设计 3.3 设备外形尺寸与安装布局要求 4 ZINVERT系列智能高压变频调速系统技术简介 4.1 ZINVERT系列智能高压变频调速系统原理与结构 4.2 ZINVERT系列智能高压变频调速系统功能 4.3 ZINVERT系列高压变频调速系统使用要求及设计选型注意事项 5 ZINVERT系列智能高压变频调速系统技术参数

1 项目介绍 1.1 改造项目介绍 鑫胜热电.新上2 台10KV315KW循环水泵.为全厂提供冷却循环水。由于设计压力比实际压力大.需增加变频系统. 节能降耗。 1.2 工况调查数据

2 变频改造的节能分析 2.1 变频调速节能原理 从流体力学的原理得知. 使用感应电动机驱动的风机、水泵负载.轴功率P与流量Q. 扬程H 的关系为:P Q H 当电动机的转速由n1 变化到n2 时,Q、H、P 与转速的关系如下: Q2 Q1 n2(1) n1 H 2 H1 n n2(2) 2 1n1 可见流量Q和电机的转速n是成正比关系的. 而所需的轴功率P与转速的立方成正比 关系。所以当需要80%的额定流量时. 通过调节电机的转速至额定转速的80 %. 即调节频率到40Hz 即可.这时所需功率将仅为原来的51.2 %。 如图2-1 所示. 从风机、水泵的运行曲线图来分析采用变频调速后的节能效果。 图2-1 风机、水泵的运行曲线图 当所需风量、流量从Q1减小到Q2时. 如果采用调节阀门的办法. 管网阻力将会增加管网特性曲线上移. 系统的运行工况点从A点变到新的运行工况点B点运行.所需轴功率 P2与面积H2×Q2成正比;如果采用调速控制方式.风机、水泵转速由n1下降到n2. 其管网特性并不发生改变.但风机、水泵的特性曲线将下移. 因此其运行工况点由

变频水泵节能原理及分析精编版

变频水泵节能原理及分 析 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

前言 离心式水泵在我国当前的工农业生产和人民日常生活中起到很大的作用,水泵使用三相异步电动机进行拖动,其流量和压力等控制对象大多采用管道阀门截流的调节方式。这种人为增加管阻的调节方式虽然满足了生产生活所需的对流量的控制,但是浪费了大量的电能,不是一种经济的运行方式。在电力能源越发短缺的今天,找寻并普及一种既经济又方便的水泵运行方式,对节能工作有着重大的意义。 1、离心式水泵工作特性 离心式水泵工作原理 离心式水泵是一种利用水的离心运动的抽水机械。由泵壳、叶轮、泵轴、泵架等组成。起动前应先往泵里灌满水,起动后旋转的叶轮带动泵里的水高速旋转,水作离心运动,向外甩出并被压入出水管。水被甩出后,叶轮附近的压强减小,在转轴附近就形成一个低压区。这里的压强比大气压低得多,外面的水就在大气压的作用下,冲开底阀从进水管进入泵内。冲进来的水在随叶轮高速旋转中又被甩出,并压入出水管。叶轮在动力机带动下不断高速旋转,水就源源不断地从低处被抽到高处。 泵类负载特性分析 为适应用户用水量的变化,调节出水流量,现通常采用两种方法来完成流量的连续调节。一种是利用控制阀或节流阀进行节流,以改变出水流量;另一种是泵的调速控制,调节泵的转速来改变出水流量。图1为水泵调速时的全扬程特性(H—Q)曲线。 图1 水泵调速时的H-Q曲线

在上图中,曲线n0表示,管路中阀门开度不变时,水泵在额定转速下的扬程—流量曲线。R1表示水泵转速不变时,全扬程与流量之间的关系曲线,又称管阻特性曲线。H0为供水量Q接近0时,所需的扬程等于实际扬程,其物理意义是:如果全扬程小于实际扬程,系统将不能供水。 由上图可知,水泵的扬程特性曲线和管网的管阻特性曲线有交叉点,这个点就是水泵工作时既满足扬程特性又满足管阻特性,供水系统工作于平衡状态,系统稳定运行。 在使用管道阀门控制时,当流量要求从QA减小到QB,就必须减小阀门开度。这时供水管道的阻力变大,管阻特性曲线从R1移到R2,扬程则从HA上升到HB,运行工况点从A点移到B点。 在使用水泵调速控制时,当流量要求从QA减小到QB,由于阀门开口度不变,管道的阻力曲线R不变,此时水泵的特性取决于其转速。如果把速度从n0降到n1,运行工况点则从A点移到C点,扬程从HA下降到HC。 根据离心泵特性曲线公式: 其中:P——为泵使用的工况点轴功率(KW); Q——为使用工况点的水压或流量(m2/s); H——为使用工况点的扬程(m); ρ——为输出介质的密度(kg/m3); η——为使用工况点的泵的效率(%)。 由公式1,可得出在使用阀门调节时,水泵运行在B点的轴功率,和用转速调节时,水泵运行在C点的轴功率分别为:

中央空调系统水泵变频节能改造方案

中央空调系统水泵变频节能改造方案 一、概述 中央空调系统在现代企业及生活环境改善方面极为普遍,而且某此生活环境或生产工序中是属必须的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。至所以要中央空调系统,目的是提高产品质量,提高人的舒适度,集中供冷供热效率高,便管理,节省投资等原因,为此几乎企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调的,它是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常之大,是用电大户,几乎占了用电量50%以上,日常开支费用很大。 由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。 随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量;采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。

二、水泵节能改造的必要性 中央空调是大厦里的耗电大户,每年的电费中空调耗电占60% 左右,因此中央空调的节能改造显得尤为重要。 由于设计时,中央空调系统必须按天气最热、负荷最大时设计,并且留10-20% 设计余量,然而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大的富余,所以节能的潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大的浪费。 水泵系统的流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差的现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果的情况。为了解决这些问题需使水泵随着负载的变化调节水流量并关闭旁通。 再因水泵采用的是Y- △起动方式,电机的起动电流均为其额定电流的3 ~ 4倍,一台90KW的电动机其起动电流将达到500A ,在如此大的电流冲击下,接触器、电机的使用寿命大大下降,同时,起动时的机械冲击和停泵时水垂现象,容易对机械散件、轴承、阀门、管道等造成破坏,从而增加维修工作量和备品、备件费用。 采用变频器控制能根据冷冻水泵和冷却水泵负载变化随之调整水泵电机的转速,在满足中央空调系统正常工作的情况下使冷冻水泵和冷却水泵作出相应调节,以达到节能目的。水泵电机转速下降,电机从电网吸收的电能就会大大减少。 其减少的功耗△ P=P0 〔 1-(N1/N0)3 〕( 1 )式 减少的流量△ Q=Q0 〔 1-(N1/N0) 〕( 2 )式 其中N1为改变后的转速, N0为电机原来的转速, P0为原电机转速下的电机消耗功率, Q0为原电机转速下所产生的水泵流量。由上式可以看出流量的减少与转速减少的一次方成正比,但功耗的减少却与转速减少的三次方

循环泵变频改造施工组织设计方案

五、循环泵变频改造施工组织设计方案 5.1编制说明: 安装工程施工组织设计方案,在详细阅读“招标文件”充分理解设计图纸,深入现场考察的基础上,对目标工期、施工质量控制、项目管理机构及劳动组织、施工机械设备和周转材料配备、主要分项工程的施工方法及技术措施、质量安全、文明施工保证措施等方面进行初步的组织设计和部署,我们承诺:工程一旦由我公司中标,我们将在本施工组织设计的基础上,根据施工合同的要求以及业主的各项指示,向业主提供更能符合项目各项要求的施工组织设计方案,确保工程目标的完成。 5.2工程概况: 河庄坪污水厂排污泵变频改造项目主要工程量为: (1)对现用的排污泵系统安装变装控制装置,实现变频运行达到节能的目地。 (2)变频器选用ABB,用变频控制柜替换现用电源柜,原位安装一对一控制。 (3)控制柜具备本地和远程控制功能以及手动和自动运行两种方式。 (4)变频控制柜除标准功能外,增加数字式电参数仪表。 (5)预留标准通信接口。 (6)在值班室增加一面远程控制箱,可实现两地控制,方便操作。 (7)采用定液位变频运行,采用超声波液位仪。 (8)将泵主要运行参数上传到泵房值班室。 (9)更换现用的三台多级管道泵为第四代管道泵,按现有功率进行更换;增大过滤器容量,改善排污能力。 5.3编制依据: 1、《低压配电设计规范》GB50231-98; 2、《电气装置安装工程电气照明装置施工及验收规范》GB50259-96; 3、《工业自动化仪表工程施工及验收规范》GBJ93-86; 4、《电力工程电缆设计规范》GB50217; 5、《低压成套开关设备和控制设备》GB/7251.1-2005; 6、《电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范》GB50257-1996; 7、《建筑电气工程施工质量验收规范》GB/50303-2002

水泵变频运行特性曲线

引言 水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论 文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 二、水泵变频运行分析的误区 1.有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律Q I/Q2=n i/n2 扬程比例定律H i/H2=( n i/n 2)2 轴功率比例定律P i/P2=( n i/n 2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: 1)为什么水泵变频运行时频率在30?35Hz以上时才出水? 2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳, 后才随着转速的升高而升高? 2.绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图i所示。 图i水泵的特性曲线 图1中,水泵在工频运行的特性曲线为F i,额定工作点为A,额定流量Q A,额定扬程

H A,管网理想阻力曲线R i=KQ与流量Q成正比。采用节流调节时的实际管网阻力曲线R2, 工作点为B,流量Q B,扬程H B。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q c,扬程H e;这里Q B=Q C。 按图i 中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零, 但这与实际情况是不相符的。实际水泵变频调速时,频率降到30?35Hz以下时就不出水了,流量已经降到零。 3.变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌? 4.以上分析的误区 1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵( 或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比例定律是相似定律作为特例演变而来的。即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的 直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。 2)在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量 有关,阻力系数为常数。因此其运行工况与标准工况相同,可以应用比例定律。但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。 3)相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正。 4)在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的

最新水泵电机变频节能改造资料讲解

水泵电机变频节能改造 姓名:梅军阳单位:昆钢玉钢邮政编码:653100 摘要:本论文主要陈述了玉钢轧钢水处理站浊环1#、2#循环水泵高压电机变频改造前后进行了对比分析,从改造后的实际运行工况来看,操作控制更简单,更方便,更稳定,能耗得到了大大降低,设备使用性能得到更加稳定,减少了设备的故障率,大大降低了维护检修费用。 关键词:变频,水泵, 电机,节能改造 一、水处理工况 玉钢轧钢水处理站主要是带钢生产线使用后污水进行处理循环使用的,浊环1#、2#高压循环水泵主要功能是向生产线设备提供冷却水及冲洗用水,正常情况下只需要用一台浊环水泵供给就能满足生产需要,另外一台做备用。其工艺流程如图1:

精轧机轧辊冷却 粗轧水平轧辊冷却 精轧立辊轧辊冷却 图1轧钢水处理工 艺流程简图 生产线使用后污水流进沉淀池进行沉淀,经过化学除油泵打到化学除油器进行除油处理后经冷却塔冷却至浊环水池,在用1#、2#浊环高压泵送到主生产设备上,水处理站是根据主生产线所需用水量通过出口阀门开关大小控制,把水供至主生产设备进行冷却及冲洗用水。 二、节能分析 改造前浊环水泵是用三相交流异步电动机拖动,电动机是直接启动,启动电流等于7-7倍

额定电流,这不但要求电网容量高,而且启动时对设备和电网造成严重的冲击,大大的影响了使用寿命,。使用变频装置,利用变频器的软启动功能将使起动电流从零开始,最大值也不超过额定电流,减少了对电网的冲击和电容量的要求,延长了设备的使用寿命。出口管道流量的控制是通过对浊环水泵出口阀门对水量进行调节,电机的功率就浪费在了阀门上。整个系统主要有以下几个问题。 1)操作不便 为了满足主生产设备的供水正常,使整个循环水系统达到基本平衡,值班人员必须通过浊环水池安装的液位计对水位进行监控,当水量不平衡时值班人员必须通过浊环水泵出口阀门对水量进行调节,如果在生产不正常或情况变化大时调节阀门的次数也多,大大增加了值班人员的劳动强度。而且用阀门调节出口流量精确度不高,调整用时过长,不能很好满足生产所需。 2)能耗消耗大 生产正常时浊环水泵只需要开一备一,水泵

空调系统冷冻水循环水泵的节能设计方法

空调系统冷冻水循环水泵的节能设计方法 (中国矿业大学力学与建筑工程学院建环11-2班郭浩) 摘要:建筑空调系统的运行负荷仅为设计负荷的 50%~70%左右,而冷冻水泵作为空调系统中最主要的耗能设备,在整个系统运行过程中存在相当大的节能改造空间。本文从空调系统的节能重要性以及重点阐述的冷冻水循环水泵的节能,分析了空调系统的运行工况,从运行工况中得出空调能耗的原因,从冷冻水泵的单台、多台串并联的运行情况进行水泵选型,并从冷冻水一次泵变频节能和二次泵变流量两个方面对冷冻水循环水泵的节能坐车进一步阐述。对水泵的选型方法作一定了解。 关键词:冷冻水泵节能优化水泵选型一次泵二次泵 1 课题研究的意义 中国是一个能源生产和消费大国。近年来节能减排已成为国家生活乃至全社 会关注的焦点,也是能源可持续发展的必由之路。我国建筑能耗也已迅速上升到 社会总能耗的33%以上。 空调系统、照明系统、动力系统构成了现代建筑的三大重要“器官”。暖通 空调已占到总建筑能耗的 50%~60%。在空调系统中,主要能耗设备有冷水机组、 水泵、末端设备等,其中空调水泵的能耗大约占冷水机组能耗的13%左右。空调 负荷是随气象因素等条件的变化而变化的,因此空调系统在大部分时间内工作于 部分负荷状态。建筑空调系统的运行负荷仅为设计负荷的 50%~70%左右,而冷 冻水泵作为空调系统中最主要的耗能设备,在整个系统运行过程中存在相当大的 节能改造空间。 本文主要就空调系统中冷冻水循环水泵的节能设计进行探讨,从冷冻水循环 水泵的运行工况、水泵组合方式、水泵选型以及冷冻水一次泵、二次泵的节能设 计角度进行分析。 2 冷冻水系统耗能分析 中央空调系统包括了“末端风系统”、“输配系统”、“冷水机组”,具有“多 输入、多输出、强耦合”等特点。无论是冷水机组、冷冻水泵,又或者末端、阀 门的控制策略的变化,均有可能导致冷冻水系统、甚至是冷水机组运行工况发生 波动。

风机水泵的变频调速节能分析

风机水泵的变频调速节能分析 节能降耗、增加效益是全社会应为之努力的方向。我国的电动机用电量占全国发电量 的60%~70%,风机、水泵设备年耗电量占全国电力消耗的1/3。应用于风机、水泵等设备的传统方法是通过调节出口或入口的挡板、阀门开度来控制给风量和给水量,其输出功 率大量消耗在挡板、阀门地截流过程中。另外,由于在通常的设计中为了满足峰值需求, 水泵选型的裕量往往过大,也造成了不应有的浪费。根据风机、水泵类的转矩特性,采用 变频调速器来调节流量、风量,将大大节约电能。下面就分析一下在风机水泵类负载中使 用变频器所能达到的效果。 一,通过变频调速达到的一次节能。 下面以水泵为例来说明,由图1可以看到: 流量Q正比于转速n 压力H正比于n2 转矩T正比于n2 功率P正比于n3 图1 水泵流量、压力、功率曲线…

在普通的水泵流量控制中使用阀门来调节,如图2所示: 图2 阀门控制水泵流量 管道阻力h与流量Q的关系为h正比于RQ2,其中R为阻力系数 电机在恒速运行时,流量为100%情况下(工作点为A),水泵轴功率相当于Q1AH1O 所包容的面积。 电机在恒速运行时,采取调节阀门的办法获得70%的流量(工作点为B),将导致 管阻增大,水泵轴功率相当于Q2BH2O所包容的面积,所以轴功率下降不大。 采用变频调速控制流量时,由于管道特性没有改变,水泵特性发生变化(工作点为C),轴功率与Q2CH3O所包容的面积成正比。故其节能量与CBH2H3所包容的面积成正比, 输入功率大大减小。如图3所示: 图3 变频调节水泵流量

正如前面提到的,轴功率P与转速n的三次方成正比。采用变频器进行调速,当流量 下降到80%时,转速也下降到80%,而轴功率N将下降到额定功率的51.2%,如果流量下降到60%,轴功率N可下降到额定功率的21.6%,当然还需要考虑由于转速降低会引起的效 率降低及附加控制装置的效率影响等.即使这样,这个节能数字也是很可观的,因此在装有风机水泵的机械中,采用转速控制方式来调节风量或流量,在节能上是个有效的方法。 二,变频调速所实现的二次节能 变频调速自动根据负载情况调整输出电压,通过对电机的最佳励磁,有效地降低了无 功损耗,提高系统功率因数,降低电机工作噪音, 延长电机使用寿命。 电动机的总电流(IS)为电机励磁电流(IM)与电机力矩电流(IT)的矢量和, IS和IM夹角的余弦值即为电动机的功率因数; 电机励磁电流决定于加在电机线圈上的电压, 在工频状态下, 交流电压为380V恒定不变, 因此励磁电流也不会改变; 在变频状态下, 变频器自动检测负载力矩, 根据实际负载决定输出电压, 因此在负载较低的时候自动降低输出电压, 以维持最高的功率因数. 由于变频器自动降低了电机励磁电流, 使得输出总电流明显低于工频工作的总电流, 节约了线路中的损耗和无功功率的损失; 这个功能在丹佛斯VLT系列变频器中称为AEO功能(Automatic Energy Optimization, 自动节能功能). 声明:上海津信电气有限公司拥有此篇技术文档的所有权,任何人如需转载,必须表明出处。

相关主题
文本预览
相关文档 最新文档