当前位置:文档之家› 参考翻译的原文

参考翻译的原文

参考翻译的原文
参考翻译的原文

Direct load transmission in hybrid FRP and lightweight

concrete sandwich bridge deck

E.Schaumann,T.Valle

′e,T.Keller *Swiss Federal Institute of Technology Lausanne,Composite Construction Laboratory,EPFL-CCLab,BAT.BP,Station 16,CH-1015Lausanne,Switzerland

Received 31August 2007;received in revised form 12December 2007;accepted 14December 2007

Abstract

Direct load transmission experiments on hybrid short-span beam specimens for a novel bridge deck were performed.The sandwich

construction consists of three layers:a ?ber-reinforced polymer composite (FRP)sheet with T-upstands for the bottom skin,lightweight concrete (LC)for the core and a thin layer of ultra high performance reinforced concrete as a top skin.Specimens with adhesively bonded FRP–LC interfaces showed signi?cantly higher ultimate loads than corresponding unbonded specimens with composite action due to pure mechanical interlocking.The degree of composite action between FRP and LC in the unbonded interfaces depended on the LC compressive strength.A correlation of the specimen ultimate loads and the LC splitting tensile strengths was https://www.doczj.com/doc/036294964.html,bining the LC splitting tensile strength and the LC characteristic length led to a good correlation with the specimen cracking loads.ó2007Elsevier Ltd.All rights reserved.

Keywords:A.Hybrid;B.Interface/interphase;D.Mechanical testing;E.Pultrusion

1.Introduction

Hybrid slab systems combining ?ber-reinforced polymer (FRP)composites together with traditional materials such as concrete or steel are promising load-bearing structures,since each material can be optimally used.An increasing number of applications has proven their high potential in terms of structural performance,manufacturing and dura-bility [1].A novel concept for a hybrid sandwich bridge deck system was proposed by the authors in [2].The system uses three layers of di?erent materials:an FRP sheet with T-upstands for the bottom skin,which also serves as formwork,lightweight concrete (LC)for the core material and ultra high performance ?ber-reinforced concrete (UHPFRC),reinforced with FRP bars in case of tension,for the top skin.No additional shear reinforcement (rebar or studs)are considered in order to provide a simple and cost-e?ective manufacturing process for the slab.

Similar to conventional reinforced concrete slabs,two di?erent failure modes can be expected for the hybrid sys-tem [3]:?exural failure,which comprises either crushing of the compression zone or tensile failure of the reinforce-ment,or shear failure in the core.Shear failure can occur in two distinct zones:in the span or at the supports with direct load transmission through a compression diagonal.It has been recognized that the shear span-to-depth ratio,a /d ,is an indicator for the dominant failure mode,where a is the distance from the load axis to the support axis,and d the e?ective depth (or static height)of the slab.As a decreases,the shear resistance increases,because the load can be directly transmitted by a compression diagonal to the support [3,4].For longer distances,however,compres-sion diagonals interfere with crossing tension diagonals,which lower the shear resistance compared to the shear resistance over the supports (for concrete without shear reinforcement).Schlaich [5]introduced the concept of D and B regions,where D stands for discontinuity or disturb (associated to nonlinear strain distributions through the cross-section),and B stands for Beam or Bernoulli (where a linear strain distribution can be expected).Typically,

1359-835X/$-see front matter ó2007Elsevier Ltd.All rights reserved.

doi:10.1016/https://www.doczj.com/doc/036294964.html,positesa.2007.12.004

*

Corresponding author.

E-mail addresses:erika.schaumann@ep?.ch (E.Schaumann),till.val-lee@ep?.ch (T.Valle

′e),thomas.keller@ep?.ch (T.Keller)https://www.doczj.com/doc/036294964.html,/locate/compositesa

Available online at https://www.doczj.com/doc/036294964.html,

Composites:Part A 39(2008)

478–487

the region of direct load transmission extends to a /d ratios around 2.5[3,4],while for higher ratios the beam mecha-nism predominates.

The shear load-bearing behavior of hybrid FRP-con-crete sandwich beams,exhibiting a ratio of a /d =8.0(and therefore predominant beam behavior),was experi-mentally investigated and modeled,see [2,6].Two di?er-ent types of LC materials were used for the core:sand lightweight aggregate concrete (SLWAC)and all light-weight aggregate concrete (ALWAC,classi?cation according to [7]).It was shown that concrete brittleness,characterized by the characteristic length of the LC,was higher for the latter than for the former,because sand aggregates increase the concrete-to-concrete friction in fracture surfaces and delay crack propagation [7].The characteristic length represents the length of a tie in which the required elastic energy is stored to create a transverse fracture surface.A fracture mechanics based model to predict the shear resistance of the unreinforced LC core was presented and pointed out that not only the static strength must be considered but also fracture mechanics properties [6].

The objective of the study presented in this paper is the investigation of the direct load transmission behavior of the proposed sandwich structure.Experiments were con-ducted on similar sandwich beams as used for the investiga-tion of the beam behavior.The a /d ratio,however,was reduced from 8.0to 1.6,which corresponds to an inclina-tion of the compression diagonal of 33.7°.2.Experimental investigation

2.1.Specimen description and parameters

Short-span beam specimens 1200mm long,400mm wide and 200mm deep were cut from the undamaged parts of 3600mm long beams reported in [2,6].Figs.1and 2show the cross-section of the specimens.The top skin con-sisted of a 30mm normal concrete (NC)layer,since the

beam design showed that it was not necessary to use UHPFRC for the experimental purposes.For the bottom FRP skin,standard pultruded glass-?ber-reinforced (GFRP)elements Plank 40HDx500from Fiberline [8]were used,which were cut on both sides to a width of 400mm.The sheet thickness was 5mm,with eight 40mm high T-upstands at 50mm intervals.Two parameters were investi-gated:the type of lightweight concrete for the sandwich core and the type of FRP–LC interface.Three di?erent LCs were used:two SLWAC mixtures of average densities of 900and 1300kg/m 3and one ALWAC mixture of 1000kg/m 3.Furthermore,two types of FRP–LC interfaces were investigated:pure mechanical interlocking between LC and FRP T-upstands and adhesive bonding.During beam fabrication,the LC was cast on the wet epoxy or,for the unbonded beams,directly on the FRP surface and the NC layer was applied directly onto the fresh LC [2].Table 1gives an overview of all investigated specimen con-?gurations and their associated labels.Eight beam speci-mens were examined,two specimens for each SLWAC con?guration and one specimen for each ALWAC con?guration.

2.2.Material properties

The GFRP Plank elements consisted of E-glass ?bers (approximately 45%by vol.)embedded in an isophtalic polyester resin and exhibited a tensile strength of 240MPa and a Young’s modulus of 23GPa [8].The cold-curing,two-component epoxy adhesive used for the FRP–LC interface was SikaDur 330from Sika,with an axial tensile strength of 38MPa [9].For the NC layer,a standard mixture of self-compacting concrete was used.An average compressive strength of 51.2MPa and a Young’s modulus of 29.7GPa were measured on cylin-ders of 160mm diameter and 320mm height after 28days.

The SLWAC mixtures LC900and LC1300,consisted of expanded clay aggregates (Liapor F3,?4–8mm),nor-mal sand,Portland cement (CEM I 42.5)and water.The ALWAC LC1000was composed of the same expanded clay aggregates (Liapor F3)and expanded glass aggre-gates (Liaver,?1–2and 2–4mm),both delivered by Lia-por (Switzerland).Furthermore,Portland cement (CEM I 42.5),some ?llers and adjuvants,and water were added.Mean compressive strengths,f lc,m ,and Young’s Moduli,E lc,m ,were determined according to Swisscode SIA 162/1,as well as mean splitting tensile strengths,f lctsp,m ,according to Swisscode SIA 262on cylinders as men-tioned above.The LC densities were also measured using the cylinders,after storage in a climate room at 20°C and 95%humidity for 28days.According to [6,7],characteris-tic lengths can be estimated at approximately 150mm for the SLWAC compositions,whereas 40mm can be assumed for the ALWAC mixture.The LC material prop-erties are summarized in Table 2(average values and stan-dard

deviations).

Fig.1.Cross-section of hybrid sandwich beams (NC =normal concrete,LC =lightweight concrete,FRP =?ber-reinforced polymer sheet with T-upstands).

E.Schaumann et al./Composites:Part A 39(2008)478–487479

2.3.Experimental setup and instrumentation

All specimens were simply supported on rollers with a short-span of600mm and subjected to three-point bending using a displacement-controlled hydraulic jack at mid-span on a steel loading plate of150?400?25mm3(Fig.2). The northern roller was?xed,while the southern roller was allowed to move horizontally.The specimens were subjected to a constant displacement rate of0.12mm/min until failure.

Arrangement and labeling of the instrumentation are shown in Fig.2.Linear voltage displacement transducers (LVDT,accuracy±0.10mm)were used to measure vertical displacements at mid-span,on support sections and di?er-ential horizontal displacements between the LC and the FRP Plank at both ends of the specimens.Omega-shaped extensometers,type PI-2-100,produced by Tokyo Sokki Kenkyujo(accuracy±0.01mm),enabled the measurement of deformations over a gage length of100mm on the con-crete surface and on the bottom of the FRP sheet.On the east specimen side,2?5extensometers(labeled O20–O24 and O25–O29)measured the transverse deformations due to tension in distances of40mm along each diagonal,also see Fig.3.On the west side,to measure the longitudinal deformations due to compression,extensometers O34–O38were?xed parallel to the northern diagonal in 30mm distances(asymmetric arrangement,O37in diago-nal axis).Furthermore,at mid-span,O30measured the deformations on the NC,O31on the lower part of the LC(at a height of20mm from the bottom of specimen), and O32–O33on the bottom side of the FRP sheet.For the interpretation of the extensometer results,it was assumed that cracks could cross the gage length,as shown in Fig.3.Furthermore,a grid of black dots was applied to the western specimen side to record the displacements of the specimen using a digital camera.These results are not included in this paper.

Table1

Experimental con?guration

Beam label Type of

LC LC density

(kg/m3)a

FRP–LC

interface

900E-1,900E-2SLWAC900Bonded 1000ALWAC1000Unbonded 1000E ALWAC1000Bonded 1300-1,1300-2SLWAC1300Unbonded 1300E-1,1300E-2SLWAC1300Bonded

a Rounded values.

Table2

Material properties of lightweight concretes

Lightweight concrete Density,

q(kg/m3)

Compressive strength,

f lc,m(MPa)

Young’s modulus,

E lc,m(GPa)

Splitting tensile strength,

f lctsp,m(MPa)

Characteristic length,

l ch(mm)

LC900(SLWAC)882±10 2.1±0.7 3.5±0.20.65±0.1150 LC1000(ALWAC)1003±110.3±1.1 6.6±0.5 1.44±0.140 LC1300(SLWAC)1294±70 5.6±1.28.7±1.0 1.30±0.2150 480 E.Schaumann et al./Composites:Part A39(2008)478–487

3.Experimental results

3.1.Observed failure processes and load–de?ection responses 3.1.1.Unbonded SLWAC specimens

The observed failure process and load–de?ection responses of the two unbonded SLWAC specimens (1300-1/2)were similar;thus only the behavior of specimen 1300-1is described in the following.The load–de?ection response,shown in Fig.4,was almost linear and no di?er-ential horizontal displacements were measured at the beam ends up to a load of 40kN,also see Fig.5.At this load,a vertical crack appeared almost at mid-span.Subsequently,the LC started to be pushed out from the FRP sheet at the northern specimen end,see Fig.5,and the sti?ness decreased (Fig.4).At a load greater than 55kN,the crack started to propagate through the NC layer,just crossing the O30gage length.At 132kN,the crack width of the ver-tical crack had opened up to 15mm,showing an almost complete separation of the northern and southern LC cores.Despite several loud cracks and load drop-o?s,the load could be slightly increased up to the ultimate load of 143kN.At this load,the outer T-webs of the FRP sheet exhibited a shear failure at the northern support and the load decreased.Fig.6illustrates the crack pattern of spec-

imen 1300-1at ultimate load and Table 3summarizes ulti-mate loads and loads at ?rst visual crack of both specimens.

3.1.2.Bonded SLWAC specimens

Specimens 900E-1and 1300E-1behaved similarly to specimens 900E-2and 1300E-2and,therefore,only the behavior of the former is described in the following.At 75kN,a ?rst diagonal crack appeared on the southeast side of specimen 900E-1.With increasing load,this crack grew steadily through the whole LC layer,and then prop-agated horizontally in the LC–NC interface towards mid-span.The ultimate load was reached at 98.3kN when a diagonal crack developed next to the northern support.Subsequently,the load dropped slightly and increased again,while a horizontal crack propagated along the FRP–LC interface towards the northern end of the speci-men.The second load peak was reached when the horizon-tal crack reached the end of the specimen,followed by a signi?cant drop in load.This was followed by large hori-zontal displacements between the upper LC and lower LC/FRP,as shown in Figs.5and 6.In this phase,only the FRP sheet,sti?ened slightly by the cracked concrete core,continued to carry load until shear failure in the webs of the FRP T-upstands occurred.

The ?rst visible diagonal crack in the LC of specimen 1300E-1occurred on the northeastern side at approxi-mately 85kN.At 155kN,a diagonal crack on the south-western side had opened signi?cantly,followed by a drop in load to 145kN,see Fig.4.Subsequently,the load could be increased again,at a slightly lower sti?ness,up to the ultimate load of 204kN,when the crack in the northern part opened signi?cantly and simultaneous failure occurred just above the FRP–LC and in the LC–NC interface,see Fig.6.At this point another load drop was recorded and signi?cant horizontal displacements between the upper and lower LC developed at the northern end of the

speci-

Fig.3.Extensometers transverse to compression diagonals (and cracks)and on NC (top)and bottom of LC.

E.Schaumann et al./Composites:Part A 39(2008)478–487

481

men,see Fig.5.The experiment was stopped when failure in the webs of the T-upstands occurred at the northern sup-port,as shown in Fig.7.Table 3summarizes the loads at the ?rst visual crack and ultimate loads of the bonded SLWAC specimens.

3.1.3.Unbonded and bonded ALWAC specimens

The load–de?ection responses of specimens 1000and 1000E are shown in Fig.4.The ?rst diagonal crack in spec-imen 1000was visible on the south-east side at 44kN.Sub-sequently,short vertical cracks also appeared on the bottom part of the LC at mid-span.After further cracking,the LC started to be pushed out from the FRP sheet on the southern end at 150kN and the corresponding slippage was measured,as illustrated in Figs.5and 8.At this point,a decrease in sti?ness occurred,see Fig.4,while the load could be increased until the ultimate load was reached at 164

kN.

Fig.6.Post-peak failure patterns of beams 900E-1(bonded,SLWAC),1000E (bonded,ALWAC),1300-1(unbonded,SLWAC),and 1300E-1(bonded,SLWAC).

Table 3

Ultimate loads,LC cracking loads from visual observation and measurements,and transverse deformations (due to tension)along diagonal at ultimate loads Beam

Ultimate load (kN)Cracking load at ?rst visual crack (kN)Cracking load from omega-gages Transverse deformations at ultimate load Southern diagonal from O22(kN)Northern diagonal from O27(kN)Southern diagonal from O22(mm)Northern diagonal from O27(mm)1300-114340b ––0.000.001300-214640b ––0.000.00900E-19875a (72)700.500.44900E-28380a (70–80)650.280.281300E-120485a 8787 3.000.751300E-218585a 8080 4.50 4.50100016444a 45(75) 2.220.611000E

201

35a

50

(68)

0.90

2.57

a Diagonal crack.

b

Vertical crack at mid-span.

482 E.Schaumann et al./Composites:Part A 39(2008)478–487

Specimen 1000E showed an almost linear response up to a load of 180kN,although the ?rst diagonal crack was already observed at 35kN on the southeastern side.Subse-quent to this ?rst crack,a pattern of diagonal cracks devel-oped progressively on both sides until the ultimate load was reached at 201kN.One of the northern diagonal cracks opened progressively and propagated horizontally approximately 25mm above the T-upstands until the beam end and in LC–NC interface,see Fig.6.The ?nal drop in load occurred when the NC layer failed.Table 3again sum-marizes the ultimate loads and the loads at ?rst visual crack.

3.2.Deformations over specimen depth at mid-span The extensometer responses over the beam depth at ulti-mate load are summarized in Table 4and illustrated in Fig.9(selected representative specimens).As already pointed out,some of the measurements on the concrete were in?uenced by cracks propagating through the gage

length.The sign of some values that normally should show compression therefore changed to tension.

The unbonded specimens 1300-1/2exhibited high defor-mations at the FRP sheet (0.999and 1.108mm)compared to the values measured on the concrete,see Fig.9for 1300-2,while the unbonded specimen 1000showed similar val-ues on the bottom of the LC (0.140mm)and FRP (0.172mm),see Table 4.The bonded specimens 900E-1/2,1000E and 1300E-2exhibited an almost linear distribu-tion through the depth,while the bonded 1300E-1showed a kink at the bottom of the LC.

3.3.Transverse deformations along diagonal

Selected representative load–deformation responses of the extensometers O22and O27,which are situated in the middle of the southern and northern diagonal,are illus-trated in Fig.10.From these curves,cracking loads (of cracks parallel to diagonal)could be determined.Crack ini-tiation was assumed when a sudden increase of the defor-mation due to tension occurred.The results of this analysis are summarized in Table 3(columns 4and 5).

Table 4

Deformations of NC,LC and FRP at mid-span and ultimate load Beam

Ultimate load (kN)Deformation O30,NC (mm)Deformation O31,LC (mm)Deformation av.O32/O33FRP (mm)1300-1143 1.195a 0.734a 0.9991300-21460.003à0.126 1.108900E-198à0.0070.0570.095900E-2830.0070.0350.0661300E-1204à0.0160.0410.5191300E-21850.358a 0.2020.40210001640.264a 0.1400.1721000E

201

à0.042

0.177

0.233

a

Crack in gage length of extensometer,negative signs =compression.

Fig.8.Pushing out of LC from FRP (T-upstand on the left)in unbonded beam 1000at the end of the experiment.

Fig.7.Typical post-peak failure of FRP T-upstands (beam 1300E-2at end of experiment).

E.Schaumann et al./Composites:Part A 39(2008)478–487

483

The smaller values of the two gages were considered as cracking load;they compared relatively well to the crack-ing loads from visual observations.The bonded SLWAC specimens exhibited signi?cantly higher cracking loads (65–87kN)than the ALWAC specimens(45and50kN). Only very small deformations(within the accuracy of the gages)could be measured on the unbonded SLWAC spec-imens and therefore no cracking load could be determined.

Typical representative transverse deformation distribu-tions measured along the two diagonals at di?erent load steps are shown in Fig.11(specimen1000E).The measure-ments O20–O24obtained from the southern diagonal show the development of a parabolic distribution with maximum values measured by O22situated in the middle of the diag-onal.At ultimate failure,the maximum deformation was 0.90mm.Along the northern diagonal,the maximum deformation at ultimate load(2.57mm)was again located almost in the middle of the diagonal,at O27.Table3gives the maximum transverse deformations(due to tension)at ultimate load for all specimens.3.4.Longitudinal deformations transverse to diagonal

Typical deformation distributions due to compression transverse to the diagonals at di?erent load steps up to the ultimate load are illustrated in Fig.12(specimen 1300E-2).Up to a load of75kN,the deformations were almost evenly distributed over a large width(with a maxi-mum value ofà0.03mm).Subsequently,after cracking at 80kN,deformations started to increase signi?cantly in a much narrower range of approximately30mm on each side of the diagonal(in O36–O38)and reached a maximum ofà0.8toà0.9mm at ultimate load.The remaining spec-imens showed similar results.

4.Discussion

4.1.E?ect of type of FRP–LC interface

The unbonded beams1300-1/2lost composite action in the FRP–LC interface just after cracking.Di?erential dis-

484 E.Schaumann et al./Composites:Part A39(2008)478–487

placements(slippage)between FRP and LC were measured from this load on(see Fig.5)and through-depth deforma-tions at mid-span no longer remained linear,see Fig.9.The absence of compression in the diagonals(shown in Fig.10) even indicated that the interface was too weak to provide a support for the diagonals before cracking,which led to the single crack at mid-span.The unbonded beam1000dem-onstrated di?erent behavior:composite action was main-tained after cracking up to approximately91%of the ultimate load.This improvement was already observed in the beam experiments[6]and was attributed to the much higher compressive strength of the ALWAC mixture, which increased the friction resistance at the interface.

The bonded beams exhibited full composite action up to ultimate load.The kink in the through-depth distribution of specimen1300E-1(shown in Fig.9)existed from the beginning of the loading and was seen as a measurement problem from gage O31.The corresponding value from specimen1300E-2(0.202mm),given in Table4,matched the linear distribution.The bonded specimens showed sig-ni?cant higher ultimate loads than the corresponding unb-onded specimens.However,the ultimate load ratio of bonded to unbonded specimens(1.35for1300E/1300and 1.23for1000E/1000)seemed to correlate with the degree of composite action of the unbonded specimens and to approach unity for full composite action.Failure in the bonded beams over the supports always occurred in the LC(just above the T-upstands);the LC shear strength therefore always was lower than the bonded interface shear strength.

4.2.E?ect of LC type

The cracking loads of the SLWAC specimens were sig-ni?cantly higher than those of the ALWAC specimens, see Table4.However,no correlation of the cracking load to the LC splitting tensile strength was found,as shown in Fig.13.This fact was already observed for the beam experiments[6]and was attributed to the more brittle behavior of the ALWAC concrete as compared with the SLWAC https://www.doczj.com/doc/036294964.html,paring the cracking load to the product of the splitting tensile strength and the character-istic length,the latter being an indicator of concrete brittle-ness(values see Table2),gave a much better correlation,as shown in Fig.14(correlation coe?cient R2=0.94).Crack-ing thereby always started approximately in the middle of the compression diagonal,where maximum transverse deformations due to tension were measured,see Fig.11.

With the exception of the unbonded specimens1300-1/2, direct load transmission occurred through the compression diagonal.The compression thereby was almost paraboli-cally distributed across the diagonal.The width of this dis-

E.Schaumann et al./Composites:Part A39(2008)478–487485

tribution decreased after cracking due to the crack propa-gation parallel to the diagonal,which narrowed the width of load transmission,see Fig.12(symmetry axis at O37). However,no correlation between the LC compressive strength and ultimate failure load was found,as shown in Fig.15(correlation coe?cient R2=0.36).Comparing ulti-mate loads with the LC splitting tensile strength gave a much better correlation,see Fig.13(correlation coe?cient R2=0.86).

https://www.doczj.com/doc/036294964.html,parison to beam loading and system optimization

As already discussed,the direct load transmission and beam experiments showed similar results concerning the e?ects of interface type(composite action)and LC brittle-ness.Fig.16compares the ultimate loads of corresponding specimens and beams of both experimental series.The for-mer were signi?cantly higher(4.4times on average)than the latter,as could be expected(see Section1).

Based on the experimental results,the sandwich system can be further optimized.First,the FRP sheet seems to be overdesigned.Maximum deformations at failure were 0.6mm on a gage length of100mm(not considering 1300-1/2),which corresponds to stresses of approximately 138MPa,that is,only58%of the tensile strength of the sheet.However,more research is needed regarding the shear failure that occurred in the webs of the T-upstands. Second,to increase the cracking load and shear resistance, the ductility of the LC should be improved,e.g.by adding short?bers,and thereby increasing the characteristic length.Third,it seems it is possible to omit the adhesive bonding of the interface if the LC compressive strength is high enough to provide su?cient friction and thereby full composite action.In this respect,the geometry of the T-upstands could also be improved to provide better concrete con?nement.However,in view of intended bridge deck application,relaying on pure mechanical interlocking needs more research regarding the fatigue behavior of such interfaces.

5.Conclusions

Short-span three-point bending experiments on eight hybrid FRP-concrete sandwich specimens provided useful information on the direct load transmission behavior and the e?ect of two parameters on the static load-bearing behavior:the FRP–LC interface(unbonded or epoxy bonded)and the LC composition(low and high density SLWAC and ALWAC).The following conclusions were drawn:

(1)Specimens with adhesively bonded FRP–LC inter-

faces showed signi?cantly higher ultimate loads than corresponding unbonded specimens.The ultimate load ratio of bonded to unbonded specimens corre-lated with the degree of composite action of the unb-onded specimens and approached unity for full composite action.The degree of composite action of the unbonded interfaces thereby depended on the LC compressive https://www.doczj.com/doc/036294964.html,ing an ALWAC mixture of high compressive strength provided almost full composite action through pure mechanical interlock-ing in contrast to a SLWAC mixture of low compres-sive strength,which lost composite action already after LC cracking.

(2)A correlation of the ultimate loads and the LC split-

ting tensile strengths was found.The cracking load, however,did not exhibit a similar https://www.doczj.com/doc/036294964.html,-bining the splitting tensile strength and the character-istic length,a fracture mechanics property that characterizes material brittleness,led to a good corre-lation with the cracking loads.Accordingly,the cracking loads of the more ductile SLWAC composi-tions were signi?cantly higher than those of the more

486 E.Schaumann et al./Composites:Part A39(2008)478–487

brittle ALWAC mixtures,although splitting tensile strengths were similar.

(3)Direct load transmission experiments and previous

beam experiments showed similar results concerning the e?ects of interface type(composite action)and LC brittleness.Ultimate loads or shear resistances of the former were signi?cantly higher(4.4times on average)than those of the latter,because loads were transmitted directly by a compression diagonal to the support.The compression diagonals of the beam experiments interfered with crossing tension diago-nals,which lowered the ultimate loads(or shear resistances).

In a next step,a model will be developed to describe the direct load transmission behavior of the structure.Based on this work,the sandwich structure will then be optimized further with respect to the LC composition and design of the FRP sheet.Adding short?bers to the LC will be inves-tigated to increase the characteristic length and to improve the system ductility of the slab system. Acknowledgements

The authors wish to acknowledge the support of Fiber-line Composites A/S,Denmark,supplier of the GFRP Plank elements;Sika AG,Zurich,Switzerland,supplier of the epoxy adhesive;Liapor,Switzerland,supplier of the LC concrete;and Prebeton SA,Avenches,Switzerland, for the fabrication of the beams.This research was funded within the project New Road Construction Concept (NR2C)of the6th European Framework Program(Grant OFES No.03.0318).

References

[1]Chen L,Karbahri VM.New bridge systems using FRP composites

and concrete:A state-of-the art review.Prog Struct Eng Mater 2006;8:143–54.

[2]Keller T,Schaumann E,Valle′e T.Flexural behavior of a hybrid FRP

and lightweight concrete sandwich bridge https://www.doczj.com/doc/036294964.html,pos Part A 2007;38:879–89.

[3]Recent approaches to shear design of structural concrete:by ASCE-

ACI Committee445on Shear and Torsion.J Struct Eng 1998;124(12):1375–417.

[4]Kani GNJ.The riddle of shear failure and its solution.ACI J

1964;61(4):441–67.

[5]Schlaich J,Scha¨fer I,Jennewein M.Towards a consistent design of

structural concrete.J Prestressed Concrete Inst1987;32(3):74–150. [6]Schaumann E,Valle′e T,Keller T.Shear Resistance of lightweight

concrete core of FRP-concrete sandwich structure.ACI Mater J;

submitted for publication.

[7]Faust T.Leichtbeton im konstruktiven Ingenieurbau.Ernst&Sohn,

2002.ISBN3-433-01613-5.

[8]Fiberline Composites A/S.2007..

[9]Keller T,Valle′e T.Adhesively bonded lap joints from pultruded

GFRP pro?les,Part I:Stress–strain analysis and failure modes.

Compos Part B2005;36(4):331–40.

E.Schaumann et al./Composites:Part A39(2008)478–487487

《诗经·卫风·氓》原文翻译及知识点总结

《诗经·卫风·氓》原文翻译及知识点总结 《诗经·卫风·氓》原文翻译及知识点总结 篇一:诗经两首知识点归纳 《诗经》两首知识点梳理 (一)通假字 1.氓之蚩蚩,抱布贸丝(“蚩蚩”通“嗤嗤”,笑嘻嘻的样子)2.将子无怒,秋以为期(“无”通“毋”,不要) 3.士之耽兮,犹可说也(“说”通“脱”,解脱)4.匪来贸丝。(匪,通“非”,不是。) 5.于嗟鸠兮。(于,通“吁”,叹词。)6 .犹可说也。(说,通“脱”,解脱。) 7.隰则有泮。(泮,通“畔”,边、岸。)8岁亦莫止。(莫,通“暮”。) 9.彼尔维何,维常之华。(尔,通“”,花盛开的样子。华,通“花”。) 10.岂不日戒,N狁孔棘。(棘,通“急”) (二)古今异义 1.至于顿丘(①古义:直送到。②今义:表示另提一事。)1.泣涕涟涟(泣涕,古义:为眼泪|今义:鼻涕) 2.总角之宴,言笑宴宴(宴,古义:为欢聚|今义:为酒席) (三)一词多义 1.言: ①句首助词。如:言既遂矣。②相当于“而”。如:静言思之。 2.以:

①把,介词。如:秋以为期。②而,连词。如:以望复关。 3.作: ①本义是起来起身,引申为兴起,产生。如:薇亦作止。②开始。如:天下之难比作于易。③创作,撰写:自是指物做诗立就,又引申为著述,制造。如:常作二铁板,一板印刷,一板已自布字。④劳动,劳作。如:其中往来种作,男女衣着,悉如外人。 ⑤为,成为,引申为充当,充作。如:君当作磐石,妾当作蒲苇。 4.曰: ①动词词头,无实意。如曰归曰归。②叫做,称作。如:明有奇巧人曰王叔远。 ③说。如:子曰:“有朋自远方来,不亦乐乎。” 5.止: ①语尾助词。如:岁亦莫止。②脚,足。如:当斩左止者,笞五百。 ③停止,停留,又引申为使动用法。如:止子路宿。④制止,阻止。如:残贼公行,莫或止之。⑤容止,礼貌。如:人而无止,不死何候。 6.载: ①记录,记载。如:史载田横事。②年。如:自去舟职,五载复还。 ③装载。如:有好事者船载以入。引申为承担,承受。如:载舟载舟,所宜深思。 ④乘坐,乘车。如:直上载公子车。 ⑤祝词,起加强语气作用,多用于动词或形容词词头,可译为“且”“又”。如:“载欣载奔”。

诗经。氓 原文 翻译与赏析

诗经〃氓原文、翻译与赏析 《诗经〃卫风〃氓》原文 氓之蚩蚩,抱布贸丝。匪来贸丝,来即我谋。送子涉淇,

至于顿丘。匪我愆期,子无良媒。将子无怒,秋以为期。 乘彼垝垣,以望复关。不见复关,泣涕涟涟。既见复关,载笑载言。尔卜尔筮,体无咎言。以尔车来,以我贿迁。 桑之未落,其叶沃若。于嗟鸠兮,无食桑葚!于嗟女兮,无与士耽!士之耽兮,犹可说也。女之耽兮,不可说也。 桑之落矣,其黄而陨。自我徂尔,三岁食贫。淇水汤汤,渐车帷裳。女也不爽,士贰其行。士也罔极,二三其德。

三岁为妇,靡室劳矣;夙兴夜寐,靡有朝矣。言既遂矣, 至于暴矣。兄弟不知,咥其笑矣。静言思之,躬自悼矣。 及尔偕老,老使我怨。淇则有岸,隰则有泮。总角之宴,言笑晏晏。信誓旦旦,不思其反。反是不思,亦已焉哉! 翻译

无知农家小伙子,怀抱布匹来换丝。其实不是真换丝,找此借口谈婚事。送你渡过淇水西,到了顿丘情依依。不是我要误佳期,你无媒人失礼仪。 希望你不要生气,我们以秋天为期。 登上那堵破土墙,面朝复关凝神望。复关遥远不得见,心里忧伤泪千行。情郎忽从复关来,又说又笑喜洋洋。你去卜卦问吉祥,卦象吉祥心欢畅。 赶着你的车子来,把我财礼往上装。 桑树叶子未落时,挂满枝头绿萋萋。唉呀那些斑鸠呀,别把桑叶急着吃。唉呀年轻姑娘们,别对男人情太痴。男人要是迷恋你,要说放弃也容易。 女子若是恋男子,要想解脱不好离。 桑树叶子落下了,又枯又黄任飘零。自从嫁到你家来,多年挨饿受清贫。

淇水滔滔送我归,车帷溅湿水淋淋。我做妻子没差错,是你奸刁缺德行。 做人标准你全无,三心二意耍花招。 婚后多年为你妇,繁重家务不辞劳。早起晚睡不嫌苦,忙里忙外非一朝。你的目的一达到,逐渐对我施凶暴。兄弟不知我处境,个个见我都讥笑。 静下心来想一想,独自黯然把泪抛。 白头偕老当年誓,如今未老生怨愁。淇水滔滔终有岸,沼泽虽宽有尽 头。 回想少时多欢聚,说笑之间情悠悠。当年山盟又海誓,哪料反目竟成仇。 不要再想背盟事,既已恩绝就算了。

诗经采薇节选的原文翻译

诗经采薇节选的原文翻译 昔我往矣,杨柳依依。今我来思,雨雪霏霏。同学,请看诗经采薇节选的原文翻译。诗经采薇节选的原文翻译 采薇(节选) 先秦:佚名 昔我往矣,杨柳依依。 今我来思,雨雪霏霏。 行道迟迟,载渴载饥。 我心悲伤,莫知我哀! 译文 回想当初出征时,杨柳依依随风吹; 如今回来路途中,大雪纷纷满天飞。 道路泥泞难行走,又渴又饥真劳累。 满心伤感满腔悲。我的哀痛谁体会。 注释 思:语气助词。 矣:语气助词。 依依:形容树枝柔弱,随风摇摆的样子。 霏霏:雪花飞舞的样子。

昔:从前。 赏析 《采薇》是《诗经·小雅》中的一篇。历代注者关于它的写作年代说法不一。 但据它的内容和其它历史记载的考订大约是周宣王时代的作品的可能性大些。周代北方的猃狁(即后来的匈奴)已十分强悍,经常入侵中原,给当时北方人民生活带来不少灾难。 历史上有不少周天子派兵戍守边外和命将士出兵打败猃狁的记载。 从《采薇》的内容看,当是将士戍役劳还时之作。诗中唱出从军将士的艰辛生活和思归的情怀。全诗分六章,前三章叠出,以采薇起兴写薇由作而柔而刚,而戍役军士远别家乡,历久不归,思乡之情,忧心不已! 作者写道:山薇啊,你发芽了,出生了,我们总该回家了吧!但转眼又是一年,我们都顾不上家室,这却是为何呢?为了猃狁入侵之故,我们连好好坐上一会儿也来不及,也是为了猃狁之故。我们需要攻战!又到了采薇的时候,薇叶长大了,枝叶柔嫩,这下总该回家了吧! 心里的忧伤如此炽烈,为战事奔波,我们戍期未定,谁难替我们带回家信!山薇长得粗壮刚健了,这下该回家了吧!已是阳春十月了!可是王事没完,还没法闲暇,忧伤的心情好不痛苦,却无人相慰劳! 四、五两章是写边关战事繁忙、紧张:那盛开的花是什么?是棠棣之

诗经三首原文及翻译

《诗经·卫风?氓》 原文: 氓之蚩蚩,抱布贸丝。匪来贸丝,来即我谋。送子涉淇,至于顿丘。匪我愆期,子无良媒。将予无怒,秋以为期。 乘彼垝垣,以望复关。不见复关,泣涕涟涟。既见复关,载笑载言。尔卜尔筮,体无咎言。以尔车来,以我贿迁。 桑之未落,其叶沃若。于嗟鸠兮,无食桑葚。于嗟女兮,无与士耽。士之耽兮,犹可说也。女之耽兮,不可说也。 桑之落矣,其黄而陨。自我徂尔,三岁食贫。淇水汤汤,渐车帷裳。女也不爽,士贰其行。士也罔极,二三其德。 三岁为妇,靡室劳矣,夙兴夜寐,靡有朝矣。言既遂矣,至于暴矣。兄弟不知,咥其笑矣。静言思之,躬自悼矣。 及尔偕老,老使我怨。淇则有岸,隰则有伴。总角之宴,言笑晏晏。信誓旦旦,不思其反。反是不思,亦已焉哉。 译文: 农家小伙笑嘻嘻,抱着布币来换丝。原来不是来换丝,找我商量婚姻事。我曾送你渡淇水,直到顿丘才告辞。并非我要拖日子,你无良媒来联系。请你不要生我气,重订秋天作婚期。 我曾登那缺墙上,遥望复关盼情郎。望穿秋水不见人,心中焦急泪汪汪。既见郎从复关来,有笑有说心欢畅。你快回去占个卦,卦无凶兆望神帮。拉着你的车子来,快用车子搬嫁妆。 桑叶未落密又繁,又嫩又润真好看。唉呀班鸠小鸟儿,见了桑堪别嘴馋。唉呀年青姑娘们,见了男人别胡缠。男人要把女人缠,说甩就甩他不管。女人若是恋男人,撒手摆脱难上难。 桑树萎谢叶落净,枯黄憔悴任飘零。自从我到你家来,多年吃苦受寒贫。淇水滔滔送我回,溅湿车帘冷冰冰。我做妻子没过错,是你男人太无情。真真假假没定准,前后不一坏德行。 结婚多年守妇道,我把家事一肩挑。起早睡晚勤操作,累死累活非一朝。家业有成已安定,面目渐改施残暴。兄弟不知我处境,见我回家哈哈笑。净思默想苦难言,只有独自暗伤悼。 “与你偕老”当年话,老了怨苦更增加。淇水虽宽有堤岸,沼泽虽阔有边涯。回顾少年未婚时,想你言笑多温雅。海誓山盟还在耳,谁料翻脸变冤家。违背誓言你不顾,那就从此算了吧。 《诗经·秦风·无衣》 原文: 岂曰无衣?与子同袍。王于兴师,修我戈矛,与子同仇。 岂曰无衣?与子同泽。王于兴师,修我矛戟,与子偕作。 岂曰无衣?与子同裳。王于兴师,修我甲兵,与子偕行。 译文: 谁说我们没衣穿?与你同穿那长袍。君王发兵去交战,修整我那戈与矛,杀敌与你同目标。

诗经氓原文及翻译

诗经氓原文及翻译 导读:简析: 《氓》是一首叙事诗。叙事诗有故事情节,在叙事中有抒情、议论。作者用第一人称“我”来叙事,采用回忆追述和对比手法。 第一、二章追述恋爱生活。女主人公“送子涉淇”,又劝氓“无怒”;“既见复关,载笑载言”,是一个热情、温柔的姑娘。 第三、四、五章追述婚后生活。第三章,以兴起,总述自己得出的生活经验:“于嗟女兮,无与士耽!”第四章,以兴起,概说“三岁食贫”,“士也罔极,二三其德”。 第六章表示“躬自悼矣”后的感受和决心:“反是不思,亦已焉哉!” 作者顺着“恋爱——婚变——决绝 《诗经·卫风·氓》原文: 氓之蚩蚩,抱布贸丝。匪来贸丝,来即我谋。送子涉淇,至于顿丘。匪我愆期,子无良媒。将子无怒,秋以为期。 乘彼垝垣,以望复关。不见复关,泣涕涟涟。既见复关,载笑载言。尔卜尔筮,体无咎言。以尔车来,以我贿迁。 桑之未落,其叶沃若。于嗟鸠兮,无食桑葚!于嗟女兮,无与士耽!士之耽兮,犹可说也。女之耽兮,不可说也。 桑之落矣,其黄而陨。自我徂尔,三岁食贫。淇水汤汤,渐车帷裳。女也不爽,士贰其行。士也罔极,二三其德。

三岁为妇,靡室劳矣;夙兴夜寐,靡有朝矣。言既遂矣,至于暴矣。兄弟不知,咥其笑矣。静言思之,躬自悼矣。 及尔偕老,老使我怨。淇则有岸,隰则有泮。总角之宴,言笑晏晏。信誓旦旦,不思其反。反是不思,亦已焉哉! 翻译: 无知农家小伙子,怀抱布匹来换丝。其实不是真换丝,找此借口谈婚事。 送你渡过淇水西,到了顿丘情依依。不是我要误佳期,你无媒人失礼仪。 希望你不要生气,我们以秋天为期。 登上那堵破土墙,面朝复关凝神望。复关遥远不得见,心里忧伤泪千行。 情郎忽从复关来,又说又笑喜洋洋。你去卜卦问吉祥,卦象吉祥心欢畅。 赶着你的车子来,把我财礼往上装。 桑树叶子未落时,挂满枝头绿萋萋。唉呀那些斑鸠呀,别把桑叶急着吃。 唉呀年轻姑娘们,别对男人情太痴。男人要是迷恋你,要说放弃也容易。 女子若是恋男子,要想解脱不好离。 桑树叶子落下了,又枯又黄任飘零。自从嫁到你家来,三年挨饿

诗经名篇原文及翻译大全

诗经名篇原文及翻译大全 【篇一】诗经名篇原文及翻译 《诗经·关雎》 关关雎鸠,在河之洲。窈窕淑女,君子好逑。 参差荇菜,左右流之。窈窕淑女,寤寐求之。 求之不得,寤寐思服。悠哉悠哉,辗转反侧。 参差荇菜,左右采之。窈窕淑女,琴瑟友之。 参差荇菜,左右芼之。窈窕淑女,钟鼓乐之。 翻译 关关和鸣的雎鸠,相伴在河中的小洲。那美丽贤淑的女子,是君子的好配偶。 参差不齐的荇菜,从左到右去捞它。那美丽贤淑的女子,醒来睡去都想追求她。 追求却没法得到,白天黑夜便总思念她。长长的思念哟,叫人翻来覆去难睡下。 参差不齐的荇菜,从左到右去采它。那美丽贤淑的女子,奏起琴瑟来亲近她。 参差不齐的荇菜,从左到右去拔它。那美丽贤淑的女子,敲起钟鼓来取悦她。 【篇二】诗经名篇原文及翻译 《诗经·葛覃》

葛之覃兮,施于中谷,维叶萋萋。黄鸟于飞,集于灌木,其鸣喈喈。 葛之覃兮,施于中谷,维叶莫莫。是刈是濩,为絺为綌,服之无斁。 言告师氏,言告言归。薄污我私,薄浣我衣。害浣害否?归宁父母。 翻译 葛草长得长又长,漫山遍谷都有它,藤叶茂密又繁盛。黄鹂上下在飞翔,飞落栖息灌木上,鸣叫婉转声清丽。 葛草长得长又长,漫山遍谷都有它,藤叶茂密又繁盛。割藤蒸煮织麻忙,织细布啊织粗布,做衣穿着不厌弃。 告诉管家心理话,说我心想回娘家。快把内衣洗干净。洗和不洗分清楚,回娘家去看父母。 【篇三】诗经名篇原文及翻译 《诗经·桃夭》 桃之夭夭,灼灼其华。之子于归,宜其室家。 桃之夭夭,有蕡其实。之子于归,宜其家室。 桃之夭夭,其叶蓁蓁。之子于归,宜其家人。 翻译 桃花怒放千万朵,色彩鲜艳红似火。这位姑娘要出嫁,喜气洋洋归夫家。 桃花怒放千万朵,果实累累大又多。这位姑娘要出嫁,早生贵子后嗣旺。

《诗经.七月》全文和译文

创作编号:BG7531400019813488897SX 创作者:别如克* 《诗经.七月》全文译文 七月流火,九月授衣。一之日觱发,二之日栗烈。无衣无褐,何以卒岁?三之日于耜,四之日举趾。同我妇子,馌彼南亩。田畯至喜。 七月流火,九月授衣。春日载阳,有鸣仓庚。女执懿筐,遵彼微行,爰求柔桑。春日迟迟,采蘩祁祁。女心伤悲,殆及公子同归。 七月流火,八月萑苇。蚕月条桑,取彼斧斨。以伐远扬,猗彼女桑。七月鸣鵙,八月载绩。载玄载黄,我朱孔阳,为公子裳。 四月秀葽,五月鸣蜩。八月其获,十月陨萚。一之日于貉,取彼狐狸,为公子裘。二之日其同,载缵武功。言私其豵,献豜于公。 五月斯螽动股,六月莎鸡振羽。七月在野,八月在宇,九月在户,十月蟋蟀入我床下。穹窒熏鼠,塞向墐户。嗟我妇子,曰为改岁,入此室处。 六月食郁及薁,七月亨葵及菽。八月剥枣,十月获稻。为此春酒,以介眉寿。七月食瓜,八月断壶,九月叔苴,采荼薪樗。食我农夫。 九月筑场圃,十月纳禾稼。黍稷重穋,禾麻菽麦。嗟我农夫,我稼既同,上入执宫功。昼尔于茅,宵尔索綯,亟其乘屋,其始播百谷。 二之日凿冰冲冲,三之日纳于凌阴。四之日其蚤,献羔祭韭。九月肃霜,十月涤场。朋酒斯飨,曰杀羔羊,跻彼公堂。称彼兕觥,万寿无疆! 【译文】 夏历七月,“大火”恒星向下行(流:向下行。火:恒星名,也称大火),九月把裁制寒衣的工作交给妇女去做(授衣:把裁制寒衣的工作交给妇女去做)。周历一月大风触物发声(一之日:指周历一月,也即夏历十一月。觱发:双声联绵词,大风触物发声),二月凛冽。没有衣服,如何过完这一年(褐:大麻、兽毛经过粗加工编织而成的衣服。穷人所穿。卒岁:过完这一年)?三月修理耜类工具(于:动词词头。耜:这里用作动词,表示修理耜类农具),四月抬脚踩耒耜而耕田(趾:脚趾)。偕同我的妻子和孩子,送饭到那农田(同:偕同。我:诗人[农家家长]自称。妇子:妻子和孩子。馌:送饭。南亩:田埂南北向的田地,也泛指农田)。田畯(看到农民在田里劳动)非常高兴(田畯:监管农事的小官。至:极)。 夏历七月,“大火”恒星向下行,九月把裁制寒衣的工作交给妇女去做。夏历三月开始暖和,黄莺鸣叫(春日:指夏历三月。载:开始。阳:暖和。有:动词语头。仓庚:鸟名,即黄莺)。年轻姑娘手持深筐,沿着那小路(行走),在这儿寻找嫩桑叶(女:指年轻姑娘。懿筐:深筐。遵:循,沿着。微行:小路。行:道路。爰:于是,在这儿。求:寻找。柔桑:嫩桑叶)。春天的昼长日落晚,采摘白蒿的人众多(迟迟:缓慢的样子。指昼长日落晚。蘩:植物名,菊科,又名白蒿。祁祁:众多的样子。指采蘩人多)。女子内心悲伤,恐怕遇到国君之子,(被公子胁迫)同归(殆:恐怕。及:

《诗经》两首原文对照翻译《蒹葭》《关雎》

蒹葭 蒹葭(jiān jiā)苍苍,白露为霜。 河畔芦苇碧色苍苍,深秋白露凝结成霜。 所谓伊人,在水一方。 我那日思夜想的人,就在河水对岸一方。 溯(sù)洄(huí)从之,道阻且长 逆流而上去追寻她,道路险阻而又漫长。 溯游从之,宛在水中央。 顺流而下寻寻觅觅,仿佛就在水的中央。 蒹葭萋萋(qī),白露未晞(xī)。 河畔芦苇一片茂盛,清晨露水尚未晒干。 所谓伊人,在水之湄(méi)。 我那魂牵梦绕的人,就在河水对岸一边。 溯洄从之,道阻且跻(jī); 逆流而上去追寻她,道路坎坷艰险难攀。 溯游从之,宛在水中坻(chí)。 顺流而下寻寻觅觅,仿佛就在沙洲中间。 蒹葭采采,白露未已。 河畔芦苇更为繁茂,清晨白露依然逗留。 所谓伊人,在水之涘(sì)。 我那苦苦追求的人,就在河水对岸一头。 溯洄从之,道阻且右; 逆流而上去追寻她,道路险阻迂回难走。 溯游从之,宛在水中沚(zhǐ)。 顺流而下寻寻觅觅,仿佛就在水中沙洲。 关雎 关关雎鸠,在河之洲。 雎鸠关关在歌唱,在那河中小岛上。 窈窕淑女,君子好逑。 善良美丽的少女,小伙理想的对象。 参差荇菜,左右流之。 长长短短鲜荇菜,顺流两边去采收。 窈窕淑女,寤寐求之。 善良美丽的少女,朝朝暮暮想追求。

求之不得,寤寐思服。 追求没能如心愿,日夜心头在挂牵。 悠哉悠哉,辗转反侧。 长夜漫漫不到头,翻来复去难成眠。 参差荇菜,左右采之。 长长短短鲜荇菜,两手左右去采摘。 窈窕淑女,琴瑟友之。 善良美丽的少女,弹琴鼓瑟表爱慕。 参差荇菜,左右芼之。 长长短短鲜荇菜,两边仔细来挑选。 窈窕淑女,钟鼓乐之。 善良美丽的少女,钟声换来她笑颜.。

诗经式微原文及翻译

诗经式微原文及翻译 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

诗经式微原文及翻译 《国风;邶风;式微》是一首先秦时代的诗歌。采用反问、隐语、互文等多种修辞方式,兼有长短的句式,节奏感强,韵律和谐优美,用词异常精巧。下面由为大家整理的诗经式微原文及翻译,希望大家喜欢! 诗经式微原文及翻译式微 式微,式微,胡不归微君之故,胡为乎中露! 式微,式微,胡不归微君之躬,胡为乎泥中! 翻译 天黑了,天黑了,为什么还不回家如果不是为君主,何以还在露水中! 天黑了,天黑了,为什么还不回家如果不是为君主,何以还在泥浆中! 诗经式微的注释⑴式:作语助词。微:(日光)衰微,黄昏或曰天黑。 ⑵微:非。微君:要不是君主。 ⑶中露:露中。倒文以协韵。 ⑷躬:身体。 诗经式微的鉴赏关于此诗主旨,《毛诗序》说是黎侯为狄所逐,流亡于卫,其臣作此劝他归国。刘向《列女传;贞顺篇》说是卫侯之女嫁黎国庄公,却不为其所纳,有人劝以归,她则“终执贞

一,不违妇道,以俟君命”,并赋此诗以明志。二说均牵强附会,因为无论是实指黎侯或黎庄妇人,都缺乏史实佐证。余冠英认为“这是苦于劳役的人所发的怨声”(《诗经选》),乃最切诗旨。 诗凡二章,都以“式微,式微,胡不归”起调:天黑了,天黑了,为什么还不回家诗人紧接着便交待了原因:“微君之故,胡为乎中露”;“微君之躬,胡为乎泥中”。意思是说,为了君主的事情,为了养活他们的贵体,才不得不终年累月、昼夜不辍地在露水和泥浆中奔波劳作。短短二章,寥寥几句,受奴役者的非人处境以及他们对统治者的满腔愤懑,给读者留下极其深刻的印象。 在艺术上,这首诗有两个特点。一是以设问强化语言效果。从全诗看,“式微,式微,胡不归”,并不是有疑而问,而是胸中早有定见的故意设问。诗人遭受统治者的压迫,夜以继日地在野外干活,有家不能回,苦不堪言,自然要倾吐心中的牢骚不平,但如果是正言直述,则易于穷尽,采用这种虽无疑而故作有疑的设问形式,使诗篇显得宛转而有情致,同时也引人注意,启人以思,所谓不言怨而怨自深矣。二是以韵脚烘托情感气氛。诗共二章十句,不仅句句用韵,而且每章换韵,故而全诗词气紧凑,节奏短促,情调急迫,充分表达出了服劳役者的苦痛心情以及他们日益增强的背弃暴政的决心。从此诗所用韵脚分析,前章用微韵、鱼韵,后章为微韵、侵韵,这些韵部都较适合表达哀远沉痛的情绪。诗人的随情用韵,使诗情藉着韵脚所体现的感情基调获得了充分的强调。所以方

《诗经·关雎》原文及翻译

《诗经·关雎》原文及翻译 导读:《诗经·关雎》【原文】 《关雎》——《诗经·国风·周南》 关关雎鸠,在河之洲。窈窕淑女,君子好逑。 参差荇菜,左右流之。窈窕淑女,寤寐求之。求之不得,寤寐思服。悠哉悠哉,辗转反侧。 参差荇菜,左右采之。窈窕淑女,琴瑟友之。参差荇菜,左右芼之。窈窕淑女,钟鼓乐之。 【注释】 关雎(jū):篇名,《诗经》每篇都用第一句里的几个字(一般是两个字)作为篇名。 关关:鸟互相应和的鸣叫一声。 雎鸠:鸟名,又名鱼鹰,雌雄有固定的配偶。 洲:水中的陆地。 窈窕淑女:美丽纯洁的女子。窈窕,美好的样子。淑,善良的,品德好的姑娘。 君子好逑:能给君子做好妻子。君子,周代对奴隶主贵族男子的通称,这里是对男子的美称。好逑(qiú),理想的配偶。逑,通“仇”,匹,这里指配偶。 参差:长短不齐的样子。 荇菜:多年生草本植物,生长在淡水湖泊中,夏秋季开鲜黄|色*

花,根茎可食用。 流:指顺水势采摘。 寤寐:醒来和睡去,即无论白天还是黑夜。寤(w&ugra一ve;),睡醒。寐,睡着。 思服:思念、牵挂。 悠:长,指思念绵绵不断。 辗转反侧:身体翻来覆去,不能入睡。辗转,转动。 琴瑟友之:弹着琴瑟和他亲爱地在一起。琴瑟,两种乐器。 芼(m&agra一ve;o):选择,采摘。 钟鼓乐之:敲钟击鼓使她快乐。乐,读l&egra一ve;,使……快乐。 【翻译】 在那河中的小岛上,一对对雎鸠在欢乐和谐地歌唱着。美丽善良的姑娘,那是小伙子理想的择偶对象。 河水中那长长短短的鲜一嫩的荇菜,顺着流水左右采摘得正忙。美丽善良的姑娘,无论白天黑夜,小伙子都把它想。追求她追不上啊,日夜都萦绕在心头上。忧思长长夜漫漫,翻来复去不能忘。 河水中那长长短短的鲜一嫩的荇菜,两手左右采摘忙。美丽善良的姑娘,小伙子弹着琴瑟向她表示爱慕之情。河水中那长长短短的鲜一嫩的荇菜,两边仔细挑选采摘。美丽善良的姑娘,小伙子敲钟击鼓让她心欢畅。

《诗经》翻译及分析

诗经·氓原文 氓之蚩蚩,抱布贸丝。匪来贸丝,来即我谋。送子涉淇,至于顿丘。匪我愆期,子无良媒。将子无怒,秋以为期。 乘彼垝垣,以望复关。不见复关,泣涕涟涟。既见复关,载笑载言。尔卜尔筮,体无咎言。以尔车来,以我贿迁。 桑之未落,其叶沃若。于嗟鸠兮,无食桑葚!于嗟女兮,无与士耽!士之耽兮,犹可说也。女之耽兮,不可说也。 桑之落矣,其黄而陨。自我徂尔,三岁食贫。淇水汤汤,渐车帷裳。女也不爽,士贰其行。士也罔极,二三其德。 三岁为妇,靡室劳矣;夙兴夜寐,靡有朝矣。言既遂矣,至于暴矣。兄弟不知,咥其笑矣。静言思之,躬自悼矣。 及尔偕老,老使我怨。淇则有岸,隰则有泮。总角之宴,言笑晏晏。信誓旦旦,不思其反。反是不思,亦已焉哉! 翻译 无知农家小伙子,怀抱布匹来换丝。其实不是真换丝,找此借口谈婚事。送你渡过淇水西,到了顿丘情依依。不是我要误佳期,你无媒人失礼仪。希望你不要生气,我们以秋天为期。 登上那堵破土墙,面朝复关凝神望。复关遥远不得见,心里忧伤泪千行。情郎忽从复关来,又说又笑喜洋洋。你去卜卦问吉祥,卦象吉祥心欢畅。赶着你的车子来,把我财礼往上装。

桑树叶子未落时,挂满枝头绿萋萋。唉呀那些斑鸠呀,别把桑叶急着吃。唉呀年轻姑娘们,别对男人情太痴。男人要是迷恋你,要说放弃也容易。女子若是恋男子,要想解脱不好离。 桑树叶子落下了,又枯又黄任飘零。自从嫁到你家来,三年挨饿受清贫。淇水滔滔送我归,车帷溅湿水淋淋。我做妻子没差错,是你奸刁缺德行。做人标准你全无,三心二意耍花招。 婚后三年为你妇,繁重家务不辞劳。早起晚睡不嫌苦,忙里忙外非一朝。你的目的一达到,逐渐对我施凶暴。兄弟不知我处境,个个见我都讥笑。静下心来想一想,独自黯然把泪抛。 白头偕老当年誓,如今未老生怨愁。淇水滔滔终有岸,沼泽虽宽有尽头。回想少时多欢聚,说笑之间情悠悠。当年山盟又海誓,哪料反目竟成仇。不要再想背盟事,既已恩绝就算了。 注释 1、氓之蚩蚩:氓,(méng),蚩蚩:老实的样子。 2、布:货币。一说布匹。 3、即:靠近。 4、谋:商量。

诗经三首原文及翻译

《诗经·卫风?氓》 氓之蚩蚩,抱布贸丝。匪来贸丝,来即我谋。送子涉淇,至于顿丘。匪我愆期,子无良媒。将予无怒,秋以为期。 乘彼垝垣,以望复关。不见复关,泣涕涟涟。既见复关,载笑载言。尔卜尔筮,体无咎言。以尔车来,以我贿迁。 桑之未落,其叶沃若。于嗟鸠兮,无食桑葚。于嗟女兮,无与士耽。士之耽兮,犹可说也。女之耽兮,不可说也。 桑之落矣,其黄而陨。自我徂尔,三岁食贫。淇水汤汤,渐车帷裳。女也不爽,士贰其行。士也罔极,二三其德。 三岁为妇,靡室劳矣,夙兴夜寐,靡有朝矣。言既遂矣,至于暴矣。兄弟不知,咥其笑矣。静言思之,躬自悼矣。 及尔偕老,老使我怨。淇则有岸,隰则有伴。总角之宴,言笑晏晏。信誓旦旦,不思其反。反是不思,亦已焉哉。 译文: 农家小伙笑嘻嘻,抱着布币来换丝。原来不是来换丝,找我商量婚姻事。我曾送你渡淇水,直到顿丘才告辞。并非我要拖日子,你无良媒来联系。请你不要生我气,重订秋天作婚期。我曾登那缺墙上,遥望复关盼情郎。望穿秋水不见人,心中焦急泪汪汪。既见郎从复关来,有笑有说心欢畅。你快回去占个卦,卦无凶兆望神帮。拉着你的车子来,快用车子搬嫁妆。桑叶未落密又繁,又嫩又润真好看。唉呀班鸠小鸟儿,见了桑堪别嘴馋。唉呀年青姑娘们,见了男人别胡缠。男人要把女人缠,说甩就甩他不管。女人若是恋男人,撒手摆脱难上难。桑树萎谢叶落净,枯黄憔悴任飘零。自从我到你家来,多年吃苦受寒贫。淇水滔滔送我回,溅湿车帘冷冰冰。我做妻子没过错,是你男人太无情。真真假假没定准,前后不一坏德行。结婚多年守妇道,我把家事一肩挑。起早睡晚勤操作,累死累活非一朝。家业有成已安定,面目渐改施残暴。兄弟不知我处境,见我回家哈哈笑。净思默想苦难言,只有独自暗伤悼。 “与你偕老”当年话,老了怨苦更增加。淇水虽宽有堤岸,沼泽虽阔有边涯。回顾少年未婚时,想你言笑多温雅。海誓山盟还在耳,谁料翻脸变冤家。违背誓言你不顾,那就从此算了吧。 《诗经·秦风·无衣》 原文: 岂曰无衣?与子同袍。王于兴师,修我戈矛,与子同仇。 岂曰无衣?与子同泽。王于兴师,修我矛戟,与子偕作。 岂曰无衣?与子同裳。王于兴师,修我甲兵,与子偕行。 译文: 谁说我们没衣穿?与你同穿那长袍。君王发兵去交战,修整我那戈与矛,杀敌与你同目标。谁说我们没衣穿?与你同穿那内衣。君王发兵去交战,修整我那矛与戟,出发与你在一起 谁说我们没衣穿?与你同穿那战裙。君王发兵去交战,修整甲胄与刀兵,杀敌与你共前进。 赏析 这首诗充满了激昂慷慨、同仇敌忾的气氛,读之不禁受到强烈的感染。不过《毛诗序》却说:“《无衣》,刺用兵也,秦人刺其君好攻战。”陈奂《诗毛氏传疏》也认为:“此亦刺康公诗也。”《诗经》固然讲究美刺,但这里明明是美,却被说成刺。按其内容,当是一首爱国

诗经式微原文及翻译.doc

诗经式微原文及翻译 《国风;邶风;式微》是一首先秦时代的诗篇。选用反诘、切口、互文等多种修辞方法,兼有长短的句式,节奏感强,韵律调和美丽,用词反常精巧。下面由为我们收拾的诗经式微原文及翻译,期望大家喜爱! 诗经式微原文及翻译式微 式微,式微,胡不归?微君之故,胡为乎中露! 式微,式微,胡不归?微君之躬,胡为乎泥中! 翻译 天黑了,天黑了,为什么还不回家?如果不是为君主,何以还在露珠中! 天黑了,天黑了,为什么还不回家?如果不是为君主,何以还在泥浆中! 诗经式微的注释⑴式:作语助词。微:(日光)衰微,黄昏或曰天黑。 ⑵微:非。微君:要不是君主。 ⑶中露:露中。倒文以协韵。 ⑷躬:身体。 诗经式微的鉴赏关于此诗宗旨,《毛诗序》说是黎侯为狄所逐,逃亡于卫,其臣作此劝他归国。刘向《列女传 ;贞顺篇》说是卫侯之

1

女嫁黎国庄公,却不为其所纳,有人劝以归,她则“终执贞一,不违 妇道,以俟君命”,并赋此诗以明志。二说均顺理成章,因为无论是 实指黎侯或黎庄妇人,都缺少史实佐证。余冠英以为“这是苦于劳役 的人所发的怨声”(《诗经选》),乃最切诗旨。 诗凡二章,都以“式微,式微,胡不归”起调:天黑了,天黑了,为什么还不回家?诗人紧接着便交待了原因:“微君之故,胡为乎中露”; “微君之躬,胡为乎泥中” 。意思是说,为了君主的工作,为了养活 他们的贵体,才不得不终年累月、昼夜不辍地在露珠和泥浆中奔走劳作。短短二章,寥寥几句,受役使者的非人境况以及他们对统治者的 满腔愤激,给读者留下极端深化的形象。 在艺术上,这首诗有两个特色。一是以设问强化言语作用。从全 诗看,“式微,式微,胡不归”,并不是有疑而问,而是胸中早有定见 的成心设问。诗人遭受统治者的压榨,废寝忘食地在野外干活,有家 不能回,苦不堪言,天然要倾诉心中的怨言不平,但假如是正言直述, 则易于尽头,选用这种虽无疑而故作有疑的设问方式,使诗篇显得宛 转而有情致,一起也引人注意,启人以思,所谓不言怨而怨自深矣。 二是以韵脚烘托情感气氛。诗共二章十句,不只句句用韵,并且每章 换韵,故而全诗词气紧凑,节奏短暂,情调急切,充沛表达出了服劳 役者的苦痛心境以及他们日益增强的背离暴政的决计。从此诗所用韵 脚剖析,前章用微韵、鱼韵,后章为微韵、侵韵,这些韵部都较合适 表达哀远悲痛的心情。诗人的随情用韵,使诗情藉着韵脚所表现的感 情基调获得了充沛的着重。所以方玉润评此诗云:“语浅意深,中藏

诗经国风周南兔罝的原文、注释及译文

诗经国风周南兔罝的原文、注释及译文 《国风;周南;兔罝》是现实主义诗集《诗经》中《国风;周南》中的一篇,下面给大家整理了诗经国风周南兔罝相关资料,希望可以帮到大家! 诗经国风周南兔罝的原文、注释及译文【原文】 肃肃兔罝1,椓之丁丁2。赳赳武夫,公侯干城3。 肃肃兔罝,施于中逵4。赳赳武夫,公侯好仇5。 肃肃兔罝,施于中林6。赳赳武夫,公侯腹心7。 【译文】 兔网结得紧又密,布网打桩声声碎。武士气概雄赳赳,是那公侯好护卫。 兔网结得紧又密,布网就在叉路口。武士气概雄赳赳,是那公侯好帮手! 兔网结得紧又密,布网就在林深处。武士气概雄赳赳。是那公侯好心腹! 【注释】 1.肃肃:整饬貌,密密。罝(jū居):捕兽的网。 2.椓(zhuó浊):打击。丁丁(zhēnɡ争):击打声。布网捕兽,必先在地上打桩。 3.公候:周封列国爵位(公、候、伯、子、男)之尊者,泛指统制者。

干:通“捍”。干城,御敌捍卫之城。 4.逵(kuí魁):九达之道曰“逵”。中逵,即四通八达的路叉囗。 5.仇(qíu求):通逑。 6.林:牧外谓之野,野外谓之林。中林,林中。 7.腹心:比喻最可信赖而不可缺少之人。 诗经国风周南兔罝赏析将打桩设网的狩猎者,与捍卫公侯的甲士联系起来,似乎也太突兀了些。但在先秦时代,狩猎本就是习练行军布阵、指挥作战的“武事”之一。《周礼;大司马》曰:“中春,教振旅。司马以旗致民,平列陈(阵),如战之陈,辨鼓铎镯铙之用,……以教坐作、进退、疾徐、疏数之节,遂以蒐田(打猎)。”其他如“中夏”、“中秋”、“中冬”,亦各有“教茇舍(野外驻营)”、“教治兵”、“教大阅(检阅军队的综合训练)”的练兵活动,并与打猎结合在一起进行。按孔子的解释就是:“以不教民战,是谓弃之。兵者凶事,不可空设,因蒐狩(打猎)而习之。”打猎既为武事,则赞美公侯的卫士,偏从打桩设网的狩猎“兴起”,也正在情理之中了。 现在,一场紧张的狩猎就将开始。从首章的“肃肃兔罝,椓之丁丁”,到二章、三章的“施于中逵”、“施于中林”,虽皆为“兴语”,其实亦兼有直赋其事的描摹之意。“兔”解为“兔子”自无不可,但指为“老虎”似更恰当。“周南”江汉之间,本就有呼虎为“於菟”的习惯。那么,这场狩猎所要猎获的对象。就该是啸声震谷的斑斓猛虎了!正因为如此,猎手们所布的“兔置”,结扎得格外紧密,埋下的

初中语文 文言文 诗经《蒹葭》原文与译文(含赏析)

诗经《蒹葭》原文与译文(含赏析) 蒹葭 选自《诗经·秦风》 蒹葭苍苍,白露为霜。所谓伊人,在水一方。溯洄从之,道阻且长。 芦苇初生青青,白色露水凝结为霜。所恋的那个心上人,在水的另一边。逆着弯曲的河道寻找她,路途艰难又漫长。 溯游从之,宛在水中央。蒹葭萋萋,白露未晞。所谓伊人,在水之湄。 逆流寻找她,仿佛走到水中间。芦苇初生茂盛,白色露水还没干。所恋的那个心上人,在水的那岸。 溯洄从之,道阻且跻。溯游从之,宛在水中坻。蒹葭采采,白露未已。 逆着弯曲的河道寻找她,路途艰难又坡陡。逆流寻找她,仿佛走到水中的小沙洲。芦苇初生鲜艳,白色露水还没完。 所谓伊人,在水之涘。溯洄从之,道阻且右。溯游从之,宛在水中沚。 所恋的那个心上人,在水的那头。逆着弯曲的河道寻找她,道路艰难又曲折。逆流寻找她,仿佛走到水中的沙洲。 【赏析】 《蒹葭》选自《诗经?秦风》,属于十五国风,是首爱情诗,旨在抒发诗人思念秋水伊人而终不得见的思想感情。

诗人在一个深秋的早晨,来到一条长着芦苇的大河边,访寻他心爱的人,而那人却使人感到行踪不定、可望而不可即。于是他找呀找呀,从“白露如霜”的黎明,找到“白露未晞”,“白露未已”的午前,在长着芦苇的秋水边奔波,徘徊了好几个小时,通过这种访求过程的描写,不仅表现了诗人对“伊人”的一往深情,而且写出了他的欲见不得的焦急和怅惘的心情。诗中描绘的那条阻隔于诗人与伊人之间的秋水,既是眼前之景,又显然别有含意,如果仅仅一水之隔,那他完全可以到达彼岸,见到伊人,何况诗人的追求又是那样的执着和热烈。因此我认为这条秋水实际上象征着一种社会的阻力。正是这种阻力,才把牛郎和织女阻隔在银河的两岸,使他们“盈盈一水间,脉脉不得语。” 全诗三章,每章前两句写景,点明时令,烘托气氛;后六句写寻求“伊人”不得的心情。全诗回旋三迭,往复歌咏,情调凄婉动人,意境朦胧深邃。诗中写“苍苍”,“萋萋”,“采采”的蒹葭,既是用来起兴而怀“伊人”,又是用来烘托抒情主人公的。对于“伊人”,诗人知其地,而莫定其所,欲从靡由,故“溯洄”、“溯游”,往复其间,希望能与“伊人”一遇。用“蒹葭”起兴,引出对“伊人”的寻求自然顺理成章之。尽管诗人满腔热情地去“溯洄”、“溯游”,不畏“道阻且长”、“且跻”、“且右”,结果却是可望而不可即。诗人因追求伊人而不得见所产生的空虚和怅惘之情是难以言喻的,而且用萧瑟清秋的景象来衬托,诗人的这种情感就显得更为突出,更为浓郁。正是缘景生情,情景相生,意到境成,清寥空灵的深秋之景与怅惘迷茫的怀人之思浑然无间,构成了全诗的艺术境界,给人以一种真切自然而又朦胧迷离的美感。 此外,本诗在结构上重复叠句。全诗共三章,句式相同,字数相等,只是在少数地方选用了近义词或同义词,如“萋萋”、“采采”分别放在“苍苍”的位置上,用“未晞”、“未已”去分别取代“为霜”,这样既做到了一唱三叹,使诗人的感情得到了充分的表达,又使诗作行文富有变化而无重复呆滞之感。 《蒹葭》是十五风中的一篇,可谓“风”类诗的代表,读它《诗经》的语言美,结构美,思想美可见一斑。

诗经关雎原文赏析及翻译

诗经关雎原文赏析及翻译 导读:原文: 采薇采薇,薇亦作止。曰归曰归,岁亦莫止。靡室靡家,猃狁之故。不遑启居,猃狁之故。 采薇采薇,薇亦柔止。曰归曰归,心亦忧止。忧心烈烈,载饥载渴。我戍未定,靡使归聘。 采薇采薇,薇亦刚止。曰归曰归,岁亦阳止。王事靡盬,不遑启处。忧心孔疚,我行不来! 彼尔维何?维常之华。彼路斯何?君子之车。戎车既驾,四牡业业。岂敢定居?一月三捷。 驾彼四牡,四牡骙骙。君子所依,小人所腓。四牡翼翼,象弭鱼服。岂不日戒?猃狁孔棘! 昔我往矣,杨柳依依。今我来思,雨雪霏霏。行道迟迟,载渴载饥。我心伤悲,莫知我哀! 翻译: 豆苗采了又采,薇菜刚刚冒出地面。说回家了回家了,但已到了年末仍不能实现。没有妻室没有家,都是为了和猃狁打仗。没有时间安居休息,都是为了和猃狁打仗。 豆苗采了又采,薇菜柔嫩的样子。说回家了回家了,心中是多么忧闷。忧心如焚,饥渴交加实在难忍。驻防的地点不能固定,无法使人带信回家。

豆苗采了又采,薇菜的茎叶变老了。说回家了回家了,又到了十月小阳春。征役没有休止,哪能有片刻安身。心中是那么痛苦,到如今不能回家。 那盛开着的是什么花?是棠棣花。那驶过的是什么人的车?当然是将帅们的从乘。兵车已经驾起,四匹雄马又高又大。哪里敢安然住下?因为一个月多次交战! 驾起四匹雄马,四匹马高大而又强壮。将帅们坐在车上,士兵们也靠它隐蔽遮挡。四匹马训练得已经娴熟,还有象骨装饰的弓和鲨鱼皮箭囊(指精良的装备)。怎么能不每天戒备呢?猃狁之难很紧急啊。 回想当初出征时,杨柳依依随风吹。如今回来路途中,大雪纷纷满天飞。道路泥泞难行走,又饥又渴真劳累。满腔伤感满腔悲,我的.哀痛谁体会! 赏析: 《采薇》是出自《诗经·小雅·鹿鸣之什》中的一篇。历代注者关于它的写作年代说法不一。但据它的内容和其它历史记载的考订大约是周宣王时代的作品的可能性大些。周代北方的猃狁(即后来的匈奴)已十分强悍,经常入侵中原,给当时北方人民生活带来不少灾难。历史上有不少周天子派兵戍守边外和命将士出兵打败猃狁的记载。从《采薇》的内容看,当是将士戍役劳还时之作。诗中唱出从军将士的艰辛生活和思归的情怀。 有关《采薇》这一首诗的背景,历来众说纷纭。据毛序为:“《采

《诗经》全文及注解

《诗经》是我国第一部诗歌总集,最早称为《诗》,后被儒家奉为经典之一,方称《诗经》。因其书为毛公所传,又称《毛诗》。其创作年代,距今约二千五百年左右,大体产生于西周初叶至春秋中叶。它是奴隶制时代的诗歌,为我国诗歌创作奠定了深厚的基础,对我国文学发展产生了深远的影响。 《诗经》共三百零五首,简称?诗三百?。按其内容,可分为?风?、?雅?、?颂?三类。?风?乃风土之曲,即民间歌谣,共一百六十篇,总称为十五国风。?雅?乃朝廷之乐,多为京都一带朝廷官吏的作品,共一百零五篇,分为《大雅》和《小雅》。?颂?乃庙堂之音,是王侯举行祭祀或其他重大典礼专用的乐歌,共四十篇,分为《周颂》、《鲁颂》、《商颂》,合称三颂。对于《诗经》的解释,两千多年来众说纷纭,有的很难达成共识,甚至古今名家也?不知所谓?。为了文学爱好者阅读方便,这里只是博采众长,作一般性的简释和介绍。对于生僻和古今异读的字,由于种种限制,不能详细诠释,但尽可能地注音。 愚之见,《诗经》不宜翻译,任何译文都不如原文;同样,也不宜对其进行评说,任何评说都难免主观色彩。对于《诗经》的理解,因人因时因环境之不同而迥然有异,这正是《诗经》的妙处。如果仅从字面理解,一览无余,那就没有什么味道了。读《诗经》,重在读、贵在读、趣在读。在注音注释的帮助下,流畅地熟读,在诵读的同时去理解、去感悟,这是学习《诗经》最好、最聪明的方法。在此基础上,写出自己的感悟与人交流,或者本着?百家争鸣?的科学态度进行学术上的探讨,都是必要的和有益的,但是绝不能以己之见为终结性的。对于《诗经》,是不会有终结性的理解的。 做这个注释,旨在为喜欢读《诗经》的朋友们提供帮助,也是自己的一次再学习。由于编辑、打字等工作量很大,故只能隔一天续一次(有时候或许会耽搁几日),每次四篇(偶尔三篇)。但是不论怎样,一定会全部完成,不至于半途而废。 其间,难免会有错误疏漏之处,恳请各位不吝赐教,予以指正,以便及时更正,以免缪传误人。 但愿这件事能对朋友们有所益处,至少,可以为大家省去查阅辞典和打字的时间吧。这样,我所耗费的时间就显得很有价值了。 【F-001】-【F-160】、【Y-161】-【Y-265】、【S-266】-【S-305】分别表示风、雅、颂的篇目。余冠英注释的《诗经选》106首穿插其中,为了区分,在篇目后面标有(必读)字样,例如:【F-001】关雎(必读)。

诗经蒹葭原文翻译及赏析

诗经蒹葭原文翻译及赏析 国风·秦风·蒹葭 蒹葭苍苍,白露为霜。所谓伊人,在水一方,溯洄从之,道阻且长。溯游从之,宛在水中央。 蒹葭萋萋,白露未晞。所谓伊人,在水之湄。溯洄从之,道阻且跻。溯游从之,宛在水中坻。 蒹葭采采,白露未已。所谓伊人,在水之涘。溯洄从之,道阻且右。溯游从之,宛在水中沚。 注释 1.蒹(jiān):没长穗的芦苇。葭(jiā):初生的芦苇。苍苍:鲜明、茂盛貌。下文“萋萋”、“采采”义同。 2.苍苍:茂盛的样子 3.为:凝结成。 4.所谓:所说的,此指所怀念的。 5.伊人:那个人,指所思慕的对象。 6.一方:那一边。 7.溯洄:逆流而上。下文“溯游”指顺流而下。一说“洄”指弯曲的水道,“游”指直流的水道。 8.从:追寻。 9.阻:险阻,(道路)难走。 10.宛:宛然,好像。 11.晞(xī):干。 12.湄:水和草交接的地方,也就是岸边。 13.跻(jī):水中高地。 14.坻(chí):水中的沙滩 15.涘(sì):水边。 16.右:迂回曲折。 17.沚(zhǐ):水中的沙滩。 译文 河边芦苇青苍苍,秋深露水结成霜。意中之人在何处?就在河水那一方。 逆着流水去找她,道路险阻又太长。顺着流水去找她,仿佛在那水中央。 河边芦苇密又繁,清晨露水未曾干。意中之人在何处?就在河岸那一边。 逆着流水去找她,道路险阻攀登难。顺着流水去找她,仿佛就在水中滩。 河边芦苇密稠稠,早晨露水未全收。意中之人在何处?就在水边那一头。 逆着流水去找她,道路险阻曲难求。顺着流水去找她,仿佛就在水中洲。

赏析 为了自己心爱的人而上下求索,不管艰难险阻,矢志不渝,这是一种可歌可泣的坚贞和追求精神。那个“伊人”,其实也可以看作一种尽善尽美的境界,一种指向理想的超越。 这让人想起一篇叫做《海鸥乔纳森》的小说。海鸥乔纳森从不愿像自己的同类那样一心盯住眼前的臭鱼烂虾,总想飞得更高,达到尽善尽美的境界。为了练习飞翔,他的翅膀被折断受伤,依然不改初衷。同伴们引诱他,讥笑他,他照样坚持自己的追求,宁愿饿着肚子,也不去追逐眼前的吃食。 乔纳森想达到的,是对凡夫俗子的超越,是向尽善尽美的境界靠近,是努力向理想冲刺。《蒹葭》的主人公所追求的,也是自已心月中尽善尽美的理想,是自己魂牵梦绕的意中人,因此不惜一切代价去上下求索,不断追求。 对于真正的求索者来说,目标是一种指向。达到目标固然重要,更重要的还是过程。人生本来就是一个过程。生存的价值和意义,就存在于过程之中。同样,追求的价值和意义也存在于过程之中。如果忽视过程,实际上也是忽视了追求本身。 尽善尽美的境界,无论是从理论上说,还是从实际上说,都是不可能达到的。换句话说,尽善尽美只是一种理念,一种心灵指向的理想。它指引我们在平庸琐屑的生命历程中向前渡过,就像夜中照亮道的火光,迷途中的指南针一样,让我们不断地前行,追求。

《诗经.七月》全文和译文

《诗经.七月》全文译文 七月流火,九月授衣。一之日觱发,二之日栗烈。无衣无褐,何以卒岁?三之日于耜,四之日举趾。同我妇子,馌彼南亩。田畯至喜。 七月流火,九月授衣。春日载阳,有鸣仓庚。女执懿筐,遵彼微行,爰求柔桑。春日迟迟,采蘩祁祁。女心伤悲,殆及公子同归。 七月流火,八月萑苇。蚕月条桑,取彼斧斨。以伐远扬,猗彼女桑。七月鸣鵙,八月载绩。载玄载黄,我朱孔阳,为公子裳。 四月秀葽,五月鸣蜩。八月其获,十月陨萚。一之日于貉,取彼狐狸,为公子裘。二之日其同,载缵武功。言私其豵,献豜于公。 五月斯螽动股,六月莎鸡振羽。七月在野,八月在宇,九月在户,十月蟋蟀入我床下。穹窒熏鼠,塞向墐户。嗟我妇子,曰为改岁,入此室处。 六月食郁及薁,七月亨葵及菽。八月剥枣,十月获稻。为此春酒,以介眉寿。七月食瓜,八月断壶,九月叔苴,采荼薪樗。食我农夫。 九月筑场圃,十月纳禾稼。黍稷重穋,禾麻菽麦。嗟我农夫,我稼既同,上入执宫功。昼尔于茅,宵尔索綯,亟其乘屋,其始播百谷。 二之日凿冰冲冲,三之日纳于凌阴。四之日其蚤,献羔祭韭。九月肃霜,十月涤场。朋酒斯飨,曰杀羔羊,跻彼公堂。称彼兕觥,万寿无疆! 【译文】 夏历七月,“大火”恒星向下行(流:向下行。火:恒星名,也称大火),九月把裁制寒衣的工作交给妇女去做(授衣:把裁制寒衣的工作交给妇女去做)。周历一月大风触物发声(一之日:指周历一月,也即夏历十一月。觱发:双声联绵词,大风触物发声),二月凛冽。没有衣服,如何过完这一年(褐:大麻、兽毛经过粗加工编织而成的衣服。穷人所穿。卒岁:过完这一年)?三月修理耜类工具(于:动词词头。耜:这里用作动词,表示修理耜类农具),四月抬脚踩耒耜而耕田(趾:脚趾)。偕同我的妻子和孩子,送饭到那农田(同:偕同。我:诗人[农家家长]自称。妇子:妻子和孩子。馌:送饭。南亩:田埂南北向的田地,也泛指农田)。田畯(看到农民在田里劳动)非常高兴(田畯:监管农事的小官。至:极)。 夏历七月,“大火”恒星向下行,九月把裁制寒衣的工作交给妇女去做。夏历三月开始暖和,黄莺鸣叫(春日:指夏历三月。载:开始。阳:暖和。有:动词语头。仓庚:鸟名,即黄莺)。年轻姑娘手持深筐,沿着那小路(行走),在这儿寻找嫩桑叶(女:指年轻姑娘。懿筐:深筐。遵:循,沿着。微行:小路。行:道路。爰:于是,在这儿。求:寻找。柔桑:嫩桑叶)。春天的昼长日落晚,采摘白蒿的人众多(迟迟:缓慢的样子。指昼长日落晚。蘩:植物名,菊科,又名白蒿。祁祁:众多的样子。指采蘩人多)。女子内心悲伤,恐怕遇到国君之子,(被公子胁迫)同归(殆:恐怕。及:遇到。公子:国君之子)。 夏历七月,“大火”恒星向下行,八月收取萑苇[发‘环伟’](萑苇:名词用作动词,指收取萑苇。)。养蚕的月份采取桑枝(蚕月:养蚕的月份,指夏历三月。条桑:采取桑枝。“条”是名词用作动词),取那斧子,去砍伐旁出过度的桑枝(斧斨:泛指斧子。斨:方孔的斧。远扬:指旁出过度的桑枝,因妨行路,故须砍去),用手拉住桑枝采摘柔嫩的桑叶(猗:通‘掎’,拉住。女桑:即柔桑)。七月伯劳鸣叫,八月开始绩麻(鵙:鸟名,又叫伯劳。 载绩:把麻的纤维织成纱线,以备织布。绩:把麻搓捻成线或绳)。又(染成)黑红色又(染成)黄色(载:副词,又。玄:黑红色。这里玄黄都用作动词,表是染成玄色黄色),我的大红色很鲜明(朱:大红色。孔:副词,很。阳:鲜明),为公子做裳。 夏历四月远志抽穗开花,五月蝉鸣叫(秀:植物抽穗开花。葽:植物名,又名远志。按,“秀葽”意即“葽秀”,下句“鸣蜩”同。蜩:蝉的别名)。八月收获庄稼,十月草木枯黄落叶(其:动词词头。下文“其同”的“其”相同。获:收获庄稼。萚:草木脱落的皮或叶。损萚:指草木枯黄落叶)。一月捕兽,取那狐和狸(于:动词词头。貉:皮毛珍贵的野兽,即狗獾。这里用作动词,泛指捕兽。狐狸:狐和狸。狐:犬科动物,即今之狐狸。狸:猫科动物,俗称野猫。

相关主题
文本预览
相关文档 最新文档