当前位置:文档之家› 管壳式换热器的机械设计

管壳式换热器的机械设计

管壳式换热器的机械设计
管壳式换热器的机械设计

第七章管壳式换热器的机械设计

本章重点:固定管板式换热器的基本结构

本章难点:管、壳的分程及隔板

建议学时:4学时

第一节概述

一、定义:换热器是用来完成各种不同传热过程的设备。

二、衡量标准:

1.先进性—传热效率高,流体阻力小,材料省;

2.合理性—可制造加工,成本可接受;

3.可靠性—强度满足工艺条件。

三、举例

1.冷却器(cooler)

1)用空气作介质—空冷器aircooler

2)用氨、盐水、氟里昂等冷却到0℃~-20℃—保冷器deepcooler

2.冷凝器condenser

1)分离器

2)全凝器

3.加热器(一般不发生相变)heater

1)预热器(preheater)—粘度大的液体,喷雾状不好,预热使其粘度下降;

2)过热器(superheater)—加热至饱和温度以上。

4.蒸发器(etaporater),—发生相变

5.再沸器(reboiler)

6.废热锅炉(waste heat boiler)

看下图说明其结构及名称

四、管壳式换热器的分类

1、固定管板式换热器:

优点:结构简单、紧凑、布管多,管内便于清洗,更换、造价低,应用广泛。管坏时易堵漏。缺点:不易清洗壳程,一般管壳壁温差大于50℃,设置膨胀节。

适用于壳程介质清洁,不易结垢,管程需清洗以及温差不大或温差虽大但是壳程压力不大的场合。

2、浮头式换热器:

管束可以抽出,便于清洗;但这类换热器结构较复杂,金属耗量较大。

适用于介质易结垢的场合。

3、填料函式换热器:

造价比浮头式低检修、清洗容易,填料函处泄漏能及时发现,但壳程内介质由外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。适用于低压小直径场合。

4、U型管式换热器:

结构简单,造价低,壳程可清洗,但管程不能清洗,一个管板,管子可自由伸缩,无温差应力,管板上布管少,结构不紧凑,管子坏时不易修补。适用于管、壳壁温差较大的场合,尤其是管内介质清洁不易结垢的高温、高压、腐蚀性较强的场合。

五、管壳式换热器机械设计内容

管壳式换热器的设计:

1、根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择

管径、管长,决定管数、管程数和壳程数;

2、然后进行机械设计。内容有:

1)壳体直径的决定和壳体厚度的计算;

2)换热器封头选择,压力容器法兰选择;

3)管板尺寸确定;

4)折流板的选择与计算;

5)管子拉脱力的计算;

6)温差应力计算。

第二节管子的选用及其与管板的连接

一、管子的选用

1、直径:小直径管子单位传热面积的金属消耗量小,传热系数稍高,但容易结垢,不易清洗,用于较清洁的流体;大直径管子用于粘性大或污浊的流体。

2、规格:(外径×壁厚),长度按规定决定。

3、结构型式:多用光管,因为结构简单,制造容易;为强化传热,也采用异型管、翅片管、

螺纹管等。

4、材料:根据压力、温度、介质的腐蚀性能决定。主要有碳素钢、合金钢、铜、钛、塑料、

石墨等。

二、管子与管板的连接:

(一)胀接:

1)过程:最普通的是利用胀管器挤压伸入管板孔中的管子端部,使管端发生塑性变形,管板孔同时产生弹性变形,取去胀管器后,管板与管子产生一定的挤压力,贴在一起达到密封紧固连接的目的。

2)适用范围:换热管为碳素钢,管板为碳素钢或低合金钢,设计压力≤4Mpa,设计温度≤300℃,且无特殊要求的场合。外径d<14mm,不适合胀接。

3)要求管板硬度大于管子硬度,否则将管端退火后再胀接。

胀接时管板上的孔可以是光孔,也可开槽

(二)焊接:

优点:在高温高压条件下,焊接连接能保持连接的紧密性,管板加工要求可降低,节省孔的加工工时,工艺较胀接简单,压力较低时可使用较薄的管板。

缺点:在焊接接头处产生的热应力可能造成应力腐蚀开裂和疲劳破裂,同时管子、管板间存

在间隙,易出现间隙腐蚀。

结构:主要有4种

(三)胀焊并用

前面我们讲了胀接、焊接后,会发现它们各自有优、缺点,因而目前广泛应用了胀焊并用的方法,这种方法能提高连接处的抗疲劳性能,消除应力腐蚀和间隙腐蚀,提高使用寿命。

胀焊并用连接主要有:

强度焊+贴胀………………先焊后胀

强度胀+密封焊………………先胀后焊

先焊后胀:

高温高压换热器中大多用厚壁管,胀接时要使用润滑油,进入接头后缝隙中会在焊接时生成气体,恶化焊缝质量,只要胀接过程控制得当,先焊后胀可避免这一弊病。

先胀后焊:

适用于管子与管板材料焊接性能较差的材料,胀接时不用润滑油,可防止产生焊接裂纹。

第三节管板结构

一、换热管排列方式:

1、正三角形和转角正三角形排列

三角形排列紧凑,传热效果好,同一板上管子比正方形多排10%左右,同一体积传热面积更大。适用于壳程介质污垢少,且不需要进行机械清洗的场合。

2、正方形和转角正方形排列

正方形和转角正方形排列,管间小桥形成一条直线通道,便于机械清洗。要经常清洗管子外表面上的污垢时,多用正方形排列或转角正方形排列。

3.组合排列法:多程换热器中。

二、管间距:

管间距指两相邻换热管中心的距离。

要求管间距≥1.25d0,符合国标规定,便于管子与管板间的连接,因为对于胀接或焊接来讲,管子间距离太近,那么都会影响连接质量。最外层管壁与壳壁之间的距离为10mm,主要是为折流板易于加工,不易损坏。

三、换热器管板强度计算的理论依据简介

1.实心园平板模型:将管板当作受均布载荷的实心园板,以按弹性理论得到的园平板最

大弯曲应力为主要依据,并加以适当的修正系数来考虑管板开孔削弱和管束的实际支承作用,由此得到管板厚度的计算公式,偏于安全。

2.弹性基础模型:将管束当作弹性支承,而管板则作为放置于这弹性基础上的圆板,然

后根据载荷大小、管束的刚度及周边支承情况来确定管板的弯曲应力。由于它较全面地考虑了管束的支承和温差的影响,因而较精确,但计算公式较多,计算过程繁琐,GB151-1999采用的就是此法

3.菱形面积法:取管板上相邻四根管子之间的菱形面积,按弹性理论求此面积在均布压力作用下的最大弯曲应力。由于此方法与管板实际受载情况相差较大,所以公用于粗略估算。

四、管程的分程及管板与隔板的连接

1、分程原因:当换热器所需的换热面积较大,而管子做得太长时,就得增大壳体直径,

排列较多的管子。此时,为了增加管程流速,提高传热效果,须将管束分程,使流体依次流过各程管子。

2、分程原则:①各程换热管数应大致相等;②相邻程间平均壁温差一般不应超过28℃;

③各程间的密封长度应最短;④分程隔板的形状应简单。

3、分程隔板:单层和双层两种。如下图。双层隔板具有隔热空间,可防止热流短路。

4、分程方式:

五、管板与壳体的连接结构

1、不可拆的焊接式:固定管板式换热器管板与壳体的连接

(图7-21)兼做法兰;(图7-22)不兼做法兰

2、可拆式:浮头式、U型管式及填料函式换热器固定端管板与壳体的连接(图7-23)

第四节折流板、支承板、旁路挡板及拦液板的作用和结构

一、折流板及支承板

1、作用:①提高壳程内流体的流速②加强湍流强度③提高传热效率④支撑换热管。

(当工艺上无折流板要求而管子较细长时,应考虑有一定数量的支承板,以便安装和防止管子变形;支撑板的尺寸、形状可与折流板相同。)

2、结构:弓形、圆盘-圆环形和带扇形切口。

3、 尺寸

①厚度与壳体直径和折流板间距有关;折流板最小厚度按国标选取。 ②弓形折流板间距:

最小间距≥max{

5

1

D i ,50mm} 最大间距:不超过表7-7规定,且≤D i

③间隙:折流板外径与壳体之间的间隙要适当,因为过小给安装带来困难,过大又影响传效率。

4、折流板的固定

1)拉杆定距管结构,适用于换热管外径≥19mm的管束

折流板和支承板的固定是通过拉杆和定距管来实现的,如图7-27

2)拉杆点焊结构,适用于换热管外径≤14mm的管束

拉杆的数量不少于四根,直径不小于10mm。应尽量布置在管束的外边缘,对于大直径换热器,在布管区或靠近折流板缺口处也应布置适当数量的拉杆。

二、旁路挡板

作用:阻止流体短路,迫使壳体流体通过管束进行热交换。

结构及安装:加工成规则的长条状,长度等于折流板或支承板的板间距,两端焊在折流板或支承板上。

三、拦液板

作用:立式冷凝器中起到截拦液膜作用。在立式冷凝器中为减薄管壁上的液膜而提高传热膜系数。

第五节 温差应力

一、管壁与壳壁温度差引起的温差应力 (一)温差应力产生的原因:如图所示,固定

管板式换热器的壳体与管子,在安装温度下,它们的长度均为L(图a);当操作时(图b),壳体和管子的温度都升高,若管壁温度高于壳壁温度,则管子自由伸长量δ和壳体自由伸长量δ分别为

δ=α(t -t )L δ=α(t -t )L

式中α, α—分别为管子和壳体材料的温度膨胀系数,1/℃;

t—安装时的温度,℃

t,t—分别为操作状态下管壁温度和壳壁温度,℃

由于管子与壳体是刚性连接,所以管子和壳体的实际伸长量必须相等,见图c,因此就出现壳体被拉伸,产生拉应力;管子被压缩,产生压应力。此拉、压应力就是温差应力。这就是温差应力产生的原因。

(二)温差应力的计算:

1.温差轴向力F:由于温差而使壳体被拉长的总拉伸力应等于所有管子被压缩的总压缩力,总拉伸力(或总压缩力)就是温差轴向力。符号规定F为+,表壳体被拉,

管子被压,反之则反之。

2.温差应力

(三)温差应力的补偿

1)减少壳体与管束间的温度差

2)装设挠性构件

3)使壳体和管束自由热膨胀

4)双套管温度补偿

二、管子拉脱力的计算

(一)产生原因:

1.原因是:由于介质压力与温差应力的联合作用,使管子和管板接头处有分离趋势,产生拉脱力。

2.拉脱力:管子每平方米胀接周边上所受到的力(单位Mpa)

3.实验表明:焊接接头,拉脱力不足以引起接头破坏;胀接接头,要进行拉脱力校核,以保证管端与管板连接的牢固性和密封性。

(二)计算

q

1)在操作压力下,每平方米胀接周边所受到的力

p

q

2)在温差应力作用下,管子每平方米胀接周边所产生的力

t

(三)管子拉脱力q

(四)校核:管子拉脱力必须小于许用拉脱力,即q<[q]

第六节管箱与壳程接管

一、管箱:

深度有一定的要求,满足流通面积的需要。

二、壳程接管:

1、旁路挡板:防止流体对换热管造成很大的冲刷

2、导流筒:内导流筒和外导流筒;作用:消除死区,充分利用换热面积;防止流体对换热

管造成很大的冲刷。

管壳式换热器的工艺设计

管壳式换热器的工艺设计 芮胜波李峥王克立李彩艳 兖矿鲁南化肥厂 芮胜波:(1974-),山东枣庄人,工程师,工程硕士,从事煤化工项目研发及建设工作。第一作者联系方式:山东滕州木石兖矿鲁南化肥厂项目办(277527),电话:0632-2363395 摘要:管壳式换热器在各种换热器中应用最为广泛,为了使换热器既能满足工艺过程的要求,又能从结构、维修、造价等方面比较合理,在设计中要从各个方面综合考虑。本文着重从换热器程数的选择以及如何降低换热器的压力降方面进行了比较详细的论述,对于换热器的工艺设计起到一定的指导作用。 关键词:管壳式换热器,程数,压降 在化工、石油、动力、制冷以及食品等行业中,换热器都属于非常重要的工艺设备,占有举足轻重的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强,特别是换热器的设计必须满足各种特殊工况和苛刻操作条件的要求。大致说来,随着换热器在生产中的地位和作用不同,对它的要求也不同,但都必须满足下列一些基本要求:首先是满足工艺过程的要求;其次,要求在工作压力下具有一定的强度,但结构又要求简单、紧凑,便于安装和维修;第三,造价要低,但运行却又要求安全可靠。 许多新型换热器的出现,大大提高了换热器的传热效率。比如板式换热器和螺旋板式换热器具有传热效果好、结构紧凑等优点,在温度不太高和压力不太大的情况下,应用比较有利;板翅式换热器是一种轻巧、紧凑、高效换热器,广泛应用于石油化工、天然气液化、气体分离等部门中;此外,空气冷却器以空气为冷却剂在翅片管外流过,用以冷却或冷凝管内通过的流体,尤其适用于缺水地区,由于管外装置了翅片,既增强了管外流体的湍流程度,又增大了传热面积,这样,可以减少两边对流传热系数过于悬殊的影响,从而提高换热器的传热效能。 尽管各种各样的新型换热器以其特有的优势在不同领域得以应用,但管壳式换热器仍然在各种换热器中占有很大的比重,虽然它在换热效率、设备的体积和金属材料的消耗量等方面不占优势,但它具有结构坚固、操作弹性大、可靠程度高、使用范围广等优点,所以在工程中仍得到普遍使用。 目前我们在各种工程中应用最多的换热器就是管壳式换热器,其中又以固定管板式为最常见,除了波纹管换热器等可选用标准系列产品外,其它光管换热器都由工艺专业自行设计,尽管专用计算软件HTFS的应用使设计人员从繁琐的手工设计计算中解脱出来,但是为了使设计出来的换热器能更好的满足各种要求,仍然有许多方面需要在设计时充分加以考虑。 首先,程数的选择。 管程程数的选择:关键要比较管程与壳程的给热系数,如果单管程时管程流体的给热系数小于壳程流体给热系数,则可选用双管程,管程给热系数会因此显著增大,并且总传热系数也会有大幅提高。例如,有一台单管程换热器,管程给热系数为990W/(m2.℃), 壳程给热系数为5010 W/(m2.℃),总传热系数为794 W/(m2.℃),在换热器的外形尺寸保持不变的情况下改为双管程后,管程给热系数变为1680 W/(m2.℃),增大了70%,,总传热系数变为1176 W/(m2.℃),增大了48%,显然此时选用双管程换热器有利。反之,如果单管程时管程的给热系数大于壳程给热系数,虽然改用双管程时,管程给热系数也会显著增大,但是总传热系数则增幅不明显,例如,一单管程换热器,管程给热系数为2276 W/(m2.℃), 壳程给热系数为2104 W/(m2.℃),总传热系数为1040 W/(m2.℃),在换热器的外形尺寸保持不变的情况下

管壳式换热器的机械设计

第七章管壳式换热器的机械设计 本章重点:固定管板式换热器的基本结构 本章难点:管、壳的分程及隔板 建议学时:4学时 第一节概述 一、定义:换热器是用来完成各种不同传热过程的设备。 二、衡量标准: 1.先进性—传热效率高,流体阻力小,材料省; 2.合理性—可制造加工,成本可接受; 3.可靠性—强度满足工艺条件。 三、举例 1.冷却器(cooler) 1)用空气作介质—空冷器aircooler 2)用氨、盐水、氟里昂等冷却到0℃~-20℃—保冷器deepcooler 2.冷凝器condenser 1)分离器 2)全凝器 3.加热器(一般不发生相变)heater 1)预热器(preheater)—粘度大的液体,喷雾状不好,预热使其粘度下降; 2)过热器(superheater)—加热至饱和温度以上。 4.蒸发器(etaporater),—发生相变 5.再沸器(reboiler) 6.废热锅炉(waste heat boiler) 看下图说明其结构及名称

四、管壳式换热器的分类 1、固定管板式换热器: 优点:结构简单、紧凑、布管多,管内便于清洗,更换、造价低,应用广泛。管坏时易堵漏。缺点:不易清洗壳程,一般管壳壁温差大于50℃,设置膨胀节。 适用于壳程介质清洁,不易结垢,管程需清洗以及温差不大或温差虽大但是壳程压力不大的场合。 2、浮头式换热器: 管束可以抽出,便于清洗;但这类换热器结构较复杂,金属耗量较大。 适用于介质易结垢的场合。 3、填料函式换热器: 造价比浮头式低检修、清洗容易,填料函处泄漏能及时发现,但壳程内介质由外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。适用于低压小直径场合。 4、U型管式换热器:

管壳式换热器工艺设计说明书

管壳式换热器工艺设计说明书 1.设计方案简介 1.1工艺流程概述 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,甲苯走壳程。如图1,苯经泵抽上来,经管道从接管A进入换热器壳程;冷却水则由泵抽上来经管道从接管C进入换热器管程。两物质在换热器中进行交换,苯从80℃被冷却至55℃之后,由接管B流出;循环冷却水则从30℃升至50℃,由接管D流出。 图1 工艺流程草图 1.2选择列管式换热器的类型 列管式换热器,又称管壳式换热器,是目前化工生产中应用最广泛

的传热设备。其主要优点是:单位体积所具有的传热面积大以及窜热效果较好;此外,结构简单,制造的材料围广,操作弹性也较大等。因此在高温、高压和大型装置上多采用列壳式换热器。如下图所示。 1.2.1列管式换热器的分类 根据列管式换热器结构特点的不同,主要分为以下几种: ⑴固定管板式换热器 固定管板式换热器,结构比较简单,造价较低。两管板由管子互相支承,因而在各种列管式换热器中,其管板最薄。其缺点是管外清洗困难,管壳间有温差应力存在,当两种介质温差较大时,必须设置膨胀节。 固定管板式换热器适用于壳程介质清洁,不易结垢,管程需清洗及温差不大或温差虽大但壳程压力不高的场合。 固定板式换热器 ⑵浮头式换热器 浮头式换热器,一端管板式固定的,另一端管板可在壳体移动,因

而管、壳间不产生温差应力。管束可以抽出,便于清洗。但这类换热器结构较复杂,金属耗量较大;浮头处发生漏时不便检查;管束与壳体间隙较大,影响传热。 浮头式换热器适用于管、壳温差较大及介质易结垢的场合。 ⑶填料函式换热器 填料函式换热器,管束一端可以自由膨胀,造价也比浮头式换热器低,检修、清洗容易,填函处泄漏能及时发现。但壳程介质有外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。 ⑷U形管式换热器 U形管式换热器,只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管不便清洗,管板上布管少,结垢不紧凑,管外介质易短路,影响传热效果,层管子损坏后不易更换。 U形管式换热器适用于管、壳壁温差较大的场合,尤其是管介质清洁,不易结垢的高温、高压、腐蚀性较强的场合。

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

管壳式换热器的有效设计外文翻译

武汉工程大学邮电与信息工程学院毕业设计(论文)外文资料翻译 原文题目:Effectively Design Shell-and-Tube Heat Exchangers 原文来源:Chemical Engineering Progress February 1998 文章译名:管壳式换热器的优化设计 姓名:xxx 学号:62021703xx 指导教师(职称):王成刚(副教授) 专业:过程装备与控制工程 班级:03班 所在学院:机电学部

管壳式换热器的优化设计 为了充分利用换热器设计软件,我们需要了解管壳式换热器的分类、换热器组件、换热管布局、挡板、压降和平均温差。 管壳式换热器的热设计是通过复杂的计算机软件完成的。然而,为了有效使用该软件,需要很好地了解换热器设计的基本原则。 本文介绍了传热设计的基础,涵盖的主题有:管壳式换热器组件、管壳式换热器的结构和使用范围、传热设计所需的数据、管程设计、壳程设计、换热管布局、挡板、壳程压降和平均温差。关于换热器管程和壳程的热传导和压力降的基本方程已众所周知。在这里,我们将专注于换热器优化设计中的相关应用。后续文章是关于管壳式换热器设计的前沿课题,例如管程和壳程流体的分配、多壳程的使用、重复设计以及浪费等预计将在下一期介绍。 管壳式换热器组件 至关重要的是,设计者对管壳式换热器功能有良好的工作特性的认知,以及它们如何影响换热设计。管壳式换热器的主要组成部分有:壳体 封头 换热管 管箱 管箱盖 管板 折流板 接管 其他组成部分包括拉杆和定距管、隔板、防冲挡板、纵向挡板、密封圈、支座和地基等。 管式换热器制造商协会标准详细介绍了这些不同的组成部分。 管壳式换热器可分为三个部分:前端封头、壳体和后端封头。图1举例了各种结构可能的命名。换热器用字母编码描述三个部分,例如,BFL 型换热器有一个阀盖,双通的有纵向挡板的壳程和固定的管程后端封头。根据结构

《管壳式换热器机械设计》参考资料

1前言 (1) 概述 (1) 换热器的类型 (1) 换热器 (1) 设计的目的与意义 (2) 管壳式换热器的发展史 (2) 管壳式换热器的国内外概况 (3) 壳层强化传热 (3) 管层强化传热 (3) 提高管壳式换热器传热能力的措施 (4) 设计思路、方法 (5) 换热器管形的设计 (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 管径 (11) 管子数n (11) 管子排列方式,管间距的确定 (11) 换热器壳体直径的确定 (11) 换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 管板结构尺寸 (16) 管板与壳体的连接 (16) 管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 群座的设计 (27) 基础环设计 (29) 地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

2 壳体直径的确定与壳体壁厚的计算 管径 换热器中最常用的管径有φ19mm ×2mm 和φ25mm ×。小直径的管子可以承受更大 的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。所以,在管程结垢不很严重以及允许压力降较高的情况下,采用φ19mm ×2mm 直径的管子更为合理。如果管程走的是易结垢的流体,则应常用较大直径的管子。 标准管子的长度常用的有1500mm ,2000mm ,2500mm , 3000m,4500,5000,6000m,7500mm,9000m 等。换热器的换热管长度与公称直径之比一般为4 —25,常用的为6—10 选用Φ25×的无缝钢管,材质为20号钢,管长。 管子数n L F n d 均π= (2-1) ()根均5035 .40225.014.3160 F L =??= = ∴ n d n π 其中安排拉杆需减少6根,故实际管数n=503-6=497根 管子排列方式,管间距的确定 采用正三角形排列,由《化工设备机械基础》表7-4查得层数为12层,对角线上 的管数为25,查表7-5取管间距a=32mm. 换热器壳体直径的确定 l b a D i 2)1(+-= (2-2) 其中壁边缘的距离为最外层管子中心到壳 l 取d l 2=,()m m 8682522)125(32=??+-?=i D ,

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

(完整版)管壳式换热器简介及其分类

管壳式换热器简介及分类 概述 换热器是在具有不同温度的两种或两种以上流体之间传递热量的设备。在工业生产中,换热器的主要作用是使热量从温度较高的流体传递给温度较低的流体,使流体温度达到工艺流程规定的指标,以满足过程工艺条件的需要。换热器是化工、炼油、动力、食品、轻工、原子能、制药、航空以及其他许多工艺部门广泛使用的一种通用设备。在华工厂中,换热器的投资约占总投资的10%-20%;在炼油厂中该项投资约占总投资的35%-40%。 目前,在换热器中,应用最多的是管壳式换热器,他是工业过程热量传递中应用最为广泛的一种换热器。虽然管壳式换热器在结构紧凑型、传热强度和单位传热面的金属消耗量无法与板式或者是板翅式等紧凑换热器相比,但管壳式换热器适用的操作温度与压力范围较大,制造成本低,清洗方便,处理量大,工作可靠,长期以来人们已在其设计和加工方面积累了许多经验,建立了一整套程序,人么可以容易的查找到其他可靠设计及制造标准,而且方便的使用众多材料制造,设计成各种尺寸及形式,管壳式换热器往往成为人们的首选。 近年来,由于工艺要求、能源危机和环境保护等诸多因素,传热强化技术和换热器的现代研究、设计方法获得了飞速发展,设计人员已经开发出了多种新型换热器,以满足各行各业的需求。如为了适应加氢装置的高温高压工艺条件,螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器技术获得了快速发展,并在乙烯裂解、合成氨、聚合和天然气工业中大量应用,可达到承压35Mpa、承温700℃的工艺要求;为了回收石化、原子能、航天、化肥等领域使用燃气、合成气、烟气等所产生的大量余热,产生了各种结构和用途的废热锅炉,为了解决换热器日益大型化所带来的换热器尺度增大,震动破坏等问题,纵流壳程换热器得到飞速的发展和应用;纵流壳程换热器不仅提高了传热效果,也有效的克服了由于管束震动引起的换热器破坏现象。另外,各种新结构的换热器、高效重沸器、高效冷凝器、双壳程换热器等也大量涌现。 管壳式换热器按照不同形式的分类 工业换热器通常按以下诸方面来分类:结构、传热过程、传热面的紧凑程度、所用材料、

管壳式换热器设计计算用matlab源代码

%物性参数 % 有机液体取69度 p1=997; cp1=2220; mu1=0.0006; num1=0.16; % 水取30度 p2=995.7; mu2=0.0008; cp2=4174; num2=0.62; %操作参数 % 有机物 qm1=18;%-----------有机物流量-------------- dt1=78; dt2=60; % 水 t1=23; t2=37;%----------自选----------- %系标准选择 dd=0.4;%内径 ntc=15;%中心排管数 dn=2;%管程数 n=164;%管数 dd0=0.002;%管粗 d0=0.019;%管外径 l=0.025;%管心距 dl=3;%换热管长度 s=0.0145;%管程流通面积 da=28.4;%换热面积 fie=0.98;%温差修正系数----------根据R和P查表------------ B=0.4;%挡板间距-----------------自选-------------- %预选计算 dq=qm1*cp1*(dt1-dt2); dtm=((dt1-t2)-(dt2-t1))/(log((dt1-t2)/(dt2-t1))); R=(dt1-dt2)/(t2-t1); P=(t2-t1)/(dt1-t1); %管程流速 qm2=dq/cp2/(t2-t1); ui=qm2/(s*p2);

%管程给热系数计算 rei=(d0-2*dd0)*ui*p2/mu2; pri=cp2*mu2/num2; ai=0.023*(num2/(d0-2*dd0))*rei^0.8*pri^0.4; %管壳给热系数计算 %采用正三角形排列 Apie=B*dd*(1-d0/l);%最大截流面积 u0=qm1/p1/Apie; de=4*(sqrt(3)/2*l^2-pi/4*d0^2)/(pi*d0);%当量直径 re0=de*u0*p1/mu1; pr0=cp1*mu1/num1; if re0>=2000 a0=0.36*re0^0.55*pr0^(1/3)*0.95*num1/de; else a0=0.5*re0^0.507*pr0^(1/3)*0.95*num1/de; end %K计算 K=1/(1/ai*d0/(d0-2*dd0)+1/a0+2.6*10^(-5)+3.4*10^-5+dd0/45.4); %A Aj=dq/(K*dtm*fie); disp('K=') disp(K); disp('A/A计='); disp(da/Aj); %计算管程压降 ed=0.00001/(d0-2*dd0); num=0.008; err=100; for i=0:5000 err=1/sqrt(num)-1.74+2*log(2*ed+18.7/(rei*sqrt(num)))/log(10); berr=err/(1/sqrt(num)); if berr<0.01 break; else num=num+num*0.01;

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:1320103090 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度32.5℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 1.1热量传递的概念与意义 1.1.1热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

《管壳式换热器机械设计》参考

1.1概述 (1) (1) (1) 1.2设计的目的与意义 (2) 1.3管壳式换热器的发展史 (2) 1.4管壳式换热器的国内外概况 (3) 1.5壳层强化传热 (3) 1.6管层强化传热 (3) 1.7提高管壳式换热器传热能力的措施 (4) 1.8设计思路、方法 (5) (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 1.9 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

1.9.2 流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 2.1 管径 (11) 2.2管子数n (11) 2.3 管子排列方式,管间距的确定 (11) 2.4换热器壳体直径的确定 (11) 2.5换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 5.1管板结构尺寸 (16) 5.2管板与壳体的连接 (16) 5.3管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 10.1群座的设计 (27) 10.2基础环设计 (29) 10.3地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

2 壳体直径的确定与壳体壁厚的计算 2.1 管径 换热器中最常用的管径有φ19mm ×2mm 和φ25mm ×2.5mm 。小直径的管子可以承受更大 的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。所以,在管程结垢不很严重以及允许压力降较高的情况下,采用φ19mm ×2mm 直径的管子更为合理。如果管程走的是易结垢的流体,则应常用较大直径的管子。 标准管子的长度常用的有1500mm ,2000mm ,2500mm , 3000m,4500,5000,6000m,7500mm,9000m 等。换热器的换热管长度与公称直径之比一般为4 —25,常用的为6—10 选用Φ25×2.5的无缝钢管,材质为20号钢,管长4.5m 。 2.2 管子数n L F n d 均π=Θ (2-1) 其中安排拉杆需减少6根,故实际管数n=503-6=497根 2.3 管子排列方式,管间距的确定 采用正三角形排列,由《化工设备机械基础》表7-4查得层数为12层,对角线上的管 数为25,查表7-5取管间距a=32mm. 2.4换热器壳体直径的确定 l b a D i 2)1(+-= (2-2) 其中壁边缘的距离为最外层管子中心到壳l 取d l 2=,()m m 8682522)125(32=??+-?=i D , 查表2-5,圆整后取壳体内径9=i D 00mm 2.5 换热器壳体壁厚计算及校核

管壳式换热器的设计(课程设计)

xxxxxxxxx 大学 课程设计说明书 设计题目:管壳式换热器的设计 学院、系:化学工程与工艺学院(精细化工专业)专业班级:精细2012班 学生:xxxxxxxxxxxx 指导教师:xxxxxxxxxxxxx 成绩:________________________ 2015年07 月08

目录 2015年07 月08 (1) 目录 (2) 一、课程设计题目 (5) 二、课程设计容 (5) 1.管壳式换热器的结构设计 (5) 2. 壳体及封头壁厚计算及其强度、稳定性校核 (5) 3. 筒体水压试验应力校核 (5) 4. 鞍座的选择 (6) 5. 换热器各主要组成部分选材,参数确定。 (6) 6. 编写设计说明书一份 (6) 7. 绘制1号装配图一。 (6) 三、设计条件 (6) (1)气体工作压力 (6) (2)壳、管壁温差50℃,t t >t s (6) (3)由工艺计算求得换热面积为105m2。 (6) (4)壳体与封头材料在低合金高强度钢中间选用,并查出其参数,接管及其他数据根据表7-15、7-16选用。 (6) (5)壳体与支座双面对接焊接,壳体焊接接头系数Φ=0.85 (6) (6)图纸:参考图7-52,注意:尺寸需根据自己的设计的尺寸标注。 (6) 四、基本要求 (7) 五、说明书的容 (7) 1.符号说明 (7) 2.前言 (7) 3.材料选择 (7) 4.绘制结构草图 (7) 5.壳体、封头壁厚设计 (8) 6.标准化零、部件选择及补强计算: (8) 7.结束语:对自己所做的设计进行小结与评价,经验与收获。 (8) 8.主要参考资料。 (8)

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

管壳式换热器设计

课程设计 设计题目:管壳式水-水换热器 姓名 院系 专业 年级 学号 指导教师 年月日

目录 1前言 (1) 2课程设计任务书 (2) 3课程设计说明书 (3) 3.1确定设计方案 (3) 3.1.1选择换热器的类型 (3) 3.1.2流动空间及流速的确定 (3) 3.2确定物性数据 (3) 3.3换热器热力计算 (4) 3.3.1热流量 (4) 3.3.2平均传热温度差 (4) 3.3.3循环冷却水用量 (4) 3.3.4总传热系数K (5) 3.3.4计算传热面积 (6) 3.4工艺结构尺寸 (6) 3.4.1管径和管内流速 (6) 3.4.2管程数和传热管数 (6) 3.4.3平均传热温差校正及壳程数 (7) 3.4.4传热管排列和分程方法 (7) 3.4.5壳体内径 (7) 3.4.6折流板 (8) 3.4.7接管 (8) 3.5换热器核算 (8) 3.5.1热量核算 (8) 3.5.2换热器内流体的流动阻力 (12) 3 .6换热器主要结构尺寸、计算结果 (13) 3.7换热器示意图、管子草图、折流板图 (14) 4设计总结 (15) 5参考文献 (16)

1前言 在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,成为热交换器。热交换器在工业生产中的应用极为普遍,例如动力工业中锅炉设备的过热器、省煤器、空气预测器,电厂热力系统中的凝汽器、除氧器、给水加热器、冷水塔;冶金工业中高炉的热风炉,炼钢和轧钢生产工艺中的空气和煤气预热;制冷工业中蒸汽压缩式制冷机或吸收式制冷机中的蒸发器、冷凝器;制糖工业和造纸工业的糖液蒸发器和纸浆蒸发器,都是热交换器的应用实例。在化学工业和石油化学工业的生产过程中,应用热交换器的场合更是不胜枚举。在航空航天工业中,为了及时取出发动机及辅助动力装置在运行时产生的大量热量;热交换器也是不可或缺的重要部件。 根据热交换器在生产中的地位和作用,它应满足多种多样的要求。一般来说,对其基本要求有: (1)满足工艺过程所提出的要求。热交换强度高,热损失少。在有利的平均温度下工作。 (2)要有与温度和压力条件相适应的不易遭到破坏的工艺结构,制造简单,装修方便,经济合理,运行可靠。 (3)设备紧凑。这对大型企业,航空航天、新能源开发和余热回收装置更有重要意义。 (4)保证低的流动阻力,以减少热交换器的消耗。 管壳式换热器是目前应用最为广泛的一种换热器。它包括:固定管板式换热器、U 型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。管壳式换热器由管箱、壳体、管束等主要元件构成。管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。

TEMA管壳式换热器设计原则

TEMA规格的管壳式换热器设计原则 ——摘引自《PERRY’S CHEMICAL ENGINEER’S HANDBOOK 1999》 设计中的一般考虑 流程的选择在选择一台换热器中两种流体的流程时,会采用某些通则。管程的流体的腐蚀性较强,或是较脏、压力较高。壳程则会是高粘度流体或某种气体。当管/壳程流体中的

某一种要用到合金结构时,“碳钢壳体+合金管侧部件”比之“接触壳程流体部件全用合金+碳钢管箱”的方案要较为节省费用。 清洗管子的内部较之清洗其外部要更为容易。 假如两侧流体中有表压超过2068KPa(300 Psig)的,较为节约的结构形式是将高压流体安排在管侧。 对于给定的压降,壳侧的传热系数较管侧的要高。 换热器的停运最通常的原因是结垢、腐蚀和磨蚀。 建造规则“压力容器建造规则,第一册”也就是《ASME锅炉及压力容器规范Section VIII , Division 1》, 用作换热器的建造规则时提供了最低标准。一般此标准的最新版每3年出版发行一次。期间的修改以附录形式每半年出一次。在美国和加拿大的很多地方,遵循ASME 规则上的要求是强制性的。最初这一系列规范并不是准备用于换热器制造的。但现在已包含了固定管板式换热器中管板与壳体间焊接接头的有关规定,并且还包含了一个非强制性的有关管子-管板接头的附件。目前ASME 正在开发用于换热器的其他规则。 列管式换热器制造商协会标准, 第6版., 1978 (通常引称为TEMA 标准*), 用在除套管式换热器而外的所有管壳式换热器的应用中,对ASME规则的补充和说明。TEMA “R级”设计就是“用于石油及相关加工应用的一般性苛刻要求。按本标准制造的设备,设计目的在于在此类应用时严苛的保养和维修条件下的安全性、持久性。”TEMA “C级”设计是“用于商用及通用加工用途的一般性适度要求。”而TEMA“B级”是“用于化学加工用途” *译者注:这已经不是最新版的,现在已经出到1999年第8版 3种建造标准的机械设计要求都是一样的。各TEMA级别之间的差异很小,并已由Rubin 在Hydrocarbon Process., 59, 92 (June 1980) 上做了归列。 TEMA标准所讨论的主题是:命名原则、制造公差、检验、保证、管子、壳体、折流板和支撑板,浮头、垫片、管板、管箱、管嘴、法兰连接端及紧固件、材料规范以及抗结垢问题。 API Standard 660, 4th ed., 1982*,一般炼油用途的管壳式换热器是由美国炼油协会出版的,以补充TEMA标准和ASME规范。很多从事化学和石油加工的公司都有其自己的标准以对以上各种要求作出补充。关于规范、标准和个客户的规定之间的关系已由F. L. Rubin编辑结集,由ASME 在1979年出版了(参见佩里化学工程师手册第6章关于压力容器规则的讨论)。 *译者注:这已经不是最新版的,现在已经出到2001年第6版 换热器的设计压力和设计温度通常在确定时都在预计的工作条件上又给了一个安全裕量。一般设计压力比操作中的预计最高压力或关泵时的最高压力要高大约172KPa(25 Psi);而设计温度则通常较最高工作温度高14°C (25°F)。 管束振动随着折流板换热器被设计用于流量和压降越来越高的场合,由管子振动带来的损 标准分享网 https://www.doczj.com/doc/035858176.html, 免费下载

管壳式换热器机械设计参考资料

1前言 (1) 1.1概述 (1) 1.1.1换热器的类型 (1) 1.1.2换热器 (1) 1.2设计的目的与意义 (2) 1.3管壳式换热器的发展史 (2) 1.4管壳式换热器的国内外概况 (3) 1.5壳层强化传热 (3) 1.6管层强化传热 (3) 1.7提高管壳式换热器传热能力的措施 (4) 1.8设计思路、方法 (5) 1.8.1换热器管形的设计 (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 1.9 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

1.9.2 流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 2.1 管径 (11) 2.2管子数n (11) 2.3 管子排列方式,管间距的确定 (11) 2.4换热器壳体直径的确定 (11) 2.5换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 5.1管板结构尺寸 (16) 5.2管板与壳体的连接 (16) 5.3管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 10.1群座的设计 (27) 10.2基础环设计 (29) 10.3地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

相关主题
文本预览
相关文档 最新文档