当前位置:文档之家› 非制冷红外焦平面热成像测温系统

非制冷红外焦平面热成像测温系统

非制冷红外焦平面热成像测温系统
非制冷红外焦平面热成像测温系统

非制冷红外焦平面热成像测温系统

红外技术四个主要部分:

1.红外辐射的性质,其中有受热物体所发射的辐射在光谱、强度和方向的分布;辐射在媒质中的传播特性--反射、折射、衍射和散射;热电效应和光电效应等。

2.红外元件、部件的研制,包括辐射源、微型制冷器、红外窗口材料和滤光电等。

3.把各种红外元、部件构成系统的光学、电子学和精密机械。

4.红外技术在军事上和国民经济中的应用。由此可见,红外技术的研究涉及的范围相当广泛,既有目标的红外辐射特性,背景特性,又有红外元、部件及系统;既有材料问题,又有应用问题。

而在红外热成像技术研究领域中,红外探测器是核心,探测器的技术水平决定了热成像技术的技术水平。基于光电效应的光子探测器和基于热电效应的热电探测器一直是红外热成像技术的两大支柱。为获得高性能必须在低温(典型的是液氮温度77K)下工作。正是由于需要制冷以及成本等原因,使光电探测器类热成像技术在民用领域仍难形成很大的市场。而热电探测器类热成像技术由于灵敏度和响应速度方面的限制,只有采用热电摄像管的热成像系统(即热电视)获得一些应用,而且一般用于要求较低的民用领域。

但90年代以后,非致冷红外焦平面技术的突破和实用化,使其与致冷红外热像技术相比所具有的低成本,低功耗,长寿命,小型化和可靠性等优势得到很好发挥,成为当前红外热成像技术中最引人注目的突破之一,在军用和民用领域的应用前景将“使传感器领域发生变革”。

非致冷红外焦平面技术属于热电探测器类热成像技术。

其焦平面阵列由热探测器,如测辐射热计、热释电探测器、热电堆等,与硅多路传输器,如CCD、MOSf:EF、C协05读出电路等,通常用锢柱互连而成。

测辐射热计的工作原理是被热绝缘的金属薄膜(典型的是入膜)或半异体薄膜(典型的是氧化钒VOZ或非晶硅a一Si薄膜或多晶硅)在吸收红外辐射时会引起其电阻值的变化实现光电变换。此类探测器可全部采用Si集成电路工艺制作,与51信号处理电路之间可形成单片式结构,不需要低温制冷装置,不需要特殊材料,不需要斩波,制作工艺也成熟。以它为核心制成的红外热成像系统成像清晰度高、重量轻、功耗低、易便携,适于野外工作场所。

热释电探测器的工作原理是由具有良好热释电特性的铁电材料,如错酸铅(PZT)陶瓷、PbTIO,陶瓷、PbTIO:,薄膜和LITao,晶体制成的热探测器与51多路传输器互连而成。其中,LITaO,特性格外好,它不仅有大的热释电系数(p二2.3x1osC/cm),还有小的介电常数(£,=54)和高的居里温度(兀二618’’C)。以它为核心制成的红外热像系统灵敏度较高,且适合于红外成像。

本系统结合红外测温技术和非致冷焦平面热成像技术原理,开发并完成了一套非致冷红外焦平面热成像测温系统。

系统建立了非致冷红外焦平面热成像系统测温计算的数学模型;对计算中可能产生的各种误差进行了分析和计算;对系统成像的非均匀性进行了分析和校正;提出了精确测量发射率的新算法;结合热成像的原理对红外热图像的特征进行了分析,对红外热像进行了新型直方图均衡和伪彩色增强等处理。

在降低了成本的同时,保证了精度。

基于辐射源的方法较为常用,其中包括两点校正法,多点校正法,非线性拟合校正法,和低次插值校正法等,基于他们各自的特点,此论文中选用了精度相对比较高的一种:非线性拟合校正法。这种校正方法考虑了光敏单元的非线性响应,使得其校正效果比传统的两点校正算法具有更大的动态范围和更高的精度,同时,每个光敏单元的校正只需要3次乘法和2次

加法,运算量很小,很容易实时实现。具体的公式推导可以参考论文。。。。。

噪声去除及算法改进:采用较为常用的中值滤波法。中值滤波的特点:能有效抑制图像噪声,提高图像信噪比。它是一种邻域运算,是把邻域中的像素按灰度等级进行排序,然后选择该组的中间值作为输出像素值。它能减弱或消除傅里叶空间的高频分量,但不影响低频分量。因为高频分量对应图像中的区域边缘和灰度值具有较大较快变化的部分,因此该滤波可将这些分量滤除,使图像平滑。这里可以概括为此算法可以实现图像的平滑处理。原理:首先确定一个以某个像素为中心点的邻域,一般为方形邻域;然后将邻域中的各个像素的灰度值进行排序,取其中间值作为中心点像素灰度的新值,这里的邻域通常被称为窗口;当窗口在图像中上下左右进行移动后,利用中值滤波算法可以很好地对图像进行平滑处理。改进:图像中的边缘和噪声都使频率比较高的部分,通过改进可以减少边缘的错误改进。由于噪声都由一个特点,就是几乎都是领域像素的极值而边缘不是,因此可以利用这个特性来改进中值滤波。具体改进的原理:当处理该像素的时候,看该像素是否是滤波窗口所覆盖下邻域像素的极大或者极小值,如果是,则用正常的中值滤波处理该像素。如果不是,则不处理。

灰度变换:可分为普通线性变换、分段线性变换和非线性变换。采用普通线性变换,用一个线性单值函数,对图像的每一个像素灰度作线性扩展,将有效地增强图像的对比度,改善图像视觉效果。普通的先行变换的原理是将图像中的低灰度值和高灰度值像素的灰度级通过先行变换进行了适当的归并,这种两端截取式的拉伸方法虽然在一定区域内丢失了一小部分的信息,但是却换取了图像中绝大部分像素的灰度层次感。如果我们只对图像中某些灰度级的图像感兴趣,就可以按照灰度级的变化特点,将他们分段进行先行变换,从而增强图像中感兴趣的部分,抑制不感兴趣的灰度区间。直方图均衡化属于非线性变换,它是一种比较好得图像增强算法,在实际中也比较常用。原理:直方图均衡的作用是改变图像中灰度概率分布,使其均匀化。其实质是使图像中灰度概率密度较大的像素向附近灰度级扩展,因而灰度层次拉开,而概率密度较小的像素的灰度级收缩,从而让出原来占有的部分灰度级,这样的处理使图像充分有效地利用各个灰度级,因而增强了图像对比度。

伪彩色变换:对于灰度图像,我们常用灰度级—彩色变换的方法进行为彩色变换。原理:将图像的灰度值通过红、绿和蓝变换函数从而生成RGB色彩空间的三个分量,或通过色彩三属性明度、色相、纯度变换函数生成色彩空间的三个分量。这样的话,只要保证变换函数是连续的,则生成的调色板彩色编码就是连续的。因而,其关键在于变换函数的构造。具体的变换函数可以参考论文中。。。。。。

FPGA的实现:这里没有采用dsp来进行硬件的实现,这里可以简要的说明,dsp处理数据的速度虽然最大,但相对于处理复杂的数据,不同类型的数据时要比FPGA慢,所以这里选用FPGA来实现。系统的整体框图:

FPGA可以实现红外图像的灰度变换、中值滤波,以及伪彩色变换等。VGA控制器主要是实现数字信号到模拟信号的转化,转化后的图像数据可以通过配置的LCD的VGA接口进行图像显示。

电源部分:LDO电源和开关电源两者都可以选用。LDO电源成本低,输出电压噪声超低,缺点是低效率,且只能用于降压的场合。开关电源在电流负载较大时,这些损耗都相对较小,所以电感式开关电源可以达到95%的效率。但是在负载较小时,这些损耗就会相对变得大起来,影响效率。本设计中选用了后者,具体电路设计可参考论文。。。。。

SRAM接口电路的设计:这里要知道为什么没有选用常用的SDRAM,因为SDRAM虽然容量大、价格便宜,但是时序比较复杂,能完成一般读写功能,如果涉及到复杂的算法,读写时序很难短时间实现,且不保证效果,而SRAM的时序简单,容易控制,整个存储系统比较稳定。本设计选用IS6lLv25616AL,具体与FPGA连接可参照论文。

FLASH接口电路设计:本设计选用S29ALO32DFLASH芯片,芯片特点:容量4M*8sbit,有22为地址线,8位数据线,有独立的复位信号。。。。。。

图像显示电路:首先需要把数字信号转换为模拟信号,这里选用ADV7123

FPGA配置电路设计:由于选用的SRAM有易失性,所以每次上电要重新加载数据,这里选用AS,PS,JTAG方式进行数据配置。配置电路可以参考论文。

外围接口电路设计:除了上面系统的基本外围电路外,引出的接口包括RS232接口,SPI接口,摄像头低压差分信号接口,以及和其他处理器的接口等。其中,RS232串行接口的设计是为了方便与其他控制器的通信以及系统的调试,该串口采用的MAX3232芯片进行设计

此文转自:深圳市杰创立仪器有限公司:https://www.doczj.com/doc/035482597.html,

非制冷红外焦平面热成像测温系统

非制冷红外焦平面热成像测温系统 红外技术四个主要部分: 1.红外辐射的性质,其中有受热物体所发射的辐射在光谱、强度和方向的分布;辐射在媒质中的传播特性--反射、折射、衍射和散射;热电效应和光电效应等。 2.红外元件、部件的研制,包括辐射源、微型制冷器、红外窗口材料和滤光电等。 3.把各种红外元、部件构成系统的光学、电子学和精密机械。 4.红外技术在军事上和国民经济中的应用。由此可见,红外技术的研究涉及的范围相当广泛,既有目标的红外辐射特性,背景特性,又有红外元、部件及系统;既有材料问题,又有应用问题。 而在红外热成像技术研究领域中,红外探测器是核心,探测器的技术水平决定了热成像技术的技术水平。基于光电效应的光子探测器和基于热电效应的热电探测器一直是红外热成像技术的两大支柱。为获得高性能必须在低温(典型的是液氮温度77K)下工作。正是由于需要制冷以及成本等原因,使光电探测器类热成像技术在民用领域仍难形成很大的市场。而热电探测器类热成像技术由于灵敏度和响应速度方面的限制,只有采用热电摄像管的热成像系统(即热电视)获得一些应用,而且一般用于要求较低的民用领域。 但90年代以后,非致冷红外焦平面技术的突破和实用化,使其与致冷红外热像技术相比所具有的低成本,低功耗,长寿命,小型化和可靠性等优势得到很好发挥,成为当前红外热成像技术中最引人注目的突破之一,在军用和民用领域的应用前景将“使传感器领域发生变革”。 非致冷红外焦平面技术属于热电探测器类热成像技术。 其焦平面阵列由热探测器,如测辐射热计、热释电探测器、热电堆等,与硅多路传输器,如CCD、MOSf:EF、C协05读出电路等,通常用锢柱互连而成。 测辐射热计的工作原理是被热绝缘的金属薄膜(典型的是入膜)或半异体薄膜(典型的是氧化钒VOZ或非晶硅a一Si薄膜或多晶硅)在吸收红外辐射时会引起其电阻值的变化实现光电变换。此类探测器可全部采用Si集成电路工艺制作,与51信号处理电路之间可形成单片式结构,不需要低温制冷装置,不需要特殊材料,不需要斩波,制作工艺也成熟。以它为核心制成的红外热成像系统成像清晰度高、重量轻、功耗低、易便携,适于野外工作场所。 热释电探测器的工作原理是由具有良好热释电特性的铁电材料,如错酸铅(PZT)陶瓷、PbTIO,陶瓷、PbTIO:,薄膜和LITao,晶体制成的热探测器与51多路传输器互连而成。其中,LITaO,特性格外好,它不仅有大的热释电系数(p二2.3x1osC/cm),还有小的介电常数(£,=54)和高的居里温度(兀二618’’C)。以它为核心制成的红外热像系统灵敏度较高,且适合于红外成像。 本系统结合红外测温技术和非致冷焦平面热成像技术原理,开发并完成了一套非致冷红外焦平面热成像测温系统。 系统建立了非致冷红外焦平面热成像系统测温计算的数学模型;对计算中可能产生的各种误差进行了分析和计算;对系统成像的非均匀性进行了分析和校正;提出了精确测量发射率的新算法;结合热成像的原理对红外热图像的特征进行了分析,对红外热像进行了新型直方图均衡和伪彩色增强等处理。 在降低了成本的同时,保证了精度。 基于辐射源的方法较为常用,其中包括两点校正法,多点校正法,非线性拟合校正法,和低次插值校正法等,基于他们各自的特点,此论文中选用了精度相对比较高的一种:非线性拟合校正法。这种校正方法考虑了光敏单元的非线性响应,使得其校正效果比传统的两点校正算法具有更大的动态范围和更高的精度,同时,每个光敏单元的校正只需要3次乘法和2次

非制冷红外技术及应用

非制冷红外技术及应用 蓝海光学招募:镜头装配主管,镜头销售人员光学人生,你的精彩人生!一、红外热成像技术简介自然界所有温度在绝对零度(-273℃)以上的物体都会发出红外辐射,红外图像传感器则将探测到的红外辐射转变为人眼可见的图像信息。红外成像技术涵盖了红外光学、材料科学、电子学、机械工程技术、集成电路技术、图像处理算法等诸多技术,红外成像装置的核心为红外焦平面探测器。 二、非制冷红外技术概述2.1 非制冷红外技术原理非制冷红外探测器利用红外辐射的热效应,由红外吸收材料将红外辐射能转换成热能,引起敏感元件温度上升。敏感元件的某个物理参数随之发生变化,再通过所设计的某种转换机制转换为电信号或可见光信号,以实现对物体的探测。 非制冷红外焦平面探测器分类2.2 非制冷红外探测器的关 键技术 热释电型红外辐射使材料温度改变,引起材料的自发极化强度变化,在垂直于自发极化方向的两个晶面出现感应电荷。通过测量感应电荷量或电压的大小来探测辐射的强弱。热释电红外探测器与其他探测器不同,它只有在温度升降的过程中才有信号输出,所以利用热释电探测器时红外辐射必须经过调制。探测材料:硫酸三甘肽、钽酸锂、钽铌酸钾、钛(铁

电)酸铅、钛酸锶铅、钽钪酸铅、钛酸钡热电堆由逸出功不同的两种导体材料所组成的闭合回路,当两接触点处的温度不同时,由于温度梯度使得材料内部的载流子向温度低的一端移动,在温度低的一端形成电荷积累,回路中就会产生热电势。(塞贝克效应Seebeck)而这种结构称之为热电偶。一系列的热电偶串联称为热电堆。因而,可以通过测量热电堆两端的电压变化,探测红外辐射的强弱。二极管型利用半导体PN结具有良好的温度特性。与其他类型的非制冷红外探测器不同,这种红外探测器的温度探测单元为单晶或多晶PN结,与CMOS工艺完全兼容,易于单片集成,非常适合大批量生产。热敏电阻型(微测辐射热计)利用热敏电阻的阻值随温度变化来探测辐射的强弱。一般探测器采用悬臂梁结构,光敏元吸收红外热辐射,由读出电路测量热敏材料电阻变化而引起的电流变化,通过读出电路对电信号采集分析并读出。探测器一般采用真空封装以保证绝热性好。探测材料:氧化钒、非晶硅、钛、钇钡铜氧等氧化钒VOx的TCR 一般为2%~3%,特殊方法制备的单晶态VO2和V2O5可达4%。VOx具有电阻温度系数大,噪声小的特点,被广泛用作非制冷式红外焦平面传感器的热敏材料。全球的非制冷红外热像仪市场中,使用VOx非制冷红外探测器的占80%以上。氧化钒VOx的制备方法:溅射法、溶胶-凝胶法、脉冲激光沉积法、蒸发法。读出电路IC技术ROIC对微弱的红

红外焦平面阵列简介

红外焦平面阵列简介 自从赫谢尔利第一次发现了红外辐射以来,人们就开始不断运用各种方法对红外辐射进行检测,并根据红外光的特点而加以应用,相继制成了各种红外探测器。进入20世纪后,红外探测器技术取得了惊人的进展,特别是冷战时期,军备竞赛各方投入巨资进行研究,突破了诸多难题,使红外探测器技术从30年代单一的PbS器件发展到现在的多个品种,从单元器件发展到目前焦平面信号处理的大型红外焦平面阵列。红外焦平面阵列技术作为红外探测技术发展的一个里程碑,正在急速地拓展新的应用领域和市场,渗透到工业监测探测、执法、安全、医疗、遥感、设备等商业用领域,改变了其长期以来主要用于军用领域的状况。 红外焦平面阵列是红外系统及热成像器件的关键部件,是置于红外光学系统焦平面上,可使整个视场内景物的每一个像元与一个敏感元相对应的多元平面阵列红外探测器件,在军事领域得到了广泛应用,拥有巨大的市场潜力和应用前景。目前许多国家,尤其是美国等西方军事发达国家,都花费大量的人力、物力和财力进行此方面的研究与开发,并获得了成功。 下面依次介绍其原工作原理、分类以及读出电路,并简述国内外发展情况以及展望其发展方向。 一、红外焦平面阵列原理 焦平面探测器的焦平面上排列着感光元件阵列,从无限远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,最终送达监视系统形成图像。 二、红外焦平面阵列分类 1、根据制冷方式划分 根据制冷方式,红外焦平面阵列可分为制冷型和非制冷型。制冷型红外焦平面目前主要采用杜瓦瓶快速起动节流致冷器集成体和杜瓦瓶斯特林循环致冷器集成体[5]。由于背景温度与探测温度之间的对比度将决定探测器的理想分辨率,所以为了提高探测仪的精度就必须大幅度的降低背景温度。当前制冷型的探测器其探测率达到~1011cmHz12W-1,而非制冷型的探测器为~109cmHz12W-1,相差为两个数量级。不仅如此,它们的其他性能也有很大的差别,前者的响应速度是微秒级而后者是毫秒级。 2、依照光辐射与物质相互作用原理划分 依此条件,红外探测器可分为光子探测器与热探测器两大类。光子探测器是基于光子与物质相互作用所引起的光电效应为原理的一类探测器,包括光电子发射探测器和半导体光电探测器,其特点是探测灵敏度高、响应速度快、对波长的探测选择性敏感,但光子探测器一般工作在较低的环境温度下,需要致冷器件。热探测器是基于光辐射作用的热效应原理的一类探测器,包括利用温差电效应制成的测辐射热电偶或热电堆,利用物体体电阻对温度的敏感性制成的测辐射热敏电阻探测器和以热电晶体的热释电效应为根据的热释电探测器。这类探测器的共同特点是:无选择性探测(对所有波长光辐射有大致相同的探测灵敏度),但它们多数工作在室温条件下。 3、按照结构形式划分 红外焦平面阵列器件由红外探测器阵列部分和读出电路部分组成。因此,按照结构形式分类,红外焦平面阵列可分为单片式和混成式两种。其中,单片式集成在一个硅衬底上,即读出电路和探测器都使用相同的材料。混成式是指红外探测器和读出电路分别选用两种材料,如红外探测器使用HgCdTe,读出电路使用Si。混成式主要分为倒装式和Z平面式两种。 4、按成像方式划分 红外焦平面阵列分为扫描型和凝视型两种,其区别在于扫描型一般采用时间延迟积分技术,采用串行方式对电信号进行读取;凝视型式则利用了二维形成一张图像,无需延迟积分,

红外热像仪原理、主要参数和应用

红外热像仪原理、主要参数和应用 红外热像仪原理、主要参数和应用 1. 红外线发现与分布 1672年人们发现太阳光(白光)是由各种颜色的光复合而成的。当时,牛顿做出了单色光在性质上比白光跟简单的著名结论。我们用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。1800年英国物理学家赫胥尔从热的观点来研究各色光时,发现了红外线。 红外线的发现标志着人类对自然的又一个飞跃。随着对红外线的的不断探索与研究,已形成红外技术这个专门学科领域。 红外线的波长在0.76--100μM之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。 温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。 2. 红外热像仪的原理 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像仪进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的分布场相对应;实际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩描绘等高线和直方进行运算、打印等。 简而言之,红外热像仪是通过非接触探测红外热量,并将其转换生成热图像和温度值,进而显示在显示器上,并可以对温度值进行计算的一种检测设备。红外热像仪能够将探测到的热量精确量化,能够对发热的故障区域进行准确识别和严格分析。 3. 红外热像仪的主要参数 (1) 工作波段:工作波段是指红外热像仪中所选择的红外探测器的响应波长区域,一般是3~5μm或8~12μm。 (2) 探测器类型:探测器类型是指使用的一种红外器件。如采用单元或多元(元数8、10、16、23、48、55、60、120、180、等),采用硫化铝(PBS)、硒化铅(PnSe)、碲化铟(InSb)、碲镉汞(PbCdTe)、碲锡(PbSnTe)、锗掺杂(Ge:X)和硅掺杂(SI:X)等。 (3) 扫描制式:一般为我国标准电视制式,PAL制式。

红外焦平面阵列简介

红外焦平面阵列简介.doc 红外焦平面阵列简介 自从赫谢尔利第一次发现了红外辐射以来,人们就开始不断运用各种方法对红外辐射进行检测,并根据红外光的特点而加以应用,相继制成了各种红外探测器。进入20世纪后,红外探测器技术取得了惊人的进展,特别是冷战时期,军备竞赛各方投入巨资进行研究,突破了诸多难题,使红外探测器技术从30年代单一的PbS器件发展到现在的多个品种,从单元器件发展到目前焦平面信号处理的大型红外焦平面阵列。红外焦平面阵列技术作为红外探测技术发展的一个里程碑,正在急速地拓展新的应用领域和市场,渗透到工业监测探测、执法、安全、医疗、遥感、设备等商业用领域,改变了其长期以来主要用于军用领域的状况。 红外焦平面阵列是红外系统及热成像器件的关键部件,是置于红外光学系统焦平面上,可使整个视场内景物的每一个像元与一个敏感元相对应的多元平面阵列红外探测器件,在军事领域得到了广泛应用,拥有巨大的市场潜力和应用前景。目前许多国家,尤其是美国等西方军事发达国家,都花费大量的人力、物力和财力进行此方面的研究与开发,并获得了成功。 下面依次介绍其原工作原理、分类以及读出电路,并简述国内外发展情况以及展望其发展方向。 一、红外焦平面阵列原理 焦平面探测器的焦平面上排列着感光元件阵列,从无限远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,最终送达监视系统形成图像。二、红外焦平面阵列分类 1、根据制冷方式划分

根据制冷方式,红外焦平面阵列可分为制冷型和非制冷型。制冷型红外焦平面目前主要采用杜瓦瓶快速起动节流致冷器集成体和杜瓦瓶斯特林循环致冷器集成体[5]。由于背景温度与探测温度之间的对比度将决定探测器的理想分辨率,所以为了提高探测仪的精度就必须大幅度的降低背景温度。当前制冷型的探测器其探测率达到,1011cmHz12W-1,而非制冷型的探测器为,109cmHz12W-1,相差为两个数量级。不仅如此,它们的其他性能也有很大的差别,前者的响应速度是微秒级而后者是毫秒级。 2、依照光辐射与物质相互作用原理划分 依此条件,红外探测器可分为光子探测器与热探测器两大类。光子探测器是基于光子与物质相互作用所引起的光电效应为原理的一类探测器,包括光电子发射探测器和半导体光电探测器,其特点是探测灵敏度高、响应速度快、对波长的探测选择性敏感,但光子探测器一般工作在较低的环境温度下,需要致冷器件。热探测器是基于光辐射作用的热效应原理的一类探测器,包括利用温差电效应制成的测辐射热电偶或热电堆,利用物体体电阻对温度的敏感性制成的测辐射热敏电阻探测器和以热电晶体的热释电效应为根据的热释电探测器。这类探测器的共同特点是:无选择性探测(对所有波长光辐射有大致相同的探测灵敏度),但它们多数工作在室温条件下。 3、按照结构形式划分 红外焦平面阵列器件由红外探测器阵列部分和读出电路部分组成。因此,按照结构形式分类,红外焦平面阵列可分为单片式和混成式两种。其中,单片式集成在一个硅衬底上,即读出电路和探测器都使用相同的材料。混成式是指红外探测器和读出电路分别选用两种材料,如红外探测器使用HgCdTe,读出电路使用Si。混成式主要分为倒装式和Z平面式两种。 4、按成像方式划分

非制冷红外热像仪完整版

非制冷红外热像仪完整 版 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

红外成像阵列与系统 —非制冷红外热像仪简述 2013年11月8日 非制冷红外热像仪简述 摘要:非制冷红外热像仪是目前主流的夜视观察仪器之一,因其较高的可靠性在军事领域的低端应用、民用等方面有广阔的前景。它通过被测物体向外界发出的辐射能量来得到物体对应的温度。本文主要就非制冷红外热像仪的测温原理、发展状况、系统设计及其性能参数做简单的分析及介绍。比较了两种不同情况下的测温公式的优劣并且做出了相关推导,简单介绍了基于FPGA的非制冷红外热像仪的电路系统和通用型非制冷红外热像仪的性能参数及其一般测定方法。对以后的红外热成像系统的学习起到了一定帮助。 关键字:非制冷红外热像仪;测温原理;发展状况;系统设计;性能参数 The brief description of uncooled infrared thermal imager Yu Chun-kai, Wang Hui-ting, Qi Xiao-yun, Xu Jian Abstract: Currently, uncooled infrared thermal imager is one kind of mainstream devices on night vision. Because of its high reliability, uncooled infrared thermal imager has a broad prospect of application in military and civil field. It gains temperature of the detected object by the infrared radiation the object emits. This paper simply analyses and introduces temperature measuring principle, development status, system design and performance parameter on uncooled infrared thermal imager. We compared two different temperature measuring formulae in their respective situations and did the relevant derivation. We also introduced the circuit system which based on FPGA in uncooled infrared thermal imager and the performance parameter of general uncooled infrared thermal imager. This paper provides us much promotion about the future study of infrared thermal imaging system.

红外热成像基本原理概论

红外热成像仪基本原理与发展前景概论 光电1201 王知权 120150111 前言 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。 原理 红外线是一种电磁波,具有与无线电波和可见光一样的本质。红外线的发现是人类对自然认识的一次飞跃。利用某种特殊的电子装置将物体表面的温度分布转换成人眼可见的图像,并以不同颜色显示物体表面温度分布的技术称之为红外热成像技术,这种电子装置称为红外热像仪。 这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光图像相比,缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热分布场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实标校正,伪色彩描绘等高线和直方进行数学运算、打印等。 红外成像系统简介 红外技术是一门研究红外辐射的产生、传播、转化、测量及其应用的技术科学。任何物体的红外辐射包括介于可见光与微波之间的电磁波段。通常人们又把红外辐射称为红外光、红外线。实际上其波段是指其波长约在0.75μm到1000μm 的电磁波。通常人们将其划分为近、中、远红外三部分。近红外指波长为 0.75-3.0μm;中红外指波长为3.0-20μm;远红外则指波长为20-1000μm。由于大气对红外辐射的吸收,只留下三个重要的“窗口”区,即1-3μm、3-5μm 和8-13μm可让红外辐射通过。 红外探测器是红外技术的核心,它是利用红外辐射与物质相互作用所呈现出来的物理效应来探测红外辐射的传感器,多数情况下是利用这种相互最用所呈现出的电学效应。红外探测器主要分为光子探测器和热敏感探测器两大类型。其中,光子探测器按原理啊可分为光电导探测器、光伏探测器、光电磁探测器和量子阱探测器。 光子探测器的材料有PbS,PbSe,InSb,HgCdTe(MCT),GaAs/InGaAs等,其中HgCdTe和InSb斗需要在低温下才能工作。光子探测器按其工作温度又可分为制

红外热成像智能视觉监控系统

红外热成像智能视觉监控系统 “红外热成像智能视觉监控系统”是我司采用国内国际先进厂商监控设备并进行二次开发的“智能监控管理系统”。包括“红外热成像防火图像监控系统”、“嵌入式智能视觉分析安保系统”及“防感应雷系统”三部分。 该系统具有热成像防火检测、防盗入侵检测、非法停车检测、遗弃物检测、物品搬移检测、自动PTZ跟踪、徘徊检测等功能模块,可以很好为场区周界防范提供各种监控管理需求。而且产品具有自学习自适应能力,即使是在各种极端恶劣的环境和照明条件下也可以保持极高的性能——在保持%超高检测率的同时,只有极低的误报率(少于1个/天)。 防火检测: 通过红外热成像防火图像监控系统,工作人员在监控中心可对监控点周边半径1公里至5公里或更大的区域(设置动态轮循状态)进行24小时实时动态系统监控,能在第一时间侦察到地表火情或烟雾,并及时触发联动报警。帮助尽早发现灾情或隐患,及时处理可能突发的火灾及其他异常事件,并且为灾情发生时现场指挥提供依据。 防盗检测: 基于嵌入式智能视觉分析技术的监控跟踪系统,具有入侵检测和自动PTZ跟踪功能模块。支持无人值守、自动检测、报警触发录像、短信自动外发报警等功能。 车辆监控: 支持车容车貌监控、场区路线、远程实时WEB监控、监控录像、视频

存储、回放查询等功能。满足中心或其他相关单位对车辆运输的监控管理。防雷系统: 考虑到野外环境下系统运行的稳定性,防止外界强电压、大电流浪涌串入系统,损坏系统的设备,造成系统不能正常运行,我们将从视频信号、RS485控制信号、网络信号、电源四个方面做好防雷保护措施,以保证系统较好的抗干扰性。 系统拓扑图: 技术说明详解: ◆前端热成像仪技术详述 1)红外成像原理 自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。红外热像仪就是利用红外探测器、光学成像物镜接收被测目标的红外辐射信号(一切物体,只要其温度高于绝对零度,就会有红外辐射),经过红外光学系统红外探测器的光敏源上利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。利用这种原理制成的仪器为红外热成像仪。下图为一个典型的红外热成像系统工作原理图: 红外热成像系统,产生的图像是热图像,这种热像图与物体表面的热分布场相对应,实质上是被测目标物体各部分红外辐射的热像分布图,由于信

氧化钒非制冷红外焦平面探测器芯片工艺研究

〈材料与器件〉 氧化钒非制冷红外焦平面探测器芯片工艺研究 袁 俊,太云见,雷晓虹,何雯瑾,陈 妞 (昆明物理研究所,云南昆明,650223) 摘要:非制冷红外探测器具有成本低廉、无需制冷等优异特点,在红外探测和红外成像领域占有极其重要的地位。从氧化钒非制冷焦平面探测器的牺牲层、支撑层、氧化钒等制备工艺进行了研究,为国内非制冷焦平面探测器工程化研究奠定了坚实的技术基础。 关键字:非制冷;红外焦平面;氧化钒;工艺 中图分类号:TN215 文献标识码:A 文章编号:1001-8891(2009)01-0001-04 Research on Fabrication of VO x UFPA Detectors YUAN Jun,TAI Yun-jian,LEI Xiao-hong,HE Wen-jing,CHENG Niu (Kunming Institute of Physics, Kunming Yunnan 650223, China) Abstract:High performance and inexpensive VO x infrared detectors play an important role in the field of thermal detection and imaging of objects, because of the advantages of high sensitivity at long-wavelength and room-temperature operation without cooling system. This paper focused on fabrication of sacrificial layers, supporting layers, vanadium oxides film, and so on, which is technology foundation for domestic uncooled infrared focal plane array. Key words:uncooled;infrared focal plane array;VO x film;sacrificial layers 引言 非制冷焦平面探测器按工作模式可分为3种类型:微测辐射热计(Microbolometer)、热释电型和热电堆。按结构可分为单片式和混成式,单片式非制冷焦平面探测器是在读出电路上用热隔离臂支撑悬空(即微桥结构)的红外探测敏感元列阵;而混成式非制冷焦平面探测器则是分别制作焦平面敏感元列阵和CMOS信号读出电路,最后采用铟柱倒装焊技术将二者组装在一起的红外焦平面列阵。与混成技术相比,单片式结构可消除伪边缘、晕圈和频闪等效应,其列阵邻近像元之间的完全隔离几乎消除了串音、图像拖影和模糊现象,因此,单片式的非制冷焦平面探测器较之混成式焦平面探测器具有潜在的性能优势[1]。 目前广泛使用的单片式非制冷焦平面探测器是微测辐射热计,所使用的热敏电阻材料主要是氧化钒、非晶硅和多元复合氧化物薄膜,并且以氧化钒(VO x)薄膜和非晶硅薄膜为热敏材料的焦平面探测器在国外已投入大批量的生产,而国内目前仍处于实验室阶段,产品更是空白。为此本文将展开对单片式红外焦平面探测器芯片工艺研究。 1 研究方案 320×240 VO x非制冷焦平面探测器组件由读出电路、微桥结构列阵、VO x薄膜材料、封装组成。其中VO x薄膜的作用是将红外辐射转变成电信号;微桥结构将在其上的VO x薄膜悬空起来,其极小的热容量和热导保证探测元有足够高的热灵敏度;读出电路将每个探测元的信号读出,变空间分布的电信号为时序信号,以便于实现凝视热成像,同时作为微桥结构的支撑衬底[2, 4]。为此我们采用了如图1的工艺流程对氧化钒非制冷焦平面探测器芯片展开了研究。 2 研制过程 2.1牺牲层制备

制冷式与非制冷式红外热像仪 菲力尔FLIR

科学/研发应用红外热像仪堪称功能强大的无创性工具。借助一款此类红外热像仪,你可以在设计阶段及早发现问题,以便在发展成更为严重且维修代价高昂的故障之前,将其记录在案并予以纠正。 应用于研发环境的红外热像仪 红外热像仪会接收无法被人眼所察觉热辐射,并将其转化为描绘某个目标物或场景中热量变化的图像。所有温度高于绝对零度的物体均会放射热能,热能由某些波段的电磁波谱辐射出来,而且辐射量会随着温度的上升而增加。FLIR 红外热像仪可用于实时捕获和记录热分布和热变化,有助于工程师和研究人员看清并精确测量设备、产品和工艺过程中的发热方式、热耗散、热泄漏以及其他温度因素。其中部分红外热像仪可区分细微至0.02?C 的温 度变化。它们均搭载了先进的探测技术和高级数学算法,以实现高性能,以及在-80?C 至+3000?C 之间精确测温。研发用红外热像仪系列整合了极高的成像性能和精确的测温功能,并配备强大的分析报告工具和软件,从而造就其成为范围广泛的研究、热试验和产品验证应用的理想之选。制冷式和非制冷式红外热像仪 研发/科学应用的红外热像仪系统拥有大量选择。因此,我们经常听到这样的问题:“我应该使用制冷式还是非制冷式红外热像仪系统? 哪种系统更具有成本效益?”事实上,如今市场上售有两种类型的红外热像仪系统:制冷式和非制冷式系统。这两种类型的系统的组件成本大相径庭,因而决定选择哪种系统则变得极 为重要。 多年来,科学家、研究人员和研发专家热衷于将红外热像仪运用于广泛的应用领域中,包括工业研发、学术研究、无损检测(NDT)和材料检测,以及国防与航空航天等。但是,并非所有打造的红外热像仪均具有同等的品质功能,或者可用于一些专门的应用。譬如,如要获得精确的测量值,则需要配备高速定格动画功能的先进红外热像仪。 制冷式与非制冷式红外热像仪 配备制冷式探测器的红外热像仪可在快速移动活动中产生清晰的热图像。 FLIR A6700sc 是一款配备制冷锑化铟 (InSb) 探测器的紧凑型红外热像仪,价格极为经济实惠。 FLIR T650sc 非制冷式研发用红外热像仪具有较高的分辨率。高分辨率的图像可获得精确结果和可靠的测温 精确度。 世界第六感

红外热成像测温系统

今年测体温是一件很重要的事情,为了简化人们的工作,热成像测温系统应运而生。不仅可以实现24小时不间断检测,还能在人的体温超过37.3时提醒工作人员,下面就来给大家详细介绍一下。 红外测温系统可实现24小时不间断监测,最多可同时动态捕捉20人进行测温,提高了体温检测的效率;红外测温系统监测范围广、准确率高、灵敏度高,实时显示过往人员体温,检测到体温超过37.3℃的人员及时报警,待二轮确认后采取后续措施;该系统可存储15天内的体温检测数据,实现了测温与人员可追溯。 热成像体温筛查解决方案结合生物识别技术、热成像测温技术、视频智能分析等技术手段,利用红外非接触式体温检测,实现快速体温筛查,助力疫情监控及响应机制的可靠执行。通过将黑体设置在热成像视野范围内,利用黑体的特性开展测温标定,进行测量温度实时校正,将视频画面和个人体温对应显示,大幅度提高人体测温的测温精度,测温误差到±0.3℃。一切物体只要其温度高于绝

对零度(-273 ℃)都能辐射电磁波。热成像技术主要采集热红外波段(8μm -14μm )的光,来探测物体发出的热辐射。 热成像体温筛查是指通过热像仪(非接触式)初步对人体表面温度进行检测,找出温度异常的个体,发现温度异常的目标之后,再进行专业的体温测量的方案。在学校、医院、机场、车站、海关、工厂、社区等各类出入口及人流量集中的公共场所,可以实现对人员出入进行快速体温筛查。 热成像人体测温的方案具有如下优势: 1、免接触:利用红外非接触式体温检测,降低交叉感染风险、节省成本投入。 2、测温准:在30℃~45℃测量范围内,检测精度可达±0.3℃(加黑体) 3、效率高:可在较远距离、大面积实现快速多人同时体温检测筛查、实现自动预警机制,做到早发现、早隔离、早治疗,有效控制传染源。 4、适应强:可适用于“临时改建、扩建及新建”的医院出入口、门诊通道、临时通道等多种场景,能够快速搭建,立即投入使用,高效便捷。 5、可追溯:结合视频智能分析平台,方案支持历史数据回溯、数据分析等功能,为追溯疑似患者、亲密接触人员提供了视频数据支持,让未确诊的密切接触者及时隔离,为减少病毒传播扩散、遏制疫情蔓延提供了有力保障。 成都慧翼科技是一家专业销售监控系统、热成像系统、智慧课堂系统等产品的公司,有需要的朋友可以了解一下。

俄罗斯非制冷微测辐射热计红外热成像系统的发展状况

〈综述与评论〉 俄罗斯非制冷微测辐射热计红外热成像系统的发展状况 吴 铮,陆剑鸣,白丕绩,田 萦 (昆明物理研究所,云南昆明 650223) 摘要:简单介绍了俄罗斯在非制冷微测辐射热计红外热成像系统领域的基本状况,“旋风”中央科学技术研究所完全能代表俄罗斯在该领域的发展水平,详细介绍了该研究所开发的多款非制冷微测辐射热计红外热成像系统,最后分析了俄罗斯在非制冷微测辐射热计红外热成像系统领域的发展特点。 关键词:俄罗斯;“旋风”中央科学技术研究所;微测辐射热计;非制冷红外热成像系统 中图分类号:TN216 文献标识码:A 文章编号:1001-8891(2011)08-0443-07 Development Status of Uncooled Thermal Imaging System Based on Microbolometers in Russia WU Zheng,LU Jian-ming,BAI Pi-ji,TIAN Ying (Kunming Institute of Physics, Kunming 650223, China) Abstract:Basic status of uncooled thermal imaging system based on microbolometers in Russia is introduced simply. The Cyclone Central Institute of Science and technology represents the Russia’s developmental level in the field. A variety of uncooled infrared thermal imaging systems based on microbolometers developed by the institute are introduced. At last, the features of Russia developments in the field are analyzed. Key words:Russia,cyclone Central Institute of Science and technology,microbolometer,uncooled infrared thermal imaging system 引言 与制冷型红外热成像系统相比,非制冷红外热成像系统的主要优点是:无需制冷,功耗小,系统更轻便,造价更低廉等。非制冷红外热成像系统在军事和民用领域广为使用,具有极为广阔的市场前景。目前世界各国除了大力发展制冷式红外热成像系统外,也在不遗余力地发展非制冷红外热成像系统。 非制冷红外热成像系统一般采用微测辐射热计红外焦平面探测器和热释电红外焦平面探测器两种类型,它们各有优缺点,从目前世界上非制冷红外热成像系统的发展和装备状况来看,两者的装备量都很大,各自的应用前景都很广阔[1,2]。 与采用热释电红外焦平面探测器的非制冷红外热成像系统相比较,微测辐射热计红外热成像系统的优势在于不需要机械调制器就能工作(而热释电红外焦平面探测器则需要调制器),从而使整个系统功耗较低;此外,在突破了与硅平面工艺的兼容性后,微测辐射热计焦平面探测器具有极高的性价比;同时,微测辐射热计在8~12μm波段里具有较高的灵敏度,这对开发多通道系统来说具有极大的潜力。 采用大规模探测阵列的非制冷凝视型微测辐射热计红外热成像系统于上个世纪90年代开始研制开发,目前已经达到了工业量产化水平阶段。目前微测辐射热计红外焦平面探测器一般采用氧化钒(VO x)或多晶硅、非晶硅两种材料[3]。 作为世界军事强国之一的俄罗斯,除了大力发展各种制冷式红外热成像系统外,也在不断发展包括微测辐射热计焦平面在内的非制冷红外热成像系统,并取得了显著成效。 1 俄罗斯非制冷微测辐射热计红外热成像系 统的基本状况 按照前苏联的专业分工,在俄罗斯的非制冷红外

红外热成像系统在航空领域的应用有哪些

红外热成像系统在航空领域的应用有哪些 如今,红外热成像系统可用于武器、弹药、导弹和飞行器的研发中。红外热成像系统所提供的信息便于研究人员使用热光谱描绘目标物体,从而用于目标识别,防御措施部署和多光谱伪装研究。红外热成像系统在航空领域的应用有哪些? 1.跟踪 喷气式飞机热像仪系统通过提高低光照或雾霾条件下的可视度,弥补了视频追踪系统的不足,使跟踪系统能够发现目标,并持续更新目标的方位、范围和高度。 2.红外特性 直升飞机的热特性红外特性指的是目标的波长作用反应出来的表观红外亮度,它会在各种不同的距离和大气环境中让传感器获得物体的外观。红外特性对于车辆、传感器和伪装系统的设计是非常有价值的工具。 3.技术监视和对抗措施

屋顶的秘密监控设备红外成像技术可用于识别秘密监控设备的热特性。即便是隐藏在目标内部的设备也能在其释放红外能量的一瞬间被检测出来。 4.激光指示 短波红外线激光标识激光指示器会发射出一束激光能量,用于标记特定的地点或目标,通常用于精确制导武器。近红外(NIR)热像仪能够检测到这些正常情况下无法看见的激光束,用于标识研究和目标确认。 5.无损检测技术 现代无损检测技术可以简单地分为两类:表面无损检测与近表面无损检测。表面无损检测技术是一项用于检测产品表面缺陷的技术,如荧光渗透检测,它能有效定位存在于表面中的裂纹或其它类型的缺陷。 近表面无损检测技术则用于检测表面之下的缺陷。包括超声检测和射线检测等方法。 ①荧光渗透检测是一项应用于航空航天领域的常规表面无损检测技术。FPI 通常做法是首先在工件表面涂上一层紫外光照射发光的涂料,接着对表面进行清洗,这样表面上任何多余的荧光剂都会被去除,而渗进表面缺陷里的则会被保存

非制冷焦平面探测器品牌推荐

非制冷红外焦平面探测器由许多MEMS微桥结构的像元在焦平面上二维重复排列构成,每个像元对特定入射角的热辐射进行测量: a):红外辐射被像元中的红外吸收层吸收后引起温度变化,进而使非晶硅热敏电阻的阻值变化; b):非晶硅热敏电阻通过MEMS绝热微桥支撑在硅衬底上方,并通过支撑结构与制作在硅衬底上的COMS独处电路相连; c):CMOS电路将热敏电阻阻值变化转变为差分电流并进行积分放大,经采样后得到红外热图像中单个像元的灰度值。 为了提高探测器的响应率和灵敏度,要求探测器像元微桥具有良好的热绝缘性,同时为保证红外成像的帧频,需使像元的热容尽量小以保证足够小的热时间常数。利用细长的微悬臂梁支撑以提高绝热性能,热敏材料制作在桥面上,桥面尽量轻、薄以减小热质量。在衬底制作反射层,与桥面之间形成谐振腔,提高红外吸收效率。像元微桥通过悬臂梁的两端与衬底内的CMOS读出电路连接。所以,非制冷红外焦平面探测器是CMOS-MEMS单体集成的大阵列器件。

应用领域 非制冷红外探测器在军事和商用领域具有非常广泛的应用: (a)军事领域 军事领域应用包括武器热观瞄(TWS)、便携式视觉增强、车载视觉增强(DVE)、远程武器站(RWS)、无人机(UAV)、无人驾驶地面车辆、观察指挥车、火控和制导等。 (b)热像测温领域 热像测温用于预防性检测,例如对电力输电线路、发电设备、机械设备等通过红外热像仪检测异常发热区域,可以预防重大停机以及事故的发生。在建筑方面,用于检测房屋的隔热效果、墙壁外立面、空鼓、渗水和霉变等。其它的领域还包括产品研发、电子制造、医学测温和制程控制等 (c)商用视觉增强领域 商用视觉增强的主要应用包括消防营救、安防监控、车载、船载的红外视觉增强等。主要是利用红外成像无需外界光源、较强的穿透烟雾的能力、作用距离远、成像对比度强等优势,对人眼视觉进行有效的补充。

非制冷红外热像仪完整版

红外成像阵列与系统 —非制冷红外热像仪简述

2013年11月8日 非制冷红外热像仪简述 摘要:非制冷红外热像仪是目前主流的夜视观察仪器之一,因其较高的可靠性在军事领域的低端应用、民用等方面有广阔的前景。它通过被测物体向外界发出的辐射能量来得到物体对应的温度。本文主要就非制冷红外热像仪的测温原理、发展状况、系统设计及其性能参数做简单的分析及介绍。比较了两种不同情况下的测温公式的优劣并且做出了相关推导,简单介绍了基于FPGA的非制冷红外热像仪的电路系统和通用型非制冷红外热像仪的性能参数及其一般测定方法。对以后的红外热成像系统的学习起到了一定帮助。 关键字:非制冷红外热像仪;测温原理;发展状况;系统设计;性能参数

The brief description of uncooled infrared thermal imager Yu Chun-kai, Wang Hui-ting, Qi Xiao-yun, Xu Jian Abstract: Currently, uncooled infrared thermal imager is one kind of mainstream devices on night vision. Because of its high reliability, uncooled infrared thermal imager has a broad prospect of application in military and civil field. It gains temperature of the detected object by the infrared radiation the object emits. This paper simply analyses and introduces temperature measuring principle, development status, system design and performance parameter on uncooled infrared thermal imager. We compared two different temperature measuring formulae in their respective situations and did the relevant derivation. We also introduced the circuit system which based on FPGA in uncooled infrared thermal imager and the performance parameter of general uncooled infrared thermal imager. This paper provides us much promotion about the future study of infrared thermal imaging system. Key words: uncooled infrared thermal imager; temperature measuring principle; development status; system design; performance parameter

相关主题
文本预览
相关文档 最新文档