当前位置:文档之家› 高中数学空间立体几何讲义

高中数学空间立体几何讲义

高中数学空间立体几何讲义
高中数学空间立体几何讲义

第1讲 空间几何体

高考《考试大纲》的要求:

① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.

② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.

③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.

④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲:

例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( )

A .

6π B .3

π

C .32π

D .65π

例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( )

A .π2

B .π2

3

C .π332

D .π2

1

例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角

是 .

例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积.

(1)求V (x )的表达式;

(2)当x 为何值时,V (x )取得最大值?

(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。

(二)基础训练:

1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )

A .①②

B .①③

C .①④

D .②④

2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0

75东经0120,则甲、乙两地球面距离为( )

(A )3R (B) 6

R π

(C)

56

R π

(D) 23R π

①正方形 ②圆锥 ③三棱台 ④正四棱锥

C

3

.若一个底面边长为

2

的正六棱柱的所有顶点都在一个球的面上,则此球的体积为 .

4. 已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =,那么,A B 两点的球面距离为___________,球心到平面ABC 的距离为________ 5.如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,

侧面PAD 为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD.

(三)巩固练习:

1.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是( )

(A )π3 (B )π33 (C )π6 (D )π9

2、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )

A .16π

B .20π

C .24π

D .32π

3.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( ) A.34 B.45 C.35 D.-35 4.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2

π

,则球心O 到平面ABC 的距离为( )

(A )

31 (B )3

3 (C )32 (D

)36 5.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为(

A .

3 B .13π C

.2

3

π D .3

6.已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于________

7.请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如图所示)。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大?

O

8. 如图,已知平行六面体ABCD-1111D C B A 的底面ABCD 是菱形,且 CB C 1∠=BCD CD C ∠=∠=1。 (I )证明:C C 1⊥BD ; (II )当

1

CC CD

的值为多少时,能使⊥C A 1平面BD C 1?请给出证明。

第2讲 空间直线和平面

高考《考试大纲》的要求:

①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内. ◆公理2:过不在同一条直线上的三点,有且只有一个平面.

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. ◆公理4:平行于同一条直线的两条直线互相平行.

◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.

②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定. 理解以下判定定理:

◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. ◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. ◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. ◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明:

◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行. ◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行. ◆垂直于同一个平面的两条直线平行.

◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. ③ 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题. (一)例题选讲:

例1.如图,在正四棱柱 1111ABCD A B C D -中,E 、F 分别是11AB C 、B 的中点,则以下结论中不成立的是( )

A .1EF B

B 与垂直 B. EF BD 与垂直

C. EF 与CD 异面

D. EF 11与A C 异面

例2.如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角

分别为π4和π

6,过A 、B 分别作两平面交线的垂线,垂足为A ′、B ′,

则AB ∶A ′B ′=( )

(A )2∶1 (B )3∶1 (C )3∶2 (D )4∶3

例3.在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2

,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直,则

α β

A

B A ′

B ′

例4.在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=22, M 、N 分别为AB 、SB 的中点。 (Ⅰ)证明:AC ⊥SB ;

(Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面CMN 的距离.

(二)基础训练:

1.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:

①//,m n m n αα⊥?⊥ ②//,,//m n m n αβαβ???

③//,////m n m n αα? ④//,//,m n m n αβαβ⊥?⊥ 其中正确命题的序号是( )

A .①③

B .②④

C .①④

D .②③

2.已知P 为平面a 外一点,直线l ?a,点Q ∈l ,记点P 到平面a 的距离为a,点P 到直线l 的距离为b ,点P 、Q 之间的距离为c ,则( ) (A) c b a ≤≤ (B)c b a ≤≤ (C) b c a ≤≤ (D)a c b ≤≤

3、给出以下四个命题: ①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,

②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ③如果两条直线都平行于一个平面,那么这两条直线互相平行,

④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 其中真命题的个数是( ) A.4 B. 3 C. 2 D. 1 4、下列命题中,正确的是 ( )

A .经过不同的三点有且只有一个平面

B .分别在两个平面内的两条直线一定是异面直线

C .垂直于同一个平面的两条直线是平行直线

D .垂直于同一个平面的两个平面平行

5.已知点O 在二面角α-AB -β的棱上,点P 在α内,且∠POB =45°.若对于β内异于0的任意一点Q ,都有∠POQ ≥45°,则二面角α-AB -β的大小是__________.

6.已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α?m ;④βα⊥;⑤βα//. (i )当满足条件 时,有β//m ;

(ii )当满足条件 时,有β⊥m .(填所选条件的序号)

7.三棱锥P —ABC 中,侧面PAC 与底面ABC 垂直,PA=PB=PC=3.

(1) 求证AB ⊥BC ;

(2) 如果AB=BC=32,求侧面PBC 与侧面PAC 所成二面角的大小.

(三)巩固练习:

1.若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题...

是( ) P C

A

B

A .若m βαβ?⊥,,则m α⊥

B .若m β⊥,m α∥,则αβ⊥

C .若αγ⊥,αβ⊥,则βγ⊥

D .若m αγ=I

,n βγ=I ,m n ∥,则αβ∥

2.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( )

A .若a b ,与α所成的角相等,则a b ∥

B .若a α∥,b β∥,αβ∥,则a b ∥

C .若a α?,b β?,a b ∥,则αβ∥

D .若a α⊥,b β⊥,αβ⊥,则a b ⊥ 3.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( )

A .5部分 B.6部分 C.7部分 D.8部分

4.给出下列四个命题: ①垂直于同一直线的两条直线互相平行.

②垂直于同一平面的两个平面互相平行. ③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假.命题的个数是( ) (A)1 (B)2 (C)3 (D)4

5.设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( )

A .βαβα⊥?⊥?

⊥n m n m ,, B .n m n m ⊥?⊥βαβα//,,//

C .n m n m ⊥?⊥⊥βαβα//,,

D .ββαβα⊥?⊥=⊥n m n m ,,I

6.在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是( ) (A )BC//平面PDF (B )DF ⊥平面PA E (C )平面PDF ⊥平面ABC (D )平面PAE ⊥平面 ABC

7.设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是( )

(A) l m l ⊥=?⊥,,βαβα (B) γβγαγα⊥⊥=?,,m (C) αγβγα⊥⊥⊥m ,,

(D) αβα⊥⊥

⊥m n n ,,

8.对于不重合的两个平面βα与,给定下列条件:

①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平等于γ;

③存在直线α?l ,直线β?m ,使得m l //; ④存在异面直线l 、m ,使得.//,//,//,//βαβαm m l l 其中,可以判定α与β平行的条件有( ) A .1个 B .2个 C .3个 D .4个

9.设P 是60o 的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,

4,2,PA PB ==则AB 的长为:( )

A D 10. 已知直线、m ,平面、

,且

,给出下列四个命题。 (1)若

; (2)

;

(3)若,则; (4)若

其中正确命题的个数是( )

A. 1个

B. 2个

C. 3个

D. 4个

11.已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题: ①若//,,,m n αβαβ??则//m n ②若,,//,//,m n m n αββ?则//αβ

③若,,//m n m n αβ⊥⊥,则//αβ ④m 、n 是两条异面直线,若//,//,//,//,m m n n αβαβ则//αβ 上面命题中,真命题的序号是____________(写出所有真命的序号)

12.在直三棱柱ABC —A 1B 1C 1中,AB=BC=2,BB 1=2,ο

90=∠ABC ,E 、F 分别为AA 1、C 1B 1的中点,沿

棱柱的表面从E 到F 两点的最短路径的长度为 .

13.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是: ①两条平行

直线 ②两条互相垂直的直线 ③同一条直线 ④一条直线及其外一点

在上面结论中,正确结论的编号是 (写出所有正确结论的编号).

14.已知平面α和平面β交于直线l ,P 是空间一点,PA ⊥α,垂足为A ,PB ⊥β,垂足为B ,且PA=1,

PB=2,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l 的距离为 。

15.在空间中,①若四点不共面,则这四点中任何三点都不共线.②若两条直线没有共点,则这两条直

线是异面直线.以上两个命题中,逆命题为真命题的是 .(把符合要求的命题序号都填上) 16.如图,已知四棱锥 P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°. (I )求点P 到平面ABCD 的距离;

(II )求面APB 与面CPB 所成二面角的大小

第3讲 空间向量与立体几何

高考《考试大纲》的要求: (1)空间向量及其运算

①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示. ② 掌握空间向量的线性运算及其坐标表示.

③ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.

(2)空间向量的应用

① 理解直线的方向向量与平面的法向量.

② 能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系. ③ 能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).

④ 能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在

研究几何问题中的作用. (一)基础知识回顾:

1.向量的数量积:已知非零向量,b a r r ,则b |||b |cos ,b a a a ?=?<>r u r r r r r

叫做b a r r 与的数量积。

2.两向量夹角的求法:112233222222

123123

b

cos ,b |||b |a a a a a a b b b ?<>=?++?++r r

r r r r ,立体几何中有关夹角的

问题,一般用此式解决

3. a ⊥b ?112233r r

(可证明两直线垂直)

4.已知两点A(x 1,y 1,z 1),B(x 2,y 2,z 2),则向量)z z ,y y ,x x (121212---=, 线段AB 的中点M 的坐标是???

??+++2z z ,2y y ,2

x x 212121,

A,B 两点间的距离是212212212)z z ()y y ()x x (|AB |-+-+-=

5.若)z ,y ,x (),z ,y ,x (222111==,则121212a b x x y y z z ?=++r r

.

6.用空间向量解决立体几何问题的“三部曲”:

(1)化为向量问题:建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面; (2)进行向量运算:通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角问题; (3)回到向量问题:把向量的运算结果“翻译”成相应的几何意义。

7.设A α?,B α∈,平面α的法向量是n ,直线AB 与平面α所成的角是θ,则|,cos |sin ><=θ

二面角l αβ--的平面角cos ||||m n arc m n θ?=u r r u r r 或cos ||||

m n arc m n π?-u r r u r r (m u r ,n r 为平面α,β的法向量) 8.设A α?,B α∈,平面α的法向量是n ,点A 到平面α的距离|AB n |

d |AB |cos AB,n |n |

?=<>=u u u r r

u u u r u u u r r r 异面直线间的距离 : ||

||

CD n d n ?=u u u r u u r

r (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).

(二)例题选讲:

例1.如图,在Rt AOB △中,π

6

OAB ∠=,斜边4AB =.Rt AOC △可以

通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.

(I )求证:平面COD ⊥平面AOB ;

(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小; (III )求CD 与平面AOB 所成角的最大值.

例2.如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点。 (1)求证:AB 1⊥面A 1BD ;

(2)求二面角A -A 1D -B 的大小; (3)求点C 到平面A 1BD 的距离。

(三)基础训练:

1.如图5所示,AF 、DE 分别世O e 、1O e 的直径,AD 与两圆所在的平面均垂直,8AD =.BC 是O e 的直径,6AB AC ==,//OE AD .

(I)求二面角B AD F --的大小; (II)求直线BD 与EF 所成的角.

O C

A

D

B

2.如图,α⊥β,α∩β=l , A∈α, B∈β,点A在直线l上的射影为A1, 点B在l的射影为B1,已知

AB=2,AA1=1, BB1=2, 求:

(Ⅰ) 直线AB分别与平面α,β所成角的大小;

(Ⅱ)二面角A1-AB-B1的大小.

(四)巩固练习:

1.如图,在直四棱柱

1111

ABCD A B C D

-中,已知

1

22

DC DD AD AB

===,AD DC

⊥,AB DC

∥.(Ⅰ)设E是DC的中点,求证:1D E∥平面11

A BD;

(Ⅱ)求二面角

11

A BD C

--的余弦值.

2.如图,已知长方体

1111

ABCD A B C D

-,

1

2,1

AB AA

==,直线BD与平面

11

AA B B所成的角为0

30,AE垂直BD于,E F为

11

A B的中点.

(Ⅰ)求异面直线AE与BF所成的角;

(Ⅱ)求平面BDF与平面1

AA B所成二面角(锐角)

的大小;

(Ⅲ)求点A到平面BDF的距离。

B

C

D

A

1

A

1

D

1

1

B

E

图5

A

C

F

D E

O

1

O

A1D

1

F

D

A

3、如图,在三棱锥A -BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD =3,BD =CD =1,另一个侧面是正三角形

(1)求证:AD ⊥BC (2)求二面角B -AC -D 的大小

(3)在直线AC 上是否存在一点E ,使ED 与面BCD 成30?角?若存在,确定E 的位置;若不存在,说明

理由。

典型问题分析

一、求二面角的方法

例1. 如图,在底面为直角梯形的四棱锥,//,BC AD ABCD P 中-,90?=∠ABC 平面⊥PA ABCD ,

32,2,3===AB AD PA ,BC =6. 求二面角A BD P --的大

小.

例2.如图,四棱锥P ABCD -中,底面ABCD 为矩形,

PA ⊥底面ABCD ,2PA AB ==,点E 是棱PB 的中点.若1AD =,求二面角B EC D --的平面角的余弦值.

A

B

D

例3.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F 。 (1)证明PB ⊥平面EFD ;

(2)求二面角C —PB —D 的大小。

A

B

D C

E

F

P

二、求直线与平面所成的角、以及点到平面的距离的方法

例4.如图,已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=1

AB=2,N 为AB 上一点,AB=4AN,

M,S 分别为PB,BC 的中点.

(Ⅰ)求SN 与平面CMN 所成角的大小; (Ⅱ)求点S 到平面CMN 的距离.

例5.如图,己知四棱锥P-ABCD 的底面为等腰梯形,AB ∥

CD,AC ⊥BD 垂足为H,PH 是四棱锥的高,E 为AD 中点.若APB ∠=ADB ∠=60°,求直线PA 与平面PEH 所成

角的正弦值.

例6.如图,已知点P在正方体ABCD-A1B1C1D1的对角线BD1上,∠PDA=60°。

(1)求DP与CC1所成角的大小;

(2)求DP与平面AA1D1D所成角的大小。

例7、如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。

(1) 求证:PC⊥BC;

(2) 求点A到平面PBC的距离。

例8.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F。

(1)证明PA//平面EDB;

B

1

C

1

D

1

A

1

C

D

P

(2)证明PB⊥平面EFD;

(3)求二面角C—PB—D的大小。

高中数学选修2-1《空间向量与立体几何》知识点讲义

第三章 空间向量与立体几何 一、坐标运算 ()()111222,,,,,a x y z b x y z == ()()()()121212121212 11112121 2,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=?=???则 二、共线向量定理 (),0,=.a b b a b a b λλ≠←??→?充要对于使 三、共面向量定理 ,,.a b p a b x y p x a y b ←??→?=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←???→+=充要条件四、对空间任意一点,若则三点共线 ,1.P A B C O OP xOA yOB zOC P A B C x y z =++←??→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点 ()()()11, 1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性 、、、四点共面, ,,, 令()()() 1, 1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理 {} ,,a b c p x y z p xa yb zc a b c a b c ?若,,不共面,对于任意,使=++,称,,做空间的一个基底,, ,都叫做基向量.

高中数学空间几何专题练习(供参考)

一、选择题 1、下图(1)所示的圆锥的俯视图为 ( ) 2 3 + 为 ( ) C 、120; 。 3、边长为a 正四面体的表面积是 ( ) A 、34; B 、312a ; C 、24 a ; D 2。 4、对于直线:360l x y -+=的截距,下列说法正确的是 ( ) A 、在y 轴上的截距是6; B 、在x 轴上的截距是6; C 、在x 轴上的截距是3; D 、在y 轴上的截距是3-。 5、已知,a b αα?//,则直线a 与直线b 的位置关系是 ( ) A 、平行; B 、相交或异面; C 、异面; D 、平行或异面。 6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为A 、12-; B 、12 ; C 、2-; D 、2。 7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。 若AC BD a ==,且AC 与BD 所成的角为60,则四边形EFGH 的面积为 ( ) A 2; B 2a ; C 2; D 2。 8、在右图的正方体中,M 、N 分别为棱BC 和棱CC 1的中点, 则异面直线AC 和MN 所成的角为( ) A .30° B .45° C .90° D . 60° 9、下列叙述中错误的是 ( ) A 、若P αβ∈且l αβ=,则P l ∈; B 、三点,,A B C 确定一个平面; C 、若直线a b A =,则直线a 与b 能够确定一个平面; 图(1) 1 A

D 、若,A l B l ∈∈且,A B αα∈∈,则l α?。 10、两条不平行的直线,其平行投影不可能是 ( ) A 、两条平行直线; B 、一点和一条直线; C 、两条相交直线; D 、两个点。 11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( ) A 、25π; B 、50π; C 、125π; D 、都不对。 12、给出下列命题 ①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 二、填空题 13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为 ; 14.一个圆柱和一个圆锥的底面直径.. 和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为 . 15、过点(1 16、已知,a b (1) a b αβ////,,则a b //; (2) ,a b γγ⊥⊥,则a b //; (3) ,a b b α?//,则a α//; (4) ,a b a α⊥⊥,则b α//; M

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

最新人教A版高中数学必修2空间立体几何知识点归纳

第一章 空间几何体知识点归纳 1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 1、空间几何体的三视图和直观图 投影:中心投影 平行投影 (1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。 (2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形. 3、斜二测画法的基本步骤: ①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使''' x O y ∠=450(或1350 ),注意它们确定的平面表示水平平面; ③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘ 轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘ 轴,且长度变为原来的一半; ⑴圆柱侧面积;l r S ??=π2侧面⑵圆锥侧面积:l r S ??=π侧面 ⑶圆台侧面积:()S r R l π=+侧面 ⑷体积公式: h S V ?=柱体;h S V ?=31锥体; ()1 3 V h S S =下 台体上 ⑸球的表面积和体积:

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

高中数学竞赛_立体几何【讲义】

第十二章立体几何 一、基础知识 公理1 一条直线。上如果有两个不同的点在平面。内.则这条直线在这个平面内,记作:a?a. 公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。 公理3 过不在同一条直线上的三个点有且只有一个平面。即不共线的三点确定一个平面. 推论l 直线与直线外一点确定一个平面. 推论2 两条相交直线确定一个平面. 推论3 两条平行直线确定一个平面. 公理4 在空间内,平行于同一直线的两条直线平行. 定义 1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离. 定义 2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外. 定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直. 定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直. 定理2 两条直线垂直于同一个平面,则这两条直线平行. 定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直. 定理 4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离. 定义 5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角. 结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角. 定理4 (三垂线定理)若d为平面。的一条斜线,b为它在平面a内的射影,c为平面a内的一条直线,若c⊥b,则c⊥a.逆定理:若c⊥a,则c⊥b. 定理5 直线d是平面a外一条直线,若它与平面内一条直线b平行,则它与平面a平行 定理6 若直线。与平面α平行,平面β经过直线a且与平面a交于直线6,则a//b. 结论2 若直线。与平面α和平面β都平行,且平面α与平面β相交于b,则a//b. 定理7 (等角定理)如果一个角的两边和另一个角的两边分别平行且方向相同,则两个角相等. 定义6 平面与平面的位置关系有两种:平行或相交.没有公共点即平行,否则即相交. 定理8 平面a内有两条相交直线a,b都与平面β平行,则α//β. 定理9 平面α与平面β平行,平面γ∩α=a,γ∩β=b,则a//b. 定义7 (二面角),经过同一条直线m的两个半平面α,β(包括直线m,称为二面角的棱)所组成的图形叫二面角,记作α—m—β,也可记为A—m一B,α—AB—β等.过棱上任意一点P在两个半平面内分别作棱的垂线AP,BP,则∠APB(≤900)叫做二面角的平面角. 它的取值范围是[0,π]. 特别地,若∠APB=900,则称为直二面角,此时平面与平面的位置关系称为垂直,即α⊥β. 定理10 如果一个平面经过另一个平面的垂线,则这两个平面垂直. 定理11 如果两个平面垂直,过第一个平面内的一点作另一个平面的垂线在第一个平面内. 定理12 如果两个平面垂直,过第一个子面内的一点作交线的垂线与另一个平面垂直. 定义8 有两个面互相平行而其余的面都是平行四边形,并且每相邻两个平行四边形的公共边(称为侧棱)

高中数学立体几何专题证明题训练

A P B C F E D 立体几何专题训练 1.在四棱锥P -ABCD 中,PA =PB .底面ABCD 是菱形, 且∠ ABC =60°.E 在棱PD 上,满足DE =2PE ,M 是AB 的中点. (1)求证:平面PAB ⊥平面PMC ; (2)求证:直线PB ∥平面EMC . 2.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相 等, D 、 E 分别是CC 1和AB 1的中点,点 F 在BC 上且满 足BF ∶FC =1∶3. (1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC 。 3.如图,在长方体1111ABCD A B C D -中,,E P 分别是 11,BC A D 的中点,M 、N 分别是1,AE CD 的中点,1,2AD AA a AB a === (1)求证://MN 面11ADD A (2)求三棱锥P DEN -的体积 4如图1,等腰梯形ABCD 中,AD ∠ο 60⊥⊥⊥ 4a 2a (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. 6如图,等腰梯形ABEF 中,//AB EF ,AB =2, 1AD AF ==,AF BF ⊥,O 为AB 的中点,矩形ABCD 所在的平面和平面ABEF 互相垂直. (Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ; (Ⅲ)求三棱锥C BEF -的体积. 7在直三棱柱111C B A ABC -中,,900=∠ABC E 、F 分别为 11A C 、11B C 的中点,D 为棱1CC 上任一点. (Ⅰ)求证:直线EF ∥平面ABD ;(Ⅱ)求证:平面ABD ⊥平面11BCC B 8已知正六棱柱111111ABCDEF A B C D E F -的所有棱长均为2,G 为 AF 的中点。 (1)求证:1F G ∥平面11BB E E ; (2)求证:平面1F AE ⊥平面11DEE D ; D A B C P E M A B D C E A B C D E P F A B C D E F M O C 1 A B C D E F A 1 B 1

高中数学必修2空间立体几何大题

必修2空间立体几何大题 一.解答题(共18小题) 1.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点. (1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积. 2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P﹣ABC的体积; (2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值. 3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点, (Ⅰ)证明:平面AEF⊥平面B1BCC1; (Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.

5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E. 求证: (1)DE∥平面AA1C1C;(2)BC1⊥AB1. 6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4, 点F在线段AB上,且EF∥BC. (Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长. 7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1, (Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO; (Ⅱ)求三棱锥P﹣ABC体积的最大值; 8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED; (Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

空间立体几何讲义全

①规定长度为0的向量为零向量,记作0; ②模为1的向量叫做单位向量; 3.相等的向量:两个模相等且方向相同的向量称为相等的向量. 4.负向量:两个模相等且方向相反的向量是互为负向量.如a的相反向量记为-a. 5.共线与共面向量 (1)共线向量:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作a∕∕b. (2)共面向量:平行于同一平面的向量叫做共面向量. (3)定理 共线向量定理:对于空间任意两个向量b (b≠ 、的充要条件是存在实数λ,使得.b ),0 a// a b = aλ共面向量定理:如果两个向量b、a不共线,则向量p与向量b、a共面的充要条件是存在唯一的有序史书对(x,y),使得p.b y = a x+ 6.注意: ①零向量的方向是任意的,规定0与任何向量平行; ②单位向量不一定相等,但单位向量的模一定相等且为1; ③方向相同且模相等的向量称为相等向量,因此,在空间,同向且等长的有向线段表示同一向量或相等向量; ④空间任意两个向量都可以通过平移成为共面向量; ⑤一般来说,向量不能比较大小.

二、空间向量的运算 1、加减法 (1)空间任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加减法.空间向量和平面向量一样满足三角形法则和平行四边形法则. (2)加法运算律: 空间向量的加法满足交换律及结合律. 交换律: 结合律: (3)推广 *首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量: *首尾相接的若干向量若构成一个封闭图形,则它们的和为:零向量 2.空间向量的数乘运算 (1)实数λ与空间向量a的乘积λa仍是一个向量,称为向量的数乘运算. ①当λ>0时,λa与a的方向相同; ②当λ<0时,λa与a的方向相反; ③当λ=0时,λa=0. ④|λa|=|λ|a?,λa的长度是a的长度的|λ|倍.

高中数学空间向量与立体几何经典题型与答案

空间向量与立体几何经典题型与答案 1 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90ο 底面ABCD ,且 1 2 PA AD DC === ,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小 证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为 1 (0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2 A B C D P M (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=?==所以故 由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 又DC 在面 PCD 上,故面PAD ⊥面PCD (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC . 510 | |||,cos ,2,5||,2||=??>=<=?==PB AC PB AC PB AC PB AC PB AC 所以故 (Ⅲ)解:在MC 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ= ..2 1 ,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC 要使14 ,00,.25 AN MC AN MC x z λ⊥=-==u u u r u u u u r g 只需即解得 ),5 2 ,1,51(),52,1,51(,. 0),5 2 ,1,51(,54=?-===?=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λ ANB MC BN MC AN MC BN MC AN ∠⊥⊥=?=?所以得由.,0,0为 所求二面角的平面角 30304||,||,. 555 2 cos(,).3||||2 arccos(). 3 AN BN AN BN AN BN AN BN AN BN ===-∴==-?-u u u r u u u r u u u r u u u r Q g u u u r u u u r u u u r u u u r g u u u r u u u r 故所求的二面角为

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 棱柱的分类 棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成图1-2 长方体

的角分别是α、β、γ,那么: cos2α + cos2β + cos2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶ 长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S直棱柱侧面 = c·h (c为底面周长,h为棱柱的高) S直棱柱全 = c·h+ 2S底 V棱柱 = S底·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线 为旋转轴,其余各边旋转而形成的曲面所围成 的几何体叫圆柱。 图1-3 圆柱 2-2 圆柱的性质 ⑴上、下底及平行于底面的截面都是等圆; ⑵过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2-4 圆柱的面积和体积公式 S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高) S圆柱全= 2π r h + 2π r2 V圆柱 = S底h = πr2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴棱锥:有一个面是多边形,其余各面是 有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。

利用空间向量立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为222212121()()()PQ x x y y z z =-+-+- 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量(),n A B =上的射影PQ n n ?= 0022 Ax By C A B +++ 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异 面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO = 3 2BE =332332= ?. 例1题图 例2题图 例3题图

高中数学立体几何讲义

平面与空间直线 (Ⅰ)、平面的基本性质及其推论 图形 符号语言 文字语言(读法) A a A a ∈ 点A 在直线a 上。 A a A a ? 点A 不在直线a 上。 A α A α∈ 点A 在平面α内。 A α A α? 点A 不在平面α内。 b a A a b A =I 直线a 、b 交于A 点。 a α a α? 直线a 在平面α内。 a α a α=?I 直线a 与平面α无公共点。 a A α a A α=I 直线a 与平面α交于点A 。 l αβ=I 平面α、β相交于直线l 。 2、平面的基本性质 公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式:A AB B ααα∈? ??∈? ?。 如图示: 应用:是判定直线是否在平面内的依据,也是检验平面的方法。 B A α

公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推理模式: A l A ααββ∈? ?=?∈? I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上。 例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面 α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD , ∴AB ,CD 确定一个平面β. 又∵AB I α=E ,AB ?β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线. 说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论. 例2.如图,已知平面α,β,且αI β=l .设梯形ABCD 中,AD ∥BC ,且AB ?α,CD ?β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB I CD =M . 又∵AB ?α,CD ?β,∴M ∈α,且M ∈β.∴M ∈αI β. 又∵αI β=l ,∴M ∈l , 即AB ,CD ,l 共点. 说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 公理3: 经过不在同一条直线上的三点,有且只有一个平面。 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈。 应用:①确定平面;②证明两个平面重合 。 例3.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , α D C B A E F H G α D C B A l 例2 β M

(完整版)高中数学空间几何体知识点总结

空间几何体知识点总结 一、空间几何体的结构特征 1.柱、锥、台、球的结构特征 由若干个平面多边形围成的几何体称之为多面体。围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。 (1)柱 棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱…… 注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: 棱柱的性质: ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴

叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形。 棱柱与圆柱统称为柱体; (2)锥 棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。 底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥…… 正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 注:棱锥的性质: ①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ②正棱锥各侧棱相等,各侧面是全等的等腰三角形; ③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。 圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

相关主题
文本预览
相关文档 最新文档