当前位置:文档之家› 复变函数教案1.2

复变函数教案1.2

复变函数教案1.2
复变函数教案1.2

第一章 复数与复变函数

教学课题:第二节 复平面上的点集

教学目的:1、理解关于平面点集的几个基本概念;

2、理解区域与约当曲线这两个重要概念;

3、了解约当定理和区域的连通性。

教学重点:平面点集的几个基本概念

教学难点:区域与约当曲线

教学方法:启发式教学

教学手段:多媒体与板书相结合

教材分析:理解关于平面点集的几个基本概念、掌握区域与约当曲线这两个重要概念、了解约当定理和区域的单连通和多连通,对于学好该门课程具有重要的作用。

教学过程:

1、平面点集的几个基本概念:

定义1.1 设),0(, +∞∈∈r C a ,a 的r -邻域),(r a U 定义为

},,|| |{C z r a z z ∈<-

称集

},,|| |{C z r a z z ∈≤-

为以a 为中心,r 为半径的闭圆盘,记为),(r a U 。

定义1.2设C a C E ∈?,,

若E r a U r ?>?),(,0中有无穷个点,则称a 为E 的极限点;

若0>?r ,使得E r a U ?),(,则称a 为E 的内点;

若E r a U r ?>?),(,0中既有属于E 的点,又有不属于E 的点,则称a 为E 的边界点;

集E 的全部边界点所组成的集合称为E 的边界,记为E ?;

E E ??称为E 的闭包,记为E ;

若0>?r ,使得}{),(a E r a U =?,则称a 为E 的孤立点(是边界点但不是聚

点);

定义1.3 开集:所有点为内点的集合;

闭集E :或者没有聚点,或者所有聚点都属于E ;则任何集合E 的闭包E 一定是闭集;

定义1.4如果0>?r ,使得),0(r U E ?,则称E 是有界集,否则称E 是无界集;

复平面上的有界闭集称为紧集。

例1、圆盘),(r a U 是有界开集;闭圆盘),(r a U 是有界闭集;

例2、集合}|||{r a z z =-是以a 为心,半径为r 的圆周,它是圆盘),(r a U 和闭圆盘),(r a U 的边界。

例3、复平面、实轴、虚轴是无界集,复平面是无界开集。

例4、集合}||0|{r a z z E <-<=是去掉圆心的圆盘。圆心E a ?∈,它是E ?的孤立点,是集合E 的聚点。

无穷远点的邻域:0>?r ,集合},|||{∞∈>C z r z z 称为无穷远点的一个邻域。类似地有,聚点、内点、边界点与孤立点,开集、闭集等概念。

∞C 我们也称为C 的一点紧化。

2、区域、约当(Jordan )曲线:

定义1.5复平面C 上的集合D ,如果满足:

(1)、D 是开集;

(2)、D 中任意两点可以用有限条相衔接的线段所构成的折线连起来,而使这条折线上的点完全属于D 。

则称D 是一个区域。

结合前面的定义,有有界区域、无界区域。

性质(2)我们称为连通性,即区域是连通的开集。

区域D 内及其边界上全部点所组成的集称为闭区域。

扩充复平面∞C 上不含无穷远点的区域的定义同上;含无穷远点的区域是C

上的一个区域与无穷远点的一个邻域的并集。

设已给

)(),(b t a t z z ≤≤=

如果)(Re t z 和)(Im t z 都在闭区间],[b a 上连续,则称集合]},[|)({b a t t z ∈为一条连续曲线。

如果对],[b a 上任意不同两点1t 及2t ,但不同时是],[b a 的端点,我们有)()(21t z t z ≠,那么上述集合称为一条简单连续曲线,或约当曲线。若还有)()(b z a z =,则称为一条简单连续闭曲线,或约当闭曲线。

约当定理:任意一条约当闭曲线把整个复平面分成两个没有公共点的区域:一个有界的称为内区域,一个无界的称为外区域。

光滑曲线:如果)(Re t z 和)(Im t z 都在闭区间],[b a 上连续,且有连续的导函数,在],[b a 上,0)('≠t z 则称集合]},[|)({b a t t z ∈为一条光滑曲线;类似地,可以定义分段光滑曲线。

设D 是一个区域,在复平面C 上,如果D 内任何简单闭曲线的内区域中每一点都属于D ,则称D 是单连通区域,否则称D 是多连通区域。

∞C 中区域的连通性:如果D 内任何简单闭曲线的内区域或外区域中每一点都属于D ,则称D 是单连通区域,否则称D 是多连通区域。

例1、 集合}0)1()1(|{>++-z i z i z 为半平面,它是一个单连通无界区域,其边

界为直线

0)1()1(=++-z i z i

即0=+y x 。

例2、 集合}3Re 2|{<

为直线2Re =z 及3Re =z 。

例3、 集合}3)arg(2|{<-

半射线

2)arg(=-i z 及3)arg(=-i z 。

例4、 集合}3||2|{<-

圆2||=-i z 及3||=-i z 。

例5、 在∞C 上,集合}||2|{+∞≤

无界区域,其边界分别为}2|{|=z 及}{}2|{|∞?=z 。

定义1.6设连续弧AB 的参数方程为)(),(βα<<=t t z z

任取实数列{}βα=<<<<=-n n n t t t t t 110:

并且考虑AB 弧上对应的点列:

)3,2,1(),(n i t z z i i ==

将它们用以折线n Q 连接起来,n Q 的长度

∑=--=n

i i i n t z t z I 11)()(

如果对于所有的数列,上述都有界,责成AB 弧为可求长的。上确界n I L sup =称为AB 弧的长度。

定义1.7 设简单(或简单闭)曲线C 的参数方程为

),(),()(βα≤≤+=t t iy t x z

又在βα≤≤t 上,)(),(t y t x ''存在、连续且不全为零,则C 称为光滑(闭)曲线。 定义1.8 有有限条光滑曲线衔接而成的连续曲线成为逐段光滑曲线。 特别,简单折线是逐段光滑曲线。

定理(约当定理)任意简单闭曲线C 将平面z 惟一地分成C 、I (C )、 E (C )三个电集,它们具有如下性质:

(1)、彼此不交;

(2)、I (C )是一个有界区域(称为C 的内部);

(3)、E (C )是一个无界区域(称为C 的外部);

(4)、若简单折线P 的端点属于I (C ),另一个端点属于E (C ),则P 必与C

相交。

沿着一条简单闭曲线C有两个相反的方向,其中一个方向是: 当观察者顺次方向沿C前进一周时,C的内部一直在C的左边,即“逆时针”方向,成为正方向;另一个方向是: 当观察者顺次方向沿C前进一周时,C的外部一直在C的左边,即“顺时针”方向,成为负方向。

定义1.9 设D 为复平面上的区域,若在D内无论怎样划简单闭曲线,其内部仍全含于D,则称D为单连通区域。否则,称为多连通区域。

复变函数教案1.2

第一章 复数与复变函数 教学课题:第二节 复平面上的点集 教学目的:1、理解关于平面点集的几个基本概念; 2、理解区域与约当曲线这两个重要概念; 3、了解约当定理和区域的连通性。 教学重点:平面点集的几个基本概念 教学难点:区域与约当曲线 教学方法:启发式教学 教学手段:多媒体与板书相结合 教材分析:理解关于平面点集的几个基本概念、掌握区域与约当曲线这两个重要概念、了解约当定理和区域的单连通和多连通,对于学好该门课程具有重要的作用。 教学过程: 1、平面点集的几个基本概念: 定义1.1 设),0(, +∞∈∈r C a ,a 的r -邻域),(r a U 定义为 },,|| |{C z r a z z ∈<- 称集 },,|| |{C z r a z z ∈≤- 为以a 为中心,r 为半径的闭圆盘,记为),(r a U 。 定义1.2设C a C E ∈?,, 若E r a U r ?>?),(,0中有无穷个点,则称a 为E 的极限点; 若0>?r ,使得E r a U ?),(,则称a 为E 的内点; 若E r a U r ?>?),(,0中既有属于E 的点,又有不属于E 的点,则称a 为E 的边界点; 集E 的全部边界点所组成的集合称为E 的边界,记为E ?; E E ??称为E 的闭包,记为E ; 若0>?r ,使得}{),(a E r a U =?,则称a 为E 的孤立点(是边界点但不是聚

点); 定义1.3 开集:所有点为内点的集合; 闭集E :或者没有聚点,或者所有聚点都属于E ;则任何集合E 的闭包E 一定是闭集; 定义1.4如果0>?r ,使得),0(r U E ?,则称E 是有界集,否则称E 是无界集; 复平面上的有界闭集称为紧集。 例1、圆盘),(r a U 是有界开集;闭圆盘),(r a U 是有界闭集; 例2、集合}|||{r a z z =-是以a 为心,半径为r 的圆周,它是圆盘),(r a U 和闭圆盘),(r a U 的边界。 例3、复平面、实轴、虚轴是无界集,复平面是无界开集。 例4、集合}||0|{r a z z E <-<=是去掉圆心的圆盘。圆心E a ?∈,它是E ?的孤立点,是集合E 的聚点。 无穷远点的邻域:0>?r ,集合},|||{∞∈>C z r z z 称为无穷远点的一个邻域。类似地有,聚点、内点、边界点与孤立点,开集、闭集等概念。 ∞C 我们也称为C 的一点紧化。 2、区域、约当(Jordan )曲线: 定义1.5复平面C 上的集合D ,如果满足: (1)、D 是开集; (2)、D 中任意两点可以用有限条相衔接的线段所构成的折线连起来,而使这条折线上的点完全属于D 。 则称D 是一个区域。 结合前面的定义,有有界区域、无界区域。 性质(2)我们称为连通性,即区域是连通的开集。 区域D 内及其边界上全部点所组成的集称为闭区域。 扩充复平面∞C 上不含无穷远点的区域的定义同上;含无穷远点的区域是C

复变函数论第三版课后习题答案 2

第一章习题解答 (一) 1 .设z =z 及Arcz 。 解:由于3i z e π -== 所以1z =,2,0,1, 3 Arcz k k ππ=-+=±。 2 .设121z z =,试用指数形式表示12z z 及12 z z 。 解:由于6412,2i i z e z i e ππ -==== 所以()6 46 4 12 12222i i i i z z e e e e π πππ π --=== 54()14612 26 11222i i i i z e e e z e πππππ +-===。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+====。 4.证明2 2 21212122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212122Re()z z z z z z +=++ 2 2 2 12 12122Re()z z z z z z -=+- 所以2 2 21212 122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。证明z 1,z 2,z 3是内 接于单位圆 1 =z 的一个正三角形的顶点。 证 由于1 321 ===z z z ,知 321z z z ?的三个顶点均在单位圆上。 因为 3 33 31z z z == ()[]()[]212322112121z z z z z z z z z z z z +++=+-+-= 21212z z z z ++= 所以, 1212 1-=+z z z z , 又 ) ())((1221221121212 21z z z z z z z z z z z z z z +-+=--=- ()322121=+-=z z z z

(完整版)《复变函数》教学大纲

《复变函数》教学大纲 说明 1.本大纲适用数学与应用数学本科教学 2.学科性质: 复变函数论是成人高等师范数学专业基础课程之一,它在微分方程、概率论、力学等学科中都有应用,复变函数论方法是工程、科技的常用方法之一。复变函数论主要研究解析函数。解析函数定义的几种等价形式,表现了解析函数这一概念在不同方面的特性。复变函数论的基本理论以柯西定理为主要定理,柯西公式为重要公式,留数基本定理是柯西定理的推广。保形映照是复变函数几何理论的基本概念。;留数理论和保形映照也为实际应用提供了特有的复变函数论方法。 3.教学目的: 复变函数论是微积分学在复数域上的推广和发展,通过复变函数论的学习能使学生对微积分学的某些内容加深理解,提高认识。复变函数论在联系和指导中学数学教学方面也有重要的作用,学生通过复变函数论的学习对中学数学的某些知识有比较透彻的理解与认识,从而增加做好中学数学教育工作的能力。 4.教学基本要求: 通过本课程的学习,要求学生达到: 1.握基本概念和基本理论; 2.熟练的引进基本计算(复数、判断可导性及解析性、复积分、函数 的展式、孤立奇点的判断、留数的计算及应用、求线性映照及简单映 照等); 2.固和加深理解微积分学的有关知识。 5.教学时数分配: 本课程共讲授72学时(包括习题课),学时分配如下表: 教学时数分配表

以上是二年制脱产数学本科的教学时数。函授面授学时不低于脱产的40%,可安排28~30学时。 教学内容 第一章复数与复变函数 复变函数的自变量和因变量都是复数,因此,复数和平面点集是研究复变函数的基础。复变函数及其极限理论与微积分学的相应内容类似,但因复变函数是研究平面上的问题,因此有其新的含义与特点。 (一)教学内容

第二章 复变函数

第二章 复变函数 第一节 解析函数的概念及C.-R.方程 1、导数、解析函数 定义2.1:设()w f z =是在区域D 内确定的单值函数,并且0z D ∈。如果极限 00,0 ()()lim z z z D f z f z z z →∈-- 存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0'()f z ,或0 z z dw dz =。 定义2.2:如果()f z 在0z 及0z 的某个邻域内处处可导,则称()f z 在0z 处解析;如果()f z 在区域D 内处处解析,则我们称()f z 在D 内解析,也称()f z 是D 的解析函数。解析函数的导(函)数一般记为'()f z 或d ()d f z z 。 注解1、εδ-语言,如果任给0ε>,可以找到一个与ε有关的正数()0δδε=>,使得当z E ∈,并且0||z z δ-<时, 00 ()()||f z f z a z z ε--<-,则称)(z f 在0z 处可导。 注解2、解析性与连续性:在一个点的可导的函数必然是这个点的连续函数;反之不一定成立; 注解3、解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念; 注解4、函数在一个点解析,是指在这个点的某个邻域内解析,因此

在此点可导;反之,在一个点的可导性不能得到在这个点解析。 解析函数的四则运算: ()f z 和()g z 在区域D 内解析,那么()()f z g z ±,()()f z g z ,()/()f z g z (分母不为零)也在区域D 内解析,并且有下面的导数的四则运算法则: (()())''()'()[()()]''()()()'() f z g z f z g z f z g z f z g z f z g z ±=±=+ 2()'()()()'() ()[()]'f z f z g z f z g z g z g z -??=??。 复合求导法则:设()f z ζ=在z 平面上的区域D 内解析,()w F ζ=在ζ平面上的区域1D 内解析,而且当z D ∈时,1()f z D ζ=∈,那么复合函数[()]w F f z =在D 内解析,并且有 d [()]d ()d ()d d d F f z F f z z z ζζ= 求导的例子: (1)、如果()f z a ≡(常数),那么d ()0d f z z =; (2)、d 1d z z =,1d d n n z nz z -=; (3)、z 的任何多项式 01()...n n P z a a z a z =+++ 在整个复平面解析,并且有 112'()2...n n P z a a z na z -=+++

复变函数第二章学习方法导学

第二章 解析函数 解析函数是复变函数论研究的中心和主要对象,它是一类具有某种特性的可微(可导)函数,并在理论和实际问题中有着广泛的应用. 本章,我们首先介绍复变函数的极限与连续,并从复变函数的导数概念出发,引入解析函数,导出复变函数可导和解析的主要条件——柯西—黎曼条件,并给出判断函数可导和解析的一类充分必要条件(它是用复变函数的实部和虚部两个二元实函数所具有的微分性质来表达的充要条件);其次,介绍几类基本初等解析函数,这些函数实际上是数学分析中大家所熟知的初等函数在复数域上的推广,并研究它们的有关性质. 一、基本要求 1.掌握复变函数的极限和连续的概念,能对照数学分析中极限和连续的性质,平行地写出复变函数的极限与连续的相应性质(比如极限和连续的四则运算性、极限和连续的局部不等性(由于复数没有大小的规定,因此,此性质是与局部保号性相对应的性质)、极限与连续的局部有界性、极限存在的柯西准则、极限的归结原则和复合函数的连续性等),并能熟练地运用四则运算性和复合函数的连续性求函数的极限或判断函数的连续性. 2.熟练掌握复变函数的极限和连续与其实部、虚部两个二元实函数的极限和连续的等价关系,能利用这种关系借助二元实函数的极限或连续简洁地求复变函数的极限或讨论复变函数的连续性;能利用这种关系借助有界闭集上二元连续函数的整体性质简洁地证明有界闭集上复变连续函数的整体性质(比如:有界性,最大模和最小模的存在性,一致连续性).另外,关于对具体函数的一致连续性的讨论,大家还要掌握利用下面的结论来判断函数不一致连续的有效方法,结论如下: 复变函数()f z 在点集E ?£上一致连续?对任意两个点列n z ,n z 'E ∈,只要0()n n z z n '-→→∞,总有()()0()n n f z f z n '-→→∞.

复变函数教案12.doc

第一章复数与复变函数 教学课题:第二节复平面上的点集 教学目的:1、理解关于平而点集的儿个基本概念; 2、理解区域勾约当曲线这W个重要概念; 3、了解约当定理和区域的连通性。 教学重点:平血点集的几个基木概念 教学难点:区域与约当曲线 教学方法:启发忒教学 教学手段:多媒体与板15相结合教材分析:理解关于〒面点集的儿个基本概念、掌握区域与约当llh线这两个重要概念、了解约当定理和区域的单连通和多连通,对于学好该门课程具有重要的作用。 教学过程: 1、平面点集的几个基本概念: 定义1.1 设6/ e C,r G (0,+oo), tz 的r-邻域[/(fz,r)定义为 {z\\z-a\< r,zeC}, 称集 {z\\z-a\

若3/、〉0,使得= 则称6/为£的孤立点(是边界点但不是聚 点); 定义1.3开集:所冇点为内点的集合; 闭集或者没冇聚点,或者所冇聚点都展于£;则任何集合£的闭包互一定是闭集; 定义1.4如果3r〉0,使得£c=t/(O,r),则称£是有界集,否则称£是无界 集; 复平面上的宥界闭集称为紧集。 例1、岡盘[/(^,r)是有界开集;闭闢盘fGz,r)是宥界闭集; 例2、集合{z||z-0,集合Mz|〉r,zeCJ称为无穷远点的一个邻域。类似地有,聚点、内点、边界点与孤立点,开集、闭集等概念。 C;我们也称为C的一点紧化。 2、区域、约当(Jordan)曲线: 定义1.5复平面C上的集合£>,如果满足: (1)、是幵集; (2)、Z)中任意两点可以用宥限条相衔接的线段所构成的折线连起来,而使这条折线上的点完全属于£>。 则称Z)是一个区域。 结合前面的定义,有有界区域、无界区域。 性质(2)我们称为连通性,即区域是连通的丌集。 区域Z)内及其边界上全部点所组成的集称为闭区域。 扩充复平面C、上不含无穷远点的区域的定义同上;含无穷远点的区域是C 上的一个区域与无

复变函数论作业及答案

习题1 第一章 复数与复变函数 1.12z = =求|z|,Argz 解:123212 2 =??? ? ??+??? ??=z Argz=arctan 212-+2k π=23k π π+-, ,2,1,0±±=k 2.已知2 11i z += ,=2z i -3,试用指数形式表示2 1 21z z z z 及 解:2 11i z += i e 4 π = =2z i -3i e 6 2π -= 所以21z z =i e 6 2π -i e 4 πi e 12 2π - = 2 1z z i i i i e e e e 125)64(64 21212π π ππ π ===+- 3. 解二项方程440z a += )0(>a 解 由440z a +=得44z a =- 则二次方程的根为 k w a = (k=0,1,2,3) =24k i e a ππ+? (k=0,1,2,3) 0w =4 i e a π? =234 4 1(1)2 i i a w e a e a i ππ π+?===-+

54 2(1)2i a w e a i π==-- 74 3(1)2 i a w e a i π==- 4 .设1z 、2z 是两个复数,求证: ),Re(2||||||212221221z z z z z z -+=- 证明:()() 21212 21z z z z z z --=- () 2 12 22 121212 2211 2212 221Re 2z z z z z z z z z z z z z z z z -+=--+=---= 5. 设123z ,z ,z 三点适合条件: 1230z z z ++=及1231z z z === 试证明123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点。 证明:设111z x iy =+,222z x iy =+,333z x iy =+ 因为1230z z z ++= ∴1230x x x ++=,1230y y y ++= ∴123x x x =--,123y y y =-- 又因为1231z z z === ∴三点123z ,z ,z 在单位圆周上,且有222222112233x y x y x y +=+=+ 而()()2 2 22112323x y x x y y +=+=+ ()()2 223231x x y y ∴+++= ()232321x x y y ∴+=- 同理=+)(22121y y x x ()()131********x x y y x x y y +=+=- 可知()()()()()()2 2 2 2 2 2 121223231313x x y y x x y y x x y y -+-=-+-=-+-

复变函数第二章习题答案精编版.doc

第二章解析函数 1-6 题中: (1)只要不满足 C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导u x, u y, v x, v y,只要一阶偏导存在且连续,同时满足C-R 条件。 (3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。 (4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。 解析函数求导: f ( z) u x iv x 4、若函数f ( z)在区域 D上解析,并满足下列的条件,证明 f ( z) 必为常数。 (1)f z 0 z D 证明:因为 f ( z) 在区域上解析,所以。 令 f (z) u( x, y) iv ( x, y) ,即 u v , u v f (z) u i v 0 。 x y y x x y 由复数相等的定义得:u v u v x y 0, 0 。 y x 所以, u( x, y) C1(常数),v( x, y) C2(常数),即 f (z) C1 iC2为 常数。 5、证明函数在z 平面上解析,并求出其导数。 (1) e x ( xcos y y sin y) ie x ( y cos y x sin y).

证明:设 f z u x, y iv x, y = e x ( x cos y y sin y) ie x ( y cos y xsin y). 则 u , y x ( x cos y y sin y ) , v x, y x x e e ( y cos y x sin y) u e x ( x cos y ysin y) e x cos y v e x cos y y sin ye x x cos ye x x ; y u e x ( x sin y sin y y cos y) ; v e x ( y cos y x sin y sin y) y x 满足 u v , u v 。 x y y x 即函数在 z 平面上 ( x, y) 可微且满足 C-R 条件,故函数在 z 平面上 解析。 f (z) u i v e x (x cos y y sin y cos y) ie x ( y cos y x sin y sin y) x x 8、(1)由已知条件求解析函数 f ( z) u iv u x 2 y 2 xy f (i ) 1 i 。 , , 解: u x 2x y, u y 2 y x 由于函数解析,根据 C-R 条件得 u x v y 2x y 于是 y 2 v 2xy (x) 2 其中 ( x) 是 x 的待定函数,再由 C —R 条件的另一个方程得 v x 2y ( x) u y 2y x , x 2 所以 (x) x ,即 (x) c 。 2 于是 v y 2 x 2 c 2xy 2 2 又因为 f (i ) 1 i ,所以当 x 0, y 1 ,时 u 1 1 1 , v c 1得 c 2 2

复变函数教案3.3

第三章 教学课题:第三节 柯西积分公式及其推论 教学目的:1、充分掌握柯西积分公式以及其解析函数的平均值定理; 2、了解柯西高阶导数分公式; 3、切实掌握解析函数的无穷可微性; 4、理解柯西不等式、刘威尔定理及解析函数的一些等价刻画。 教学重点:柯西积分公式; 教学难点:柯西不等式、刘威尔定理及解析函数的一些等价刻画 教学方法:启发式 教学手段:多媒体与板书相结合 教材分析:柯西积分公式是解析函数的积分表达式,可以帮助我们详细地去研究解析函数的局部性质。柯西不等式是对解析函数各阶导数模的估计式。 教学过程: 1、柯西积分公式: 定理3.11设f (z )在以圆)0(|:|000+∞<<=-ρρz z C 为边界的闭圆盘上连续,C 的内部D 上解析,则有 其中,沿曲线C 的积分是按反时针方向取的,这就是柯西积分公式。它是解析函数的积分表达式,因而是今后我们研究解析函数的重要工具。 证明:设D z ∈,显然函数在z f -ζζ)(满足z D ≠∈ζζ,的点ζ处解析。 以到z 为心,作一个包含在D 内的圆盘,设其半径为ρ,边界为圆ρC 。在D 上,挖去以ρC 为边界的圆盘,余下的点集是一个闭区域ρD 。在ρD 上,ζ的函数)(ζf 以及z f -ζζ)(解析,所以有 其中,沿曲线C 的积分是按关于D 的正向取的,沿ρC 的积分是按反时针方向取的。因此,结论成立。 说明:f(z)沿C 的积分为零。考虑积分 则有:(1)被积函数在C 上连续,积分I 必然存在;

(2)在上述闭圆盘上0 )(z z z f -不解析,I 的值不一定为0,例如i I z f π21)(=≡时,; 现在考虑f (z )为一般解析函数的情况。作以为 0z 心,以)0(0ρρρ<<为半径的圆ρC ,由柯西定理,得 因此,I 的值只f (z )与在点 0z 附近的值有关。令θρi e z z =-0, 则有 由于I 的值只f (z )与在点 0z 附近的值有关,与ρ无关,由f (z )在点0z 的连续性,应该有)(20z if I π=,即 事实上,当ρ趋近于0时,有 由于由f (z )在点0z 的连续性,所以)(0,00ρδδε≤>?>?,使得当ρδρC z ∈<<,0时,ε<-|)()(|0z f z f ,因此 即当ρ趋近于0时,上式右边的有第二个积分趋近于0;而i dz z z C πρ210 =-?,因此,结论成立。 注解1、对于某些有界闭区域上的解析函数,它在区域内任一点所取的值可以用它在边界上的值表示出来。 注解2、柯西公式是解析函数的最基本的性质之一,对于复变函数理论本身及其应用都是非常重要的。 注解3、柯西公式有非常明确的物理背景和物理意义。 2、解析函数的无穷可微性 定理3.12 设D 是以有限条简单闭曲线C 为边界的有界区域。设f (z )在D 及C 所组成的闭区域D 上解析,那么f (z )在D 内有任意阶导数 ,...)3,2,1( )()(2!)(1 )(=-=?+n d z f i n z f C n n ζζζπ, 证明:先证明结论关于n =1时成立。设D h z ∈+是D 内另一点。 只需证明,当h 趋近于0时,下式也趋近于0 现在估计上式右边的积分。设以z 为心,以2d 为半径的圆盘完全在D 内,并且

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) () 1 -=n n nz z ' (n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-?? ??? ?++-+ += -+= --→→ 2 2 1 12 1lim lim ' ()() 1 1 2 1 12 1----→=?? ? ?? ?++-+ = n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: () ()2 11 111 1z z z z z z z z z z z z z z z z z - =+-= +-= - += ?? ? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??, 0=??y u , 0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2 在直线2 1- =x 上可导,在复平面内处处不解析。 2) ()3 3 32y i x z f += 解:设()iv u z f +=,则3 2x u =,3 3y v = 2 6x x u =??, 0=??y u , 0=??x v , 2 9y y v =??都是连续函数。 只有2 2 96y x =,即032=± y x 时才满足柯西—黎曼方程。 ()3 3 32y i x z f +=∴在直线 032=± y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 2 2 += 解:设()iv u z f +=,则2 xy u =,y x v 2 =

《复变与积分变换教案》.

《复变与积分变换教案》 第二次课 1教学目标:使学生熟练二维平面图形的复形式,熟练掌握复变函数的分量处理法,重温二元微积分,并赋以复的外衣而导出复变量,复数列,复变函数增量和复积分等知识。 2讲课段落: 平面曲线(定向)和区域;复变函数的分量处理法;二维平面图形的复形式;复变量,复数列,复变函数的极限和连续性; 复变函数的增量; 复积分定义和计算,复积分的性质。 3知识要点: 无重点的按段光滑闭曲线简称为简单闭曲线。数学上可证明任 条在平面上有确定的始端和终端的简单曲线是可求长的,特别是 任一条简单闭曲线总是有有限长度的。 对给定点P (x o,y o)和正数0,称 u (P) (X, y)J(x X o)2 (y y。)2 为P的一个邻域。 平面上的区域D为可用折线连通的开集. 本课程中经常出现的多连域D为有限条简单闭曲线C0,C i,C2, ,C m按以下 方式围成的区域:设D O,D1,D2, , D m分别为C o,C1,C2, ,C m的内部区域, m 1 j k m, (3) C j C k 满足(1) D j D o, (2) D j D k j 1 m 称此多连域D为复围线:C o'GG'L ,C m围成的区域,即D D O D j。 j 1

w f (z) u u(x,y) V v(x,y) max max a n max U x x o , y y o X o , b n f Z o X o , y o iv x Z o X X o y o y o Z n Z o a n X o b n y o x o ,y o U y x o ,y o iV y X o ,y o E u iE v f 1 z u x x o ,y o iv x X o ,y o U y X o ,y o iV y X o ,y o C: F(x,y) 0, 经变换 若平面曲线参数方程为 则其复数表示为 z z(t): x(t) iy(t), 所以一个复变函数相当于两个二元函数,即 也称为D 的边界。而数学上称D 0 m D j 即D 连同C o ,G,C 2, ,C m 一起的 j 1 集合为多连域D 的闭包,也记为D 。 而复围线 :C o ,C 1,C 2, ,C m 的正向 定义为,在C o 上取逆时针方向,而在 C 1,C 2, , C m 上都取顺时针方向。 得到C 的复数表示 z z 2i X y (t) (t).

复变函数教案

《复变函数》教案

目录 第一次课………………复数 第二次课………………复平面上的点集 第三次课………………复变函数复球面与无穷远点 第四次课………………解析函数的概念与柯西-黎曼方程 第五次课………………初等解析函数 第六次课………………初等多值函数 第七次课………………复积分的概念及其简单性质 第八次课………………柯西积分定理 第九次课………………柯西积分公式及其推论 第十次课………………解析函数与调和函数的关系 第十一次课……………复级数的基本性质 第十二次课……………幂级数 第十三次课……………解析函数的泰勒展式 第十四次课……………解析函数零点的孤立性及惟一性定理 第十五次课……………解析函数的洛朗展开式 第十六次课……………解析函数的孤立奇点 第十七次课……………孤立奇点在无穷远点的性质整函数与亚 纯函数的概念 第十八次课……………留数 第十九次课……………用留数计算实积分 第二十次课……………辐角原理及其应用 第二十一次课…………解析变换的特性 第二十二次课…………分式线性变换 第二十三次课…………某些初等函数所构成的共形映射关于共 形映射的黎曼存在定理和边界对应定理 第二十四次课…………总复习

第一次课:复数 一.教学目的: 1.掌握复数的四则运算及共轭运算; 2.熟练掌握复数的各种表示法; 3.熟练掌握乘积与商的模与辐角定理,方根运算公式。 二.教学重点:复数的三角表示和复数的乘方与开方。 三.教学难点:用复数形式方程(或不等式)表示平面图形来解决有关几何问题的方法。四.教学方法:启发式、讨论式 五.教学用具:多媒体教学、黑板、粉笔等。 六.教学过程: [引言]:(约10分钟)简述复分析的发展历史、复变函数的主要内容及其应用背景以及学习该课程应该注意的方法,引入本课主题。 ●复数的基本概念(约5分钟) 1.虚数单位。 2.实部与虚部。 3.共轭复数。 ●复数的四则运算(约20分钟) 1.复数的加、减、乘和除法运算。 2.复数运算的性质。 举例并让学生穿插进行练习。 ●复数的几何表示(约20分钟) 1.复平面。 2.复数的模与幅角。 3.复数模的三角不等式。 利用几何图形直观地解释。 ●复数的三角表示(约25分钟) 1.复数的三角表示 2.用复数的三角表示作乘除法。 3.复数的乘方与开方 举例并让学生穿插进行练习。 七.课程小结(约5分钟)八.布置作业和预习内容(约5分钟) 第二次课:复平面上的点集 一. 教学目的: 1.了解复球面、无穷远点及扩充复平面的概念; 2.理解区域、简单曲线、单连同区域与多连同区域的概念。 二. 教学重点:正确理解区域、单连通域与多连通域、简单曲线等概念 三. 教学难点:求复平面上曲线的复方程。 四.教学方法:启发式、讨论式 五.教学用具:多媒体教学、黑板、粉笔等 六.教学过程: [引言]:(约5分钟)

复变函数第二章答案

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数教案51.docx

第五章解析函数的罗朗展式与孤立奇点 教学课题:第一节解析函数的洛朗展式 教学目的:1、了解双边幕级数在其收敛圆环内的性质; 2、充分掌握洛朗级数与泰?勒级数的关系; 3、了解解析函数在孤立奇点和非孤立奇点的洛朗级数 教学重点:掌握洛朗级数的展开方法 教学难点:掌握洛朗级数的展开方法 教学方法:启发式、讨论式 教学手段:多媒体与板书相结合 教材分析:洛朗级数是推广了的幕级数,它既可以是函数在孤立奇点去心邻域内的级数展开,也可以作为工具研究解析函数在孤立奇点去心邻域内的性质。 教学过程: 1、双边基级数 在本节中,我们讲述解析函数的另一种重要的级数展式,即在圆环内解析函数的一种级数展式。首先考虑级数 00 + (Z - Z()+ 0_2(Z - Z()尸 + ??? + 0_〃(Z-Z())-" +??? 其屮堤复常数。此级数可以看成变量丄的幕级数;设这幕级 z_z° 数的收敛半径是心如果ovRv+oe,那么不难看出,此级数在|z-z01>丄内绝 R 对收敛并且内闭一致收敛,在|Z-Z O |<1内发散。同样,如果/? = +oo,那么此级 R 数在|z-z() |> 0内绝对收敛并且内闭一致收敛;如果/?二0,那么此级数在每一点发散。在上列情形下,此级数在z = z。没有意义。于是根据定理2.3,按照不同情形,此级数分别在 | z-z0 |>^ = 7?,(0< /?<4-OO)及I z-Zo |>0 内收敛于一个解析函数。 R 2、解析函数的洛朗展式:更一般地,考虑级数

工0“(Z-Zo)",

这里勺,爲3=0±口2…是复常数。当级数 乞伏(z - z°y及乞仇d - 川=0 /?=-! +8 都收敛吋,我们说原级数£A(Z-Z0)W收敛,并且它的和等于上式屮两个级数的”=-oo 和函数相加。设上式中第一个级数在|z-z0\尺内绝对收敛并且内闭一致收敛。于是两级数的和函数分 别|z-z0|K在内解析。又设&V&,那么这两个级数都在圆环 D:R l内 /(z)=工匕(z-z。)", /|=-00 其中, %哙嫁go,±1,±2,…) y是圆I z-z01= p.p是一个满足&

复变函数教案7.3.2

第七章 共形映射 教学课题:第三节 黎曼存在定理 教学目的:1、充分理解黎曼存在定理极其重要意义; 2、充分了解边界对应定理; 3、了解线性变换的不动点; 4、掌握线性变换的保形性、保圆性、保交比性、保对称点性。 教学重点:线性变换的保形性、保圆性、保交比性、保对称点性 教学难点:线性变换的保交比性、保对称点性 教学方法:启发式、讨论式 教学手段:多媒体与板书相结合 教材分析:由于线性变换的保形性、保圆性、保交比性和保对称点性,它在处理边界为圆弧或直线的区域的变换中,起着重要的作用。 教学过程: 8、实例: 在解决某些实际问题以及数学理论问题时,我们往往要把有关解析函数的定义域保形映射成较简单的区域,以便进行研究及计算,我们下面给出几个实例。 例1、求作一个单叶函数,把半圆盘|z|<1,Im z >0保形映射成上半平面。 解:因为圆及实轴在-1及+1直交,所以作分式线性函数 1 1 '-+= z z w , 把-1及+1分别映射成w'平面上的0及∞两点,于是把|z|=1及Im z =0映射成w'平面上在原点互相直交上面的两条直线。 由于分式线性函数中的系数是实数,所以z 平面上的实轴映射成w'平面上的实轴;又由于z =0映射成w'=-1,半圆的直径AC 映射成w'平面上的负半实轴。 平面-z O ) 1(-B )(i D -) 0(A C 平面-'w C )1(-D ) 1(B )0(A C 平面 -w

显然圆|z|=1映射成w'平面上的虚轴;又由于z =i 映射成i i i w -=-+=1 1 ', 半圆ADC 映射成w'平面上的下半虚轴。 根据在保形映射下区域及其边界之间的对应关系,已给半圆盘映射到w'平面上的的区域,应当在周界ABC 的左方,因此它是第三象限2 'arg π π<

2010复变函数教案

《复变函数》教案 目录 第一次课………………复数 第二次课………………复平面上的点集 第三次课………………复变函数复球面与无穷远点 第四次课………………解析函数的概念与柯西-黎曼方程 第五次课………………初等解析函数 第六次课………………初等多值函数 第七次课………………复积分的概念及其简单性质 第八次课………………柯西积分定理 第九次课………………柯西积分公式及其推论 第十次课………………解析函数与调和函数的关系 第十一次课……………复级数的基本性质 第十二次课……………幂级数 第十三次课……………解析函数的泰勒展式 第十四次课……………解析函数零点的孤立性及惟一性定理 第十五次课……………解析函数的洛朗展开式 第十六次课……………解析函数的孤立奇点 第十七次课……………孤立奇点在无穷远点的性质整函数与亚 纯函数的概念 第十八次课……………留数 第十九次课……………用留数计算实积分 第二十次课……………辐角原理及其应用 第二十一次课…………解析变换的特性 第二十二次课…………分式线性变换 第二十三次课…………某些初等函数所构成的共形映射关于共 形映射的黎曼存在定理和边界对应定理第二十四次课…………总复习 第一次课:复数 一.教学目的:

1.掌握复数的四则运算及共轭运算; 2.熟练掌握复数的各种表示法; 3.熟练掌握乘积与商的模与辐角定理,方根运算公式。 二.教学重点:复数的三角表示和复数的乘方与开方。 三.教学难点:用复数形式方程(或不等式)表示平面图形来解决有关几何问题的方法。 四.教学方法:启发式、讨论式 五.教学用具:多媒体教学、黑板、粉笔等。 六.教学过程: [引言]:(约10分钟) 简述复分析的发展历史、复变函数的主要内容及其应用背景以及学习该课程应该注意的方法,引入本课主题。 ●复数的基本概念 (约5分钟) 1.虚数单位。 2.实部与虚部。 3.共轭复数。 ●复数的四则运算(约20分钟) 1.复数的加、减、乘和除法运算。 2.复数运算的性质。 举例并让学生穿插进行练习。 ●复数的几何表示(约20分钟)1.复平面。 2.复数的模与幅角。 3.复数模的三角不等式。 利用几何图形直观地解释。 ●复数的三角表示(约25分钟)1.复数的三角表示 2.用复数的三角表示作乘除法。 3.复数的乘方与开方 举例并让学生穿插进行练习。 七.课程小结(约5分钟) 八.布置作业和预习内容(约5分钟) 第二次课:复平面上的点集 一. 教学目的: 1.了解复球面、无穷远点及扩充复平面的概念; 2.理解区域、简单曲线、单连同区域与多连同区域的概念。

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) ()1-=n n nz z '(n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-??????++-++=-+=--→→ 2210 0121lim lim ' ()()11210121----→=??????++-+= n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: ()()2000111111z z z z z z z z z z z z z z z z z -=+-=+-=-+=??? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??,0=??y u ,0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。 2) ()3332y i x z f += 解:设()iv u z f +=,则32x u =,33y v = 26x x u =??,0=??y u ,0=??x v ,29y y v =??都是连续函数。 只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。 ()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 22+= 解:设()iv u z f +=,则2xy u =,y x v 2=

相关主题
文本预览