当前位置:文档之家› 立体几何典型习题

立体几何典型习题

立体几何典型习题
立体几何典型习题

数 学 立体几何 1

[2014·重庆卷] 如图所示四棱锥P -ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,

AB =2,∠BAD =π3,M 为BC 上一点,且BM =1

2

.

(1)证明:BC ⊥平面POM ; (2)若MP ⊥AP ,求四棱锥P -ABMO 的体积.

解:(1)证明:如图所示,因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .

因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π

6=1.

又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM =1

2

+? ??

??122-2×1×12×cos π3=34,所以OB 2=OM 2+BM 2

,故OM ⊥BM .

又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .

(2)由(1)可得,OA =AB ·cos ∠OAB =2×cos 6

= 3.

设PO =a ,由PO ⊥底面ABCD ,知△POA 为直角三角形,故PA 2=PO 2+OA 2=a 2

+3.

又△POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34

.连接AM ,在△ABM 中,AM 2=AB 2

BM 2-2AB ·BM ·cos ∠ABM =22

+? ??

??122-2×2×12×cos 2π3=214.

由已知MP ⊥AP ,故△APM 为直角三角形,则

PA 2+PM 2=AM 2,即a 2+3+a 2+34=21

4,

解得a =

32或a =-32(舍去),即PO =32

. 此时S 四边形ABMO =S △AOB +S △OMB =12·AO ·OB +1

2·BM ·OM =12×3×1+12×12×32 =5 3

8.所以四棱锥P -ABMO 的体积V 四棱锥P -ABMO =13·S 四边形ABMO ·PO =13×5 38×32=5

16

.

[2014·陕西卷] 四面体ABCD 及其三视图如图所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .

(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.

解:(1)由该四面体的三视图可知,

BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,

∴AD ⊥平面BDC , ∴四面体ABCD 的体积V =13×12×2×2×1=2

3

.

(2)∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩ 平面ABC =EH ,

∴BC ∥FG ,BC ∥EH ,∴FG ∥EH .

同理EF ∥AD ,HG ∥AD , ∴EF ∥HG , ∴四边形EFGH 是平行四边形. 又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG ,∴四边形EFGH 是矩形.

[2014·安徽卷] 四棱锥P - ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .

(1)证明:GH ∥EF ; (2)若EB =2,求四边形GEFH 的面积.

解: (1)证明:因为BC ∥平面GEFH ,BC ?平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .

同理可证EF ∥BC ,因此GH ∥EF .

(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .

因为PA =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在平面ABCD 内,所以PO ⊥平面ABCD .

又因为平面GEFH ⊥平面ABCD , 且PO ?平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥平面ABCD . 又EF ?平面ABCD ,所以GK ⊥EF , 所以GK 是梯形GEFH 的高. 由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4,

从而KB =14DB =12OB ,即K 是OB 的中点. 再由PO ∥GK 得GK =1

2

PO ,

G 是PB 的中点,且GH =1

2

BC =4. 由已知OB =42,PO =PB 2-OB 2=68-32=6,

所以GK =3,故四边形GEFH 的面积S =

GH +EF

2·GK =4+82

×3=18.

[2014·北京卷] 如图在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC , AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.

图1-5

(1)求证:平面ABE ⊥平面B 1BCC 1;(2)求证:C 1F ∥平面ABE ; (3)求三棱锥E - ABC 的体积.

解:(1)证明:在三棱柱ABC - A 1B 1C 1中,BB 1⊥底面ABC ,

所以BB 1⊥AB . 又因为AB ⊥BC ,

所以AB ⊥平面B 1BCC 1. 所以平面ABE ⊥平面B 1BCC 1.

(2)证明:取AB 的中点G ,连接EG ,FG .

因为E ,F ,G 分别是A 1C 1,BC ,所以FG ∥AC ,且FG =12AC ,EC 1=1

2A 1C 1. 因为AC ∥A 1C 1,且AC =A 1C 1,

所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形,

所以C 1F ∥EG .

又因为EG ?平面ABE ,C 1F ?平面ABE , 所以C 1F ∥平面ABE .

(3)因为AA 1=AC =2,BC =1,AB ⊥BC ,

所以AB =AC 2

-BC 2

= 3. 所以三棱锥E - ABC 的体积

V =13S △ABC ·AA 1=13×12×3×1×2=

33

.

[2014·湖北卷] 如图1-5,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.

求证: (1)直线BC1∥平面EFPQ;

(2)直线AC1⊥平面PQMN.

证明:(1)连接AD1,由ABCD- A1B1C1D1是正方体,

知AD1∥BC1. 因为F,P分别是AD,DD1的中点,所以FP∥AD1.

从而BC1∥FP. 而FP?平面EFPQ,且BC1?平面EFPQ,

故直线BC1∥平面EFPQ.

(2)如图,连接AC,BD,A1C1

由CC1⊥平面ABCD,BD?平面ABCD,

可得CC1⊥BD.

又AC∩CC1=C,所以BD⊥平面ACC1A1.

而AC1?平面ACC1A1,所以BD⊥AC1.

因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.

同理可证PN⊥AC1.

又PN∩MN=N,所以直线AC1⊥平面PQMN.

[2014·江苏卷] 如图所示,在三棱锥P- ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.

求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.

证明: (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥PA .又因为PA ?平面DEF ,DE ?平

面DEF ,所以直线PA ∥平面DEF .

(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE =1

2PA

=3,EF =12BC =4.又因为DF =5,所以DF 2=DE 2+EF 2

,所以∠DEF =90°,即DE ⊥EF .又PA

⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ?平面ABC ,EF ?平面ABC ,所以DE ⊥平面ABC .

又DE ?平面BDE ,所以平面BDE ⊥平面ABC . 18.、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.

(1)证明:PB ∥平面AEC ;

(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =

3

4

,求A 到平面PBC 的距离.

18.解:(1)证明:设BD 与AC 的交点为O ,连接EO

因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . EO ?平面AEC ,PB ?平面AEC , 所以PB ∥平面AEC . (2)V =13×12×PA ×AB ×AD =3

6AB ,

由V =34,可得AB =32

. 作AH ⊥PB 交PB 于点H .

由题设知BC ⊥平面PAB ,所以BC ⊥AH , 因为PB ∩BC =B ,所以AH ⊥平面PBC . 又AH =

PA ·AB PB =313

13

, 所以点A 到平面PBC 的距离为313

13

.

[2014·山东卷] 如图所示,四棱锥P -ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =1

2

AD ,E ,

F 分别为线段AD ,PC 的中点.

(1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面PAC .

18.证明:(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,

AB =BC =12

AD ,AD ∥BC ,

所以AE ∥BC ,AE =AB =BC , 所以O 为AC 的中点.

又在△PAC 中,F 为PC 的中点,所以AP ∥OF . 又OF ?平面BEF ,AP ?平面BEF , 所以AP ∥平面BEF .

(2)由题意知,ED ∥BC ,ED =BC , 所以四边形BCDE 为平行四边形, 所以BE ∥CD .

又AP ⊥平面PCD ,

所以AP ⊥CD ,所以AP ⊥BE . 因为四边形ABCE 为菱形, 所以BE ⊥AC .

又AP ∩AC =A ,AP ,AC ?平面PAC , 所以BE ⊥平面PAC .

18.、[2014·四川卷] 在如图1-4所示的多面体中,四边形ABB 1A 1和ACC 1A 1都为矩形.

(1)若AC ⊥BC ,证明:直线BC ⊥平面ACC 1A 1.

(2)设D ,E 分别是线段BC ,CC 1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A 1MC ?请证明你的结论.

18.解:(1)证明:因为四边形ABB 1A 1和ACC 1A 1都是矩形, 所以AA 1⊥AB ,AA 1⊥AC .

因为AB ,AC 为平面ABC 内的两条相交直线, 所以AA 1⊥平面ABC .

因为直线BC ?平面ABC ,所以AA 1⊥BC .

又由已知,AC ⊥BC ,AA 1,AC 为平面ACC 1A 1内的两条相交直线, 所以BC ⊥平面ACC 1A 1.

(2)取线段AB 的中点M ,连接A 1M ,MC ,A 1C ,AC 1,设O 为A 1C ,AC 1的交点.

由已知,O 为AC 1的中点.

连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC 1的中位线,

所以MD 綊12AC ,OE 綊1

2

AC ,

因此MD 綊OE .

连接OM ,从而四边形MDEO 为平行四边形,所以DE ∥MO . 因为直线DE ?平面A 1MC ,MO ?平面A 1MC . 所以直线DE ∥平面A 1MC .

即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .

[2014·福建卷] 如图1-6所示,三棱锥A - BCD 中,AB ⊥平面BCD ,CD ⊥BD .

(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A - MBC 的体积.

19.解:方法一:(1)证明:∵AB ⊥平面BCD ,CD ?平面BCD , ∴AB ⊥CD .

又∵CD ⊥BD ,AB ∩BD =B , AB ?平面ABD ,BD ?平面ABD , ∴CD ⊥平面ABD .

(2)由AB ⊥平面BCD ,

得AB ⊥BD .

∵AB =BD =1,∴S △ABD =12. ∵M 是AD 的中点, ∴S △ABM =12S △ABD =1

4.

由(1)知,CD ⊥平面ABD ,

∴三棱锥C - ABM 的高h =CD =1, 因此三棱锥A - MBC 的体积

V A - MBC =V C - ABM =13S △ABM ·h =112

.

方法二:(1)同方法一.

(2)由AB ⊥平面BCD ,得平面ABD ⊥平面BCD . 且平面ABD ∩平面BCD =BD .

如图所示,过点M 作MN ⊥BD 交BD 于点N , 则MN ⊥平面BCD ,且MN =12AB =1

2.

又CD ⊥BD ,BD =CD =1,∴S △BCD =1

2.

∴三棱锥A - MBC 的体积 V A - MBC =V A - BCD -V M - BCD =13AB ·S △BCD -1

3MN ·S △BCD =112.

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

立体几何题经典例题

D E A F B C O O 1 M D C A S 15.如图,在正三棱柱ABC —A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面 AA 1C 1C 所成角的正弦值为 . 6.已知正三棱柱111C B A ABC -的棱长为2,底面边长为1,M 是BC 的中点. (1)在直线1CC 上求一点N ,使1AB MN ⊥; (2)当1AB MN ⊥时,求点1A 到平面AMN 的距离. (3)求出1AB 与侧面11A ACC 所成的角θ的正弦值. 7. 如图所示,AF 、DE 分别是1O O ⊙、 ⊙的直径.AD 与两圆所在的平面均垂直,8=AD .BC 是O ⊙的直径,AD OE AC AB //,6==. (1)求二面角F AD B --的大小; (2)求直线BD 与EF 所成角的余弦值. 8.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若 a BN CM ==)20(<

18.(本小题满分12分) 已知矩形ABCD 与正三角形AED 所在的平面 互相垂直, M 、N 分别为棱BE 、AD 的中点, 1=AB ,2=AD , (1)证明:直线//AM 平面NEC ; (2)求二面角D CE N --的大小. 19.(本小题满分12分) 如图,在四棱锥ABCD P -中,底面ABCD 是直角梯形, 2 π = ∠=∠ABC DAB ,且22===AD BC AB , 侧面 ⊥PAB 底面ABCD ,PAB ?是等边三角形. (1)求证:PC BD ⊥; (2)求二面角D PC B --的大小. 15、(北京市东城区2008年高三综合练习一)如图,在直三 棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1; (II )求直线A 1C 与平面B 1AC 所成角的正弦值; (III )求二面角B —B 1C —A 的大小. 52、(河南省濮阳市2008年高三摸底考试)如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为CD 中点. (1)求证:EF ⊥面BCD ; (2)求面CDE 与面ABDE 所成的二面角的余弦值. A B C D M N 第18题图

必修二立体几何测试题资料

2015-2016学年第一学期立体几何测试 高二理科数学 参考公式: 圆柱的表面积公式:rl r S ππ222 +=,圆锥的表面积公式:rl r S ππ+=2 台体的体积公式h S S S S V )(3 1'' ++= ,球的表面积公式:24r S π= 圆台的表面积公式Rl rl R r S π+π+π+π=2 2,球的体积公式:33 4r V π= 一、选择题(每小题5分,共60分) 1.下列四个几何体中,是棱台的为( ) 2.如图所示为一平面图形的直观图,则此平面图形可能是( ) 3.给出下列命题: ①垂直于同一直线的两条直线互相平行; ②若直线a ,b ,c 满足a ∥b ,b ⊥c ,则a ⊥c ; ③若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线. 其中假命题的个数是( ) A .1 B .2 C .3 D .4

4.空间几何体的三视图如图所示,该几何体的表面积为( ) A .96 B .136 C .152 D .192 5.若棱长为1的正方体的各棱都与一球面相切,则该球的体积为( ) A .3π2 B .2π3 C .2π12 D .π 6 6.对于直线m ,n 和平面α,β,能得出α⊥β的一个条件是( ) A .m ⊥n ,m ∥α,n ∥β B .m ⊥n ,α∩β=m ,n ?α C .m ∥n ,n ⊥β,m ?α D .m ∥n ,m ⊥α,n ⊥β 7.一个几何体的三视图如图所示,则该几何体的表面积为( ) A .10π+96 B .9π+96 C .8π+96 D .9π+80 8.m,n 是空间两条不同直线,α,β是空间两个不同平面,下面有四种说法: 其中正确说法的个数为 ( ) ①m ⊥α,n ∥β,α∥β?m ⊥n; ②m ⊥n,α∥β,m ⊥α?n ∥β; ③m ⊥n,α∥β,m ∥α?n ⊥β; ④m ⊥α,m ∥n,α∥β?n ⊥β. A.1 B.2 C.3 D.4

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

立体几何练习题及答案

… 数学立体几何练习题 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体-A 1B 1C 1D 1中,棱长为a ,M 、N 分别为 A 1 B 和上 的点,A 1M ==,则与平面1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 2.将正方形沿对角线折起,使平面⊥平面,E 是中点,则AED ∠的大小为( ) A.45 B.30 C.60 D.90 ] 3.,,是从P 引出的三条射线,每两条的夹角都是60o,则直线 与平面所成的角的余弦值为( ) A .12 B 。 3 C 。 3 D 。 6 4.正方体—A 1B 1C 1D 1中,E 、F 分别是1与1的中点,则直线与D 1F 所成角的余弦值是 A .15 B 。13 C 。12 D 。 3 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面的中心,E 、 F 分别是1CC 、的中点,那么异面直线和1FD 所成的角的余弦值等于( ) A . 5 10 B .32 C . 5 5 D . 5 15

6.在正三棱柱1B 1C 1中,若2,A A 1=1,则点A 到平面A 1的距离为( ) A . 4 3 B . 2 3 C . 4 33 D .3 : 7.在正三棱柱1B 1C 1中,若1,则1与C 1B 所成的角的大小为 ( ) o B. 90o o D. 75o 8.设E ,F 是正方体1的棱和D 1C 1的中点,在正方体的12条面对 角线中,与截面A 1成60°角的对角线的数目是( ) A .0 B .2 C .4 D .6 二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体-A 1B 1C 1D 1中,M 、N 分别为棱1和1的中点,则 〈CM ,1D N 〉的值为. 10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点, 那么点M 到截面的距离是 . 11.正四棱锥的所有棱长都相等,E 为中点,则直线与截面所成的角为 . 12.已知正三棱柱1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则 直线与平面B 1所成角的正弦值为 . : 13.已知边长为的正三角形中,E 、F 分别为和的中点,⊥面, 且2,设平面α过且与平行,则与平面α间的距离 A B | D C

高考试题的探究(一):鳖臑几何体的试题赏析与探究文章修改稿11.25

图 1 D P E C B A 鳖臑几何体的试题赏析与探究 岳 峻1 阮艳艳2 安徽省太和县太和中学 236600 2015年湖北高考数学之后,广大考生感言:阳马、鳖臑,想说爱你不容易;中学教师考后反思:阳马、鳖臑,不说爱你又没道理;试题评价专家说:湖北高考数学试题注重数学本质,突出数学素养,彰显数学文化. 阳马、鳖臑是什么呢? 1 试题再现 1.1 文科试题 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图1所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE . (I)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由; (II)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求1 2 V V 的值. 1.2 理科试题 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图2,在阳马ABCD P -中,侧棱PD ⊥底面ABCD ,且P D C D =,过棱PC 的中点E ,作E F P B ⊥交PB 于点F ,连接,,,.DE DF BD BE (I)证明:PB ⊥平面DEF .试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由; (II)若面DEF 与面ABCD 所成二面角的大小为π3,求DC BC 的值. 2 鳖臑的史料 2.1 史料 《九章算术·商功》:“斜解立方,得两堑堵。斜解堑堵,其一为阳马,一为鳖臑。阳马居二,鳖臑居一,不易之率也。合两鳖臑三而一,验之以棊,其形露矣.” 刘徽注:“此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云。中破阳马,得两鳖臑,鳖臑之起数,数同而实据半,故云六而一即得.” 2.2 阐释 D F P E C B A 图2

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

专题一立体几何经典练习题

2 专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4 分×10=40 分) 1.直线 l , l 和 α , l // l , a 与 l 平行,则 a 与 l 的关系是 1 2 1 2 1 2 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段 AB 的长等于它在平面内射影长的 3 倍,则这条斜线与平面所成角的余弦值为 A . 1 3 B . 2 2 2 2 C . D . 3 3 3.在正方体 ABCD-A 1B 1C 1D 1 中,B 1C 与平面 DD 1B 1B 所成的角的大小为 A .15 B . 30 C . 45 D . 60 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中 任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点 不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为 300,若在斜坡平面上沿着一条与斜坡底线成 450 角的直线前进 1 公里,则升高了 A . 250 2 米 B . 250 3 米 C . 250 6 米 D . 500 米 6.已知三条直线 a , b , l 及平面 α , β ,则下列命题中正确的是 A . 若b ? α , a // b , 则a // α B .若 a ⊥ α , b ⊥ α ,则 a // b C . 若 a ? α ,α β = b ,则 a // b D .若 a ? α , b ? α , l ⊥ a , l ⊥ b , 则 l ⊥ α 7.已知 P 是△EFG 所在平面外一点,且 PE=PG ,则点 P 在平面 EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边 EG 的垂直平分线上 C .边 EG 的中线上 D .边 EG 的高上 8.若一正四面体的体积是18 2 cm 3,则该四面体的棱长是 A . 6cm B . 6 3 cm C .12cm D . 3 3 cm 9.P 是△ABC 所在平面α 外一点,PA ,PB ,PC 与α 所成的角都相等,且 PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 3 10.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 3 的正方形,EF//AB ,EF= ,EF 2 与面 AC 的距离为 2,则该多面体的体积为 E F A .2 B .4 C . 2 2 D . 4 2 D C 二、填空题(4 分×4=16 分) A B 11.空间四边形 ABCD 中,AB=6,CD=8,E 、F 、G 分别是 BD ,AC ,BC 的中点,若异面直

必修 立体几何单元测试题及答案

M D' D C B A 立体几何单元测验题 一、选择题:把每小题的正确答案填在第二页的答题卡中,每小题4分,共60分 1.一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为 A . 152 π B .10π C .15π D .20π 2.C B A ,,表示不同的点,l a ,表示不同的直线,βα,表示不同的平面,下列推理错误的是 A .ααα??∈∈∈∈l B l B A l A ,,, B .,,,AB l l AB l αβαβαβ=⊥?⊥?⊥I C .,l A l A αα?∈?? D .βαβα与不共线,,且?∈∈C B A C B A C B A ,,,,,,重合 3.直线c b a ,,相交于一点,经过这3条直线的平面有 A .0个 B .1个 C .3个 D .0个或1个 4.下列说法正确的是 A .平面α和平面β只有一个公共点 B .两两相交的三条直线共面 C .不共面的四点中,任何三点不共线 D .有三个公共点的两平面必重合 5. 直线b a 与是一对异面直线,a B A 是直线,上的两点,b D C 是直线,上的两点,N M ,分别是BD AC 和的中点,则a MN 和的位置关系为 A .异面直线 B .平行直线 C .相交直线 D .平行直线或异面直线 6.已知正方形ABCD ,沿对角线ABC AC ?将折起,设AD 与平面ABC 所成的角为α,当α最大时,二面角D AC B --等于( ) A .090 B .060 C .045 D .030 7.已知异面直线b a ,分别在平面βα,内,且βαI c =,直线c A .同时与b a ,相交 B .至少与b a ,中的一条相交 C .至多与b a ,中的一条相交 D .只能与b a ,中的一条相交 8.一个平面多边形的斜二侧图形的面积是S ,则这个多边形的面积是 A 2S B .2S C .22S D .4S 9.直线l 在平面α外,则 A .α//l B .α与l 相交 C .α与l 至少有一个公共点 D .α与l 至多有一个公共点 10.如图,BD AB BD M AC M AB BD AC AB ,,平面,平面,⊥⊥?===1与平面M 成030角,则 D C 、间的距离为( ) A .1 B .2 C .2 D .3 11.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

立体几何创新题型及答案

(一) 创新试题 1.如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AA 1=AB =1. (I )求证:A 1C //平面AB 1D ; (II )求二面角B —AB 1—D 的大小; (III )求点c 到平面AB 1D 的距离. 2. 如图,已知正三棱柱ABC —A 1B 1C 1的各棱长都为a ,P 为A 1B 上的点。 (1)试确定PB P A 1的值,使得PC ⊥AB ; (2)若3 21 PB P A ,求二面角P —AB —C 的大小; (3)在(2)条件下,求C 1到平面PAC 的距离。

1解法一(I )证明:连接A 1B ,设A 1B ∩AB 1 = E ,连接DE. ∵ABC —A 1B 1C 1是正三棱柱,且AA 1 = AB ,∴四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C. ∵DE ?平面AB 1D ,A 1C ?平面AB 1D ,∴A 1C ∥平面AB 1D. (II )解:在面ABC 内作DF ⊥AB 于点F ,在面A 1ABB 1内作FG ⊥AB 1于点G ,连接DG. ∵平面A 1ABB 1⊥平面ABC , ∴DF ⊥平面A 1ABB 1, ∴FG 是DG 在平面A 1ABB 1上的射影, ∵FG ⊥AB 1, ∴DG ⊥AB 1 ∴∠FGD 是二面角B —AB 1—D 的平面角 设A 1A = AB = 1,在正△ABC 中,DF=.43在△ABE 中,82343=?=BE FG , 在Rt △DFG 中,3 6tan ==∠FG DF FGD ,所以,二面角B —AB 1—D 的大小为.36arctan (III )解:∵平面B 1BCC 1⊥平面ABC ,且AD ⊥BC , ∴AD ⊥平面B 1BCC 1,又AD ?平面AB 1D ,∴平面B 1BCC 1⊥平面AB 1D. 在平面B 1BCC 1内作CH ⊥B 1D 交B 1D 的延长线于点H , 则CH 的长度就是点C 到平面AB 1D 的距离. 由△CDH ∽△B 1DB ,得.5 511=?=D B CD BB CH 即点C 到平面AB 1D 的距离是 .55 解法二: 建立空间直角坐标系D —xyz ,如图, (I )证明: 连接A 1B ,设A 1B ∩AB 1 = E ,连接DE.设A 1A = AB = 1, 则).0,0,21(),21,43,41(),1,23,0(),0,0,0(1C E A D -),21,43,41(),1,23,21(1-=--=∴DE C A .//,211DE C A DE C A ∴-=∴ D AB C A D AB DE 111,平面平面?? ,.//11D AB C A 平面∴ (II )解:)1,0,21(),0,23,0(1-B A , )1,0,2 1(),0,23,0(1-==∴D B AD , 设),,(1r q p n =是平面AB 1D 的法向量,则0,0111=?=?D B n AD n 且, 故)1,0,2(,1.02 1,0231===-=-n r r p q 得取;同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B —AB 1—D 的大小为θ,5 15||||cos 2121=?=n n n n θ , ∴二面角B —AB 1—D 的大小为.5 15arccos

立体几何典型例题精选[含答案解析]

F E D C B A ; 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥ 平面ABCD , 1EF =,,90FB FC BFC ? =∠=,3AE = . (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. · ! 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值.

] 变式2:[2014·福建卷] 在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图1-5所示. (1)求证:AB⊥CD; (2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. ? (1)证明:CF⊥平面ADF; (2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2. — (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小. 【

立体几何综合试题

立体几何综合试题 1.(本小题满分12分)如图,在正三棱柱ABC—A1B1C1中,各棱长都相等,D、E分别为AC1,BB1的中点。(1)求证:DE∥平面A1B1C1;(2)求二面角A1—DE—B1的大小。 2.(本小题满分12分) 如图:已知直三棱柱ABC—A1B1C1,AB=AC,F为棱BB1上一点,BF∶FB1=2∶1,BF=BC=2a。 (I)若D为BC的中点,E为AD上不同于A、D的任意一点,证明EF⊥FC1; (II)试问:若AB=2a,在线段AD上的E点能否使EF与平面BB1C1C成60°角,为什么?证明你的结论 A B C 1 A 1 B 1 C E D

3. (本小题满分12分) 如图,在底面是直角梯形的四棱锥P ABCD -中,AD ∥BC ,∠ABC =90°,且 ∠ADC =arcsin 5 5 ,又PA ⊥平面ABCD ,AD =3AB =3PA =3a 。 (I )求二面角P —CD —A 的正切值; (II )求点A 到平面PBC P B C A D 4.(本小题满分14分)在直三棱柱ABC —A 1B 1C 1中,CA=CB=CC 1=2,∠ACB=90°,E 、F 分别是BA 、BC 的中点,G 是AA 1上一点,且AC 1⊥EG. (Ⅰ)确定点G 的位置; (Ⅱ)求直线AC 1与平面EFG 所成角θ的大小.

已知四棱锥P —ABCD ,底面ABCD 是菱形,⊥?=∠PD DAB ,60平面ABCD ,PD=AD , 点E 为AB 中点,点F 为PD 中点. (1)证明平面PED ⊥平面PAB ; (2)求二面角P —AB —F 的平面角的余弦值 6.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1 上,且CC 1=4CP. (Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示); (Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ; (Ⅲ)求点P 到平面ABD 1的距离. · B 1 P A C D A 1 C 1 D 1 B O H ·

立体几何测试题带答案解析

姓名____________班级___________学号____________分数______________ 一、选择题 1 .下列说法正确的是() A.三点确定一个平面B.四边形一定是平面图形 C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三 个交点 2 .若α//β,a//α,则a与β的关系是() A.a//βB.aβ ?C.a//β或aβ ?D.A a= β I 3 .三个互不重合的平面能把空间分成n部分,则n所有可能值为() A.4、6、8 B.4、6、7、8 C.4、6、7 D.4、5、7、8 4 .一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为 ()A.3 6B.8 C.3 8D.12 5 .若直线l∥平面α,直线aα ?,则l与a的位置关系是()A.l∥a B.l与a异面C.l与a相交D.l与a没有公共点 6 .已知三个球的体积之比为1:8:27,则它们的表面积之比为() A.1:2:3 B.1:4:9 C.2:3:4 D.1:8:27 7 .有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为 ()A.π 12B.π 24C.π 36D.π 48 8 .若a,b是异面直线,直线c∥a,则c与b的位置关系是() A.相交B.异面C.平行D.异面或相交 6 5 6 5

9 .设正方体的棱长为 23 3,则它的外接球的表面积为 ( ) A .π38 B .2π C .4π D .π3 4 10.已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球 的表面积为 A .π7 B .π14 C .π21 D .π28 11.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 ( ) A .12l l ⊥,23l l ⊥13//l l ? B .12l l ⊥,23//l l ?13l l ⊥ C .233////l l l ? 1l ,2l ,3l 共面 D .1l ,2l ,3l 共点?1l ,2l ,3l 共面 12.如图,正方体1111ABCD A B C D -中,E ,F 分别为棱AB ,1CC 的中点,在平面11ADD A 内且与平面1D EF 平行的直线 ( ) A .有无数条 B .有2条 C .有1 条 D .不存在 二、填空题 13.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成, 根据图中标出的尺寸,计算这个几何体的表面积是______. 14.如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内 A B C D A 1 B 1 C 1 D 1 E F

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

相关主题
文本预览
相关文档 最新文档