当前位置:文档之家› 必修二立体几何复习+经典例题

必修二立体几何复习+经典例题

必修二立体几何复习+经典例题
必修二立体几何复习+经典例题

一、判定两线平行的方法

1、平行于同一直线的两条直线互相平行

2、垂直于同一平面的两条直线互相平行

3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行

4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行

5、在同一平面内的两条直线,可依据平面几何的定理证明

二、判定线面平行的方法

1、据定义:如果一条直线和一个平面没有公共点

2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行

3、两面平行,则其中一个平面内的直线必平行于另一个平面

4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面

5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面

三、判定面面平行的方法

1、定义:没有公共点

2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行

3 垂直于同一直线的两个平面平行

4、平行于同一平面的两个平面平行

四、面面平行的性质

1、两平行平面没有公共点

2、两平面平行,则一个平面上的任一直线平行于另一平面

3、两平行平面被第三个平面所截,则两交线平行

4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面

五、判定线面垂直的方法

1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直

2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直

3、 如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面

4、 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面

5、 如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面

6、 如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法

1、 定义:成?90角

2、 直线和平面垂直,则该线与平面内任一直线垂直

3、 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直

4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直

5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法

1、 定义:两面成直二面角,则两面垂直

2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、 二面角的平面角为?90

2、 在一个平面内垂直于交线的直线必垂直于另一个平面

3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面

九、各种角的范围 1、异面直线所成的角的取值范围是:?≤

4、二面角的大小用它的平面角来度量;取值范围是:?≤

内心:内切圆的圆心,角平分线的交点

2、 外心:外接圆的圆心,垂直平分线的交点

3、 重心:中线的交点

4、

垂心:高的交点

【例题分析】

例2 在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面PAD .

【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.

证明:方法一,取PD 中点E ,连接AE ,NE .

∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点, ∴MA ∥CD ,.21

CD MA =

∵E 是PD 的中点, ∴NE ∥CD ,.2

1

CD NE =

∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形, ∴MN ∥AE .

又AE ?平面PAD ,MN ?平面PAD , ∴MN ∥平面PAD .

方法二取CD 中点F ,连接MF ,NF . ∵MF ∥AD ,NF ∥PD ,

∴平面MNF∥平面PAD,

∴MN∥平面PAD.

【评述】关于直线和平面平行的问题,可归纳如下方法:

(1)证明线线平行:

a∥c,b∥c,a∥α,a?βα∥βa⊥α,b⊥α

∩α=a,

α∩β=b

∩β=b

?a∥b?a∥b?a∥b?a∥b

(2)证明线面平行:

a∩α=?a∥bα∥β

b?α,a?αa?β

?a∥α?a∥α?a∥α

(3)证明面面平行:

α∩β=?a∥β,b∥βa⊥α,a⊥βα∥,β∥

a,b?α,a∩b=A

?α∥β?α∥β?α∥β?α∥β例3在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.

【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1的平面即可.

证明:连接AC1.

∵ABC-A1B1C1是直三棱柱,

∴AA1⊥平面ABC,

∴AB⊥AA1.

又AB⊥AC,

∴AB⊥平面A1ACC1,

∴A1C⊥A B.①

又AA1=AC,

∴侧面A1ACC1是正方形,

∴A1C⊥AC1.②

由①,②得A1C⊥平面ABC1,

∴A1C⊥BC1.

【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化.例4在三棱锥P-ABC中,平面PAB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面PAC⊥平面PBC.

【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.

证明:

∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且AB⊥BC,

∴BC⊥平面PAB,

∴AP⊥BC.

又AP⊥PB,

∴AP⊥平面PBC,

又AP?平面PAC,

∴平面PAC⊥平面PBC.

【评述】关于直线和平面垂直的问题,可归纳如下方法:

(1)证明线线垂直:

a⊥c,b∥c,a⊥α

b?α

?a⊥b?a⊥b

(1)证明线面垂直:

a⊥m,a⊥n a∥b,b⊥αα∥β,a⊥βα⊥β,α∩β=l m,n?α,m∩n=A a?β,a⊥l ?a⊥α?a⊥α?a⊥α?a⊥α

(1)证明面面垂直:

a⊥β,a?α

?α⊥β

例5如图,在斜三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,且垂直于底面ABC,∠A1AB =60°,E,F分别是AB1,BC的中点.

(Ⅰ)求证:直线EF∥平面A1ACC1;

(Ⅱ)在线段AB上确定一点G,使平面EFG⊥平面ABC,并给出证明.

证明:(Ⅰ)连接A1C,A1E.

∵侧面A 1ABB 1是菱形, E 是AB 1的中点, ∴E 也是A 1B 的中点,

又F 是BC 的中点,∴EF ∥A 1C . ∵A 1C ?平面A 1ACC 1,EF ?平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1. (2)解:当

3

1

=GA BG 时,平面EFG ⊥平面ABC ,证明如下: 连接EG ,FG .

∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形. ∵E 是A 1B 的中点,

3

1

=GA BG ,∴EG ⊥AB . ∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB , ∴EG ⊥平面ABC .

又EG ?平面EFG ,∴平面EFG ⊥平面ABC .

例6 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.

(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.

【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考.

证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC , ∴BE ⊥AA 1.

∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ?平面BEC 1, ∴平面BEC 1⊥平面ACC 1A 1.

(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .

∵BCC 1B 1是矩形,D 是B 1C 的中点, ∴DE ∥AB 1. 又DE ?平面BEC 1,AB 1?平面BEC 1, ∴AB 1∥平面BEC 1.

例7 在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =8,542==DC AB .

(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P -ABCD 的体积.

【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M 是PC 上的动点分析知,MB ,MD 随点M 的变动而运动,因此可考虑平面MBD 内“不动”的直线BD 是否垂直平面PAD .

证明:(Ⅰ)在△ABD 中,

由于AD =4,BD =8,54=AB , 所以AD 2

+BD 2

=AB 2

. 故AD ⊥BD .

又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ?平面ABCD , 所以BD ⊥平面PAD ,

又BD ?平面MBD ,故平面MBD ⊥平面PAD . (Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,

由于平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因此PO 为四棱锥P -ABCD 的高,

又△PAD 是边长为4的等边三角形.因此.3242

3

=?=

PO

图 4

在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,

所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为

55

85

484=?,即为梯形ABCD 的高,

所以四边形ABCD 的面积为.2455

82

5452=?+=

S 故

.31632243

1

=??=-ABCD P V

9.如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F

是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF

折起,得到如图5所示的三棱锥

A BCF -,其中2

BC =

. (1)

明:DE BCF CF ⊥ABF 2

3

AD =

F DE

G -F DEG V -

9. 【答案】(1)在等边三角形ABC 中,AD AE =

AD AE

DB EC ∴

=

,在折叠后的三棱锥A BCF -中

也成立,//DE BC ∴ ,DE ?平面BCF ,

BC ?平面BCF ,//DE ∴平面BCF ;

(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,

12BF CF ==

.

在三棱锥A BCF -中,

2

2BC =

,222BC BF CF CF BF ∴=+∴⊥②

BF CF F CF ABF ?=∴⊥平面;

(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.

11111131332323323324F DEG E DFG

V V DG FG GF --??∴==????=?????= ? ???

4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点.

(1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积. 4. 如图,连接AC ,

∵ABCD 为矩形且F 是BD 的中点, ∴AC 必经过F

1分

又E 是PC 的中点, 所以,EF ∥AP

2分

∵EF 在面PAD 外,PA 在面内,∴EF ∥面PAD

(2)∵面PAD ⊥面ABCD ,CD ⊥AD ,面PAD

面ABCD=AD ,∴CD ⊥面PAD , 又AP ?面PAD ,∴AP ⊥CD

又∵AP ⊥PD ,PD 和CD 是相交直线,AP ⊥面PCD

又AD ?面PAD ,所以,面PDC ⊥面PAD

(3)取AD 中点为O ,连接PO ,

因为面PAD ⊥面ABCD 及△PAD 为等腰直角三角形,所以PO ⊥面ABCD , 即PO 为四棱锥P —ABCD 的高

∵AD=2,∴PO=1,所以四棱锥P —ABCD 的体积1233

V PO AB AD =

??= 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1

2AA 1,D 是棱AA 1的中

(I)证明:平面BDC 1⊥平面BDC

(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.

1. 【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ?=,∴BC ⊥面11ACC A , 又∵1DC ?面11ACC A ,∴1DC BC ⊥,

由题设知0

1145A DC ADC ∠=∠=,∴1CDC ∠=090,

即1DC DC ⊥,

又∵DC BC C ?=, ∴1DC ⊥面BDC , ∵

1DC ?面1BDC ,

∴面BDC ⊥面1BDC ;

(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132

+???=1

2,

由三棱柱111ABC A B C -的体积V =1,

∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1.

B 1

C B

A

D

C 1

A 1

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

立体几何题经典例题

D E A F B C O O 1 M D C A S 15.如图,在正三棱柱ABC —A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面 AA 1C 1C 所成角的正弦值为 . 6.已知正三棱柱111C B A ABC -的棱长为2,底面边长为1,M 是BC 的中点. (1)在直线1CC 上求一点N ,使1AB MN ⊥; (2)当1AB MN ⊥时,求点1A 到平面AMN 的距离. (3)求出1AB 与侧面11A ACC 所成的角θ的正弦值. 7. 如图所示,AF 、DE 分别是1O O ⊙、 ⊙的直径.AD 与两圆所在的平面均垂直,8=AD .BC 是O ⊙的直径,AD OE AC AB //,6==. (1)求二面角F AD B --的大小; (2)求直线BD 与EF 所成角的余弦值. 8.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若 a BN CM ==)20(<

18.(本小题满分12分) 已知矩形ABCD 与正三角形AED 所在的平面 互相垂直, M 、N 分别为棱BE 、AD 的中点, 1=AB ,2=AD , (1)证明:直线//AM 平面NEC ; (2)求二面角D CE N --的大小. 19.(本小题满分12分) 如图,在四棱锥ABCD P -中,底面ABCD 是直角梯形, 2 π = ∠=∠ABC DAB ,且22===AD BC AB , 侧面 ⊥PAB 底面ABCD ,PAB ?是等边三角形. (1)求证:PC BD ⊥; (2)求二面角D PC B --的大小. 15、(北京市东城区2008年高三综合练习一)如图,在直三 棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1; (II )求直线A 1C 与平面B 1AC 所成角的正弦值; (III )求二面角B —B 1C —A 的大小. 52、(河南省濮阳市2008年高三摸底考试)如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为CD 中点. (1)求证:EF ⊥面BCD ; (2)求面CDE 与面ABDE 所成的二面角的余弦值. A B C D M N 第18题图

高一必修二经典立体几何专项试题

高一必修二经典立体几何专项试题

作者: 日期:

高一必修二经典立体几何专项练习题 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内——有无数个公共点 (2)直线与平面相交一一有且只有一个公共点 (3)直线在平面平行——没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a a来表示 a a a Aa =A a //a 22直线、平面平行的判定及其性质 2.2.1直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行, 则该直线与此平面平行。 简记为:线线平行,则线面平行。符号表示: a B => a // b 2.2.2平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则 这两个平面平行。 符号 示:

// b // 2、判断两平面平行的方法有三种: (1) 用定义; (2) 判定定理; (3) 垂直于同一条直线的两个平面平行。— 223 — 224直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任 平面与此平面的交线与该直线平行 作用:利用该定理可解决直线间的平行问题 么它们的交线平行。 符号表示: // □ Y =a 作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 、、亠 1 注意点: a)定理中的“两条相交直线”这一条件不可忽视; 简记为:线面平行则线线平行。 符号表示: 2、 ] a // b // 2.3.1直线与平面垂直的判定 1、定义:如果直线L 与平面a 内的任意一条直线都垂直,我们就说直线 L 与平 面a 互相垂 直,记作L 丄a ,直线L 叫做平面a 的垂线,平面a 叫做直线 L 的垂

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

必修二立体几何初步知识点整理.

必修二立体几何初步知识点整理 一、基础知识(理解去记) (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共 点叫做顶点。 旋转体——把一个平面图形绕它所在平面的一条定直线旋转形成的封闭几何体。其中,这条定直线 称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①????????→??????? →???? ? 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱直棱柱其他棱柱 底面为矩形 侧棱与底面边长相等 ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 补充知识点 长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】2 22211AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角 分别是αβγ,,, 那么2 2 2 cos cos cos 1αβγ++=,2 2 2 sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则 222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=. 1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

专题一立体几何经典练习题

2 专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4 分×10=40 分) 1.直线 l , l 和 α , l // l , a 与 l 平行,则 a 与 l 的关系是 1 2 1 2 1 2 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段 AB 的长等于它在平面内射影长的 3 倍,则这条斜线与平面所成角的余弦值为 A . 1 3 B . 2 2 2 2 C . D . 3 3 3.在正方体 ABCD-A 1B 1C 1D 1 中,B 1C 与平面 DD 1B 1B 所成的角的大小为 A .15 B . 30 C . 45 D . 60 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中 任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点 不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为 300,若在斜坡平面上沿着一条与斜坡底线成 450 角的直线前进 1 公里,则升高了 A . 250 2 米 B . 250 3 米 C . 250 6 米 D . 500 米 6.已知三条直线 a , b , l 及平面 α , β ,则下列命题中正确的是 A . 若b ? α , a // b , 则a // α B .若 a ⊥ α , b ⊥ α ,则 a // b C . 若 a ? α ,α β = b ,则 a // b D .若 a ? α , b ? α , l ⊥ a , l ⊥ b , 则 l ⊥ α 7.已知 P 是△EFG 所在平面外一点,且 PE=PG ,则点 P 在平面 EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边 EG 的垂直平分线上 C .边 EG 的中线上 D .边 EG 的高上 8.若一正四面体的体积是18 2 cm 3,则该四面体的棱长是 A . 6cm B . 6 3 cm C .12cm D . 3 3 cm 9.P 是△ABC 所在平面α 外一点,PA ,PB ,PC 与α 所成的角都相等,且 PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 3 10.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 3 的正方形,EF//AB ,EF= ,EF 2 与面 AC 的距离为 2,则该多面体的体积为 E F A .2 B .4 C . 2 2 D . 4 2 D C 二、填空题(4 分×4=16 分) A B 11.空间四边形 ABCD 中,AB=6,CD=8,E 、F 、G 分别是 BD ,AC ,BC 的中点,若异面直

必修二立体几何证明题

C B A D C 1 A 1 必修二立体几何经典证明试题 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1,D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 1. 【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ?=,∴BC ⊥面11ACC A , 又∵1DC ?面11ACC A , ∴1DC BC ⊥, 由题设知0 1145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥, 又∵DC BC C ?=, ∴1DC ⊥面BDC , ∵1DC ?面1BDC , ∴面BDC ⊥面1BDC ; (Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132 +???=1 2, 由三棱柱111ABC A B C -的体积V =1, ∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是 CD 上的点且1 2 DF AB = ,PH 为△PAD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1PH =,2AD = 1FC =,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB . 【解析】(1)证明:因为AB ⊥平面PAD ,所以PH AB ⊥。 因为PH 为△PAD 中AD 边上的高,所以PH AD ⊥。 因为AB AD A =I ,所以PH ⊥平面ABCD 。 (2)连结BH ,取BH 中点G ,连结EG 。 因为E 是PB 的中点,所以//EG PH 。 因为PH ⊥平面ABCD 所以EG ⊥平面ABCD 。 则1122EG PH = =, 111 332 E BC F BCF V S E G FC AD EG -?=?=????=2。 (3)证明:取PA 中点M ,连结MD ,ME 。因为E 是PB 的中点,所以1 // 2ME AB =。 因为1 // 2DF AB =,所以//ME DF = ,所以四边形MEDF 是平行四边形,所以//EF MD 。 因为PD AD =,所以MD PA ⊥。因为AB ⊥平面PAD ,所以MD AB ⊥。 因为PA AB A =I ,所以MD ⊥平面PAB ,所以EF ⊥平面PAB 。 3. 如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E , 分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

必修二立体几何复习+经典例题

一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线 就和交线平行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平 行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直 2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成90 角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线 垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影 垂直 5 、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角, 则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为90

立体几何典型例题精选[含答案解析]

F E D C B A ; 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥ 平面ABCD , 1EF =,,90FB FC BFC ? =∠=,3AE = . (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. · ! 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值.

] 变式2:[2014·福建卷] 在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图1-5所示. (1)求证:AB⊥CD; (2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. ? (1)证明:CF⊥平面ADF; (2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2. — (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小. 【

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

必修二立体几何 习题及答案

必修二立体几何 高一 未命名 一、单选题 1.设,m n 为两条不同的直线,γβα,,为三个不重合平面,则下列结论正确的是 ( ) A .若m αP ,n α∥,则m n ∥ B .若m α⊥, ,αβ⊥则β∥m C .若αγ⊥,βγ⊥,则αβP D .若m α⊥,m n ∥,则n α⊥ 【答案】D 【解析】 【分析】 根据空间中线线、线面、面面位置关系,逐项判断,即可得出结果. 【详解】 A 选项,若m αP ,n α∥,则,m n 可能平行、相交或异面;故A 错; B 选项,若m α⊥, αβ⊥,则β∥m 或m β?,故B 错; C 选项,若αγ⊥,βγ⊥,因为γβα,,为三个不重合平面,所以αβP 或αβ⊥,故C 错; D 选项,若m α⊥,m n ∥,则n α⊥,故D 正确; 故选D 【点睛】 本主要考查命题真假的判定,熟记空间中线线、线面、面面位置关系,即可得出结果. 2.下列说法正确的是( ) A .任意三点确定一个平面 B .梯形一定是平面图形 C .平面α和β有不同在一条直线上的三个交点 D .一条直线和一个点确定一个平面 【答案】B 【解析】 【分析】 根据平面性质中的公理及其推论逐个验证即可.

A选项,不共线的三点确定一个平面,A错. C选项,两个平面有公共点,则有一条过该公共点的公共直线,如没有公共点,则两平面平行,C错. D选项,一条直线和直线外的一点可以确定一个平面. B选项,两条平行直线,确定一个平面,梯形中有一组对边平行,故B对, 故选:B. 【点睛】 本题考查了平面性质中的公理及其推论,属于基础题.注意公理1的作用是判断直线在面中,公理2的作用是判断点共线或线共点,公理3及其推论的作用是判断平面的存在性与唯一性. 3.如图,已知正方体ABCD?A1B1C1D1的棱长为1,则四棱锥A1?BB1D1D的体积为() A.√2 3B.1 3 C.√2 6 D.1 4 【答案】B 【解析】 【分析】 先确定锥体的高,再根据锥体体积公式得结果. 【详解】 由正方体性质得A1C1⊥平面BB1D1D, 所以四棱锥A1?BB1D1D的体积为1 3×A1C1 2 ×S BB 1D1D =1 3 ×√2 2 ×1×√2=1 3 ,选B. 【点睛】 本题考查锥体体积,考查基本求解能力,属基础题. 4.一个球的表面积是16π,那么这个球的体积为() A.16 3πB.32 3 πC.64 3 πD.256 3 π 【答案】B

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

必修二立体几何测试题

1 2013年高一数学必修二立体几何测试题 一:选择题(4分10 ?题) 1.下面四个条件中,能确定一个平面的条件是() A. 空间任意三点 B.空间两条直线 C.空间两条平行直线 D.一条直线和一个点 2. 1 l, 2 l, 3 l是空间三条不同的直线,则下列命题正确的是( ). A. 12 l l ⊥, 23 l l ⊥ 13 // l l ?B. 12 l l ⊥, 23 // l l? 13 l l ⊥ C. 233 //// l l l? 1 l, 2 l, 3 l共面D. 1 l, 2 l, 3 l共点? 1 l, 2 l, 3 l共面3.已知m,n是两条不同的直线,,, αβγ是三个不同的平面,下列命题中正确的是:A.若, αγβγ ⊥⊥,则α∥βB.若, m n αα ⊥⊥,则m∥n C.若m∥α,n∥α,则m∥n D.若m∥α,m∥β,则α∥β 4.在四面体ABC P-的四个面中,是直角三角形的面至多有() A.0 个 B.1个 C. 3个 D .4个 5,下列命题中错误 .. 的是 A.如果平面αβ ⊥平面,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C.如果平面αγ ⊥平面,平面βγ ⊥平面,l= β αI,那么lγ ⊥平面D.如果平面αβ ⊥平面,那么平面α内所有直线都垂直于平面β 6.如图所示正方体 1 AC,下面结论错误的是() A. 1 1 //D CB BD平面 B. BD AC⊥ 1 C. 1 1 1 D CB AC平面 ⊥ D. 异面直线 1 CB AD与角为? 60 7.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角是() A. ? 120 B. ? 150 C. ? 180 D. ? 240

高中立体几何经典题型练习题(含答案)

高中数学立体几何练习题精选试卷 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题2分,共40分) 1.设直线l,m和平面α,β,下列条件能得到α∥β的有() ①l?α,m?α,且l∥β,m∥β; ②l?α,m?α且l∥m; ③l∥α,m∥β且l∥m. A.1个B.2个C.3个D.0个 2.一个四面体中如果有三条棱两两垂直,且垂足不是同一点,这三条棱就象中国武术中的兵器--三节棍,所以,我们常把这类四面体称为“三节棍体”,三节棍体ABCD四个顶点在空间直角坐标系中的坐标分别为A(0,0,0)、B(0,4,0)、C(4,4,0)、D(0,0,2),则此三节棍体外接球的表面积是() A.36πB.24πC.18πD.12π

3.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D. 4、如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其主视图是边长为4的正方形,则此三棱柱的侧视图的面积为() A.16B.2C.4D. 5.三棱锥P-ABC的侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的体积是() A.2πB.4πC.πD.8π 6.在正方体ABCD-A′B′C′D′中,过对角线BD‘的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是() ①四边形BFD′E一定是平行四边形 ②四边形BFD′E有可能是正方形 ③四边形BFD′E在底面ABCD的投影一定是正方形 ④四边形BFD′E有可能垂于于平面BB′D. A.①②③④B.①③④C.①②④D.②③④ 7.如图,在四面体A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,则AD=()

相关主题
文本预览
相关文档 最新文档