当前位置:文档之家› 正多边形和圆知识点整理+典型例题+课后练习

正多边形和圆知识点整理+典型例题+课后练习

正多边形和圆知识点整理+典型例题+课后练习
正多边形和圆知识点整理+典型例题+课后练习

个性化辅导教案

正多边形和圆

知识梳理:

1、正多边形:各边相等,各角也相等的多边形是正多边形。

2、正多边形的外接圆:一个正多边形的各个顶点都在圆上,我们就说这个圆是这个正多边形的外接圆。把一

个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做这个正多边形的半径,正多边形每 一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。

正n 边形的一个中心角的度数为: 型 正多边形的中心角

与外角的大小相等。

3、圆内接四边形的性质:圆内接四边形的对角和相等,都是

4、圆内接正n 边形的性质(nA3,且为自然数):

(1)当n 为奇数时,圆内接正 n 边形是轴对称图形,有 n 条对称轴;但不是中心对称图形。

接圆的圆心。

的圆n 等分,然后顺次连接各点即可。

(1)用量角器等分圆周。

8、定理1:把圆分成n(n 》3)等份:

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正

学生姓名: 授课教师: 所授科目:

学生年

级: 上课时间:2016年 月

分至 时 分共 小时

教学重难点

教学标题

正n 边形每一个内角的度数为:

n 2 180

180 °。 ⑵ 当n 为偶数时,圆内接正n 边形即是轴对称图形又是中心对称图形,

对称中心是正多边形的中心, 即外

5、常见圆内接正多边形半径与边心距的关系: (1)圆内接正三角形:d

1

—r

(2)圆内接正四边形:

2

(设圆内接正多边形的半径为

d

d ——r

r ,边心距为d)

(3)圆内接正六边形:

43

—r 2

6、常见圆内接正多边形半径 r 与边长x 的关系:

(1)圆内接正三角形:x

(2)圆内接正四边形:

(3)圆内接正六边形: x=r

7、正多边形的画法:画正多边形一般与等分圆正多边形周有关, 要做半径为

R 的正n 边形,只要把半径为 R

(2)用尺规等分圆(适用于特殊的正

n 边形)。

(1)依次连结各分点所得的多边形是这个圆的内接正

n 边形;

n 边形。

说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依

次连结圆的n(n > 3)等分点,所得的多边形是正多迫形;②经过圆的

n(n > 3)等分点作圆的切线,相邻切线相交成的多边形是正多边。.

(2)要注意定理中的“依次”、“相邻”等条件。

(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形。

定理2:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

经典例题

例1、已知正六边形ABCDEF如图所示,其外接圆的半径是a, ?求正六边形的周长和面积。

分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂

上钩,很自然应连接0A,过0点作0M丄AB垂于M,在RtAAOM?中便可求得AM,又应用垂径定理可求得

AB的长?正六边形的面积是由六块正三角形面积组成的。

例2 :已知O 0和O 0上的一点A(如图).

(1)作O 0的内接正方形ABCD和内接正六边形AEFCGH

⑵在(1)题的作图中,如果点E在弧AD上,求证:DE是Q 0内接正十二边形的一边

例3 (中考):

如图,在桌面上有半径为2cm的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆

课堂练习:

选择题

1?一个正多边形的一个内角为120 ,则这个正多边形的边数为()

A. 9

B. 8

C. 7

D. 6

2 ?如图所示,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()

片的半「径最小应为多

5.

若半径为5cm 的一段弧长等于半径为 2cm 的圆的周长,?则这段弧所对的圆心角为(

6 ?正六边形的周长为 12,则同半径的正三角形的面积为 7.正六边形的外接圆的半径与内切圆的半径之比为

8?如图所示,正△ ABC 的外接圆的圆心为 0,半径为2,求△ ABC 的边长a ,周长P ,边心距r ,面积S.

巩固练习

姓名

所授科目年级

授课老师 米晓菲 完成时间

A. 2語 cm

B .的 cm

2祚

C. 3 cm

D . 1 cm

第2题图 第3题图 第4题图

3 ?如图所示,两个正六边形的边长均为

1,其中一个正六边形的一边恰在另一个正六边形的对角线上,

则这个图形(阴影部分)外轮廓线的周长是 (

A . 7

B . 8

C . 9 D. 10

4.如图4所示,正六边形 ABCDEF 内接于O O ,则/ ADB 的度数是().

A . 60

B . 45°

C . 30°

D . 22. 5

A . 18

B . 36 C. 72 D . 144

,同半径的正方形的周长为

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

《圆》知识点归纳及相关题型整理

第五章中心对称图形(二) ——知识点归纳以及相关题目总结 一、和圆有关的基本概念 1.圆: 把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转1周,另一个端点P运动所形成的图形叫做圆。其中,定点O叫做圆心,线段OP叫做半径。 以点O为圆心的圆,记作“⊙O”,读作“圆O”。 圆是到定点的距离等于定长的点的集合。 2.圆的内部可以看作是到圆心的距离小于半径的点的集合。 3.圆的外部可以看作是到圆心的距离大于半径的点的集合。 4.弦:连接圆上任意两点的线段。 5.直径:经过圆心的弦。 6.弧:圆上任意两点间的部分。 优弧:大于半圆的弧。 劣弧:小于半圆的弧。 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。 7.同心圆:圆心相同,半径不相等的两个圆叫做同心圆。 8.等圆:能够重合的两个圆叫做等圆。(圆心不同) 9.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。(在大小不等的两个圆中,不存在等弧。 10.圆心角:顶点在圆心的角。 11.圆周角:顶点在圆上,两边与圆相交的角。 12.圆的切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长。 13.正多边形: ①定义:各边相等、各角也相等的多边形 ②对称性:都是轴对称图形;有偶数条边的正多边形既是轴对称图形有是中心对称图形。 14.圆锥: ①:母线:连接圆锥的顶点和底面圆上任意一点的线段。 ②:高:连接顶点与底面圆的圆心的线段。 15.三角形的外接圆:三角形三个顶点确定一个圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。

16.三角形的内切圆:与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。 二、和圆有关的重要定理 1.圆是中心对称图形,圆心是它的对称中心。 2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 3.在同圆或等圆中,如果两个圆心角、两条弦、两条弧中有一组量相等,那么它们所对应的其余各组量都分别相等。 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 4.圆心角的度数与它所对的弧的度数相等。 5.圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。 6.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 垂径定理的实质可以理解为:一条直线,如果它具有两个性质:(1)经过圆心;(2)垂直于弦,那么这条直线就一定具有另外三个性质:(3)平分弦,(4)平分弦所对的劣弧,(5)平分弦所对的优弧。 推论:圆的两条平行弦所夹的弧相等。 7.同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。 8.直径(或半圆)所对的圆周角是直角,90°的圆周角所对的弦是直径。 9.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 10.确定圆的条件 不在同一条直线上的三个点确定一个圆 经过三角形三个顶点可以画一个圆,并且只能画一个.这个三角形叫做这个圆的内接三角形。 经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心。 三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。 11.三角形的外接圆的圆心是三边的垂直平分线的交点 12.圆的切线垂直于经过切点的半径。 13.经过半径的外端并且垂直于这条半径的是直线是圆的切线。

2012中考数学复习(48):正多边形和圆

中考数学复习(48):正多边形和圆 知识考点: 1、掌握正多边形的边长、半径、中心角、边心距、周长、面积等的计算; 2、掌握圆周长、弧长的计算公式,能灵活运用它们来计算组合图形的周长; 3、掌握圆、扇形、弓形的面积计算方法,会通过割补、等积变换求组合图形的面积; 4、掌握圆柱、圆锥的侧面展开图的有关计算。 精典例题: 【例1】如图,两相交圆的公共弦AB 为32,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比。 分析:欲求两圆的面积之比,根据圆的面积计算公式,只须求出两圆的半径3R 与6R 的平方比即可。 解:设正三角形外接圆⊙O 1的半径为3R ,正六边形外接圆⊙O 2的半径 为6R ,由题意得:AB R 3 3 3=,AB R =6,∴3R ∶6R =3∶3; ∴⊙O 1的面积∶⊙O 2的面积=1∶3。 【例2】已知扇形的圆心角为1500,弧长为π20,求扇形的面积。 分析:此题欲求扇形的面积,想到利用扇形的面积公式,lR R n S 2 1 3602=π= 扇形,由条件n =1500,π20=l 看到,不管是用前者还是用后者都必须求出扇形的半径,怎么求?由条件想到利用弧长公式不难求出扇形半径。 解:设扇形的半径为R ,则180 R n l π=,n =1500,π20=l ∴18015020R ππ= ,24=R ∴ππ24024202 1 21=??=lR S =扇形。 【例3】如图,已知PA 、PB 切⊙O 于A 、B 两点,PO =4cm ,∠APB =600,求阴影部 分的周长。 分析:此题欲求阴影部分的周长,须求PA 、PB 和? AB 的长,连结OA 、OB ,根据切线长定理得PA =PB ,∠PAO =∠PBO =Rt ∠,∠APO =∠BPO =300,在Rt △PAO 中可求出PA 的长,根据四边形内角和定理可得∠AOB =1200 ,因此可求出? AB 的长,从而能求出阴影部分的周长。 解:连结OA 、OB ∵PA 、PB 是⊙O 的切线,A 、B 为切点 ∴PA =PB ,∠PAO =∠PBO =Rt ∠ 2 O 1O ?? 例1图 B A 例3图

圆的知识点总结与典型例题

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以 圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论 1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推 出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④ 平分弦所对的优弧;⑤平分弦所对的劣弧。 推论2 圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两 条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论 1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论 2 半圆(或直径)所对的圆周角是直角;90 °的圆周角所对的弦是直径;推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质圆内接四边形的对角互补,并且任何一个外角都等于它的内对 角。 探8.轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; 2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; 3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1.已知:如图1,在。O中,半径0M丄弦AB于点N。 图1 ①若AB = , ON = 1,求MN的长; ②若半径0M = R,/ AOB = 120。,求MN的长。 解:①??? AB =,半径0M 丄AB,二AN = BN =

《正多边形和圆》练习题

思路解析:如图,设正三角形的边长为a ,则高 AD= 3 思路解析:因为正 n 边形的中心角为 360? 3 4 24.3 正多边形和圆 5 分钟训练(预习类训练,可用于课前) 1.圆的半径扩大一倍,则它的相应的圆内接正 n 边形的边长与半径之比( ) A.扩大了一倍 B.扩大了两倍 C.扩大了四倍 D.没有变化 思路解析:由题意知 圆的半径扩大一倍,则相应的圆内接正 n 边形的边长也扩大一倍,所 以相应的圆内接正 n 边形的边长与半径之比没有变化. 答案:D 2.正三角形的高、外接圆半径、边心距之比为( ) A.3∶2∶1 B.4∶3∶2 C.4∶2∶1 D.6∶4∶3 3 a ,外接圆半径 OA= a ,边心距 2 3 OD= 3 6 a , 所以 AD ∶OA ∶OD=3∶2∶1. 答案:A 3.正 五边形共有__________条对称轴,正六边形共有__________条对称轴. 思路解析:正 n 边形的对称轴与它的边数相同. 答案:5 6 4.中心角是 45°的正多边形的边数是__________. 360? ,所以 45°= ,所以 n=8. n n 答案:8 5.(2010 上海静安检测△)已知 ABC 的周长为 20,△ABC 的内切圆与边 AB 相切于点 D,AD=4, 那么 BC=__________. 思路解析:由切线长定理及三角形周长可得. 答案:6 10 分钟训练(强化类训练,可用于课中) 1.若正 n 边形的一个外角是一个内角的 2 3 时,此时该正 n 边形有_________条对称轴. 360? (n - 2) ? 180? 思路解析:因为正 n 边形的外角为 ,一个内角为 , n n 360? 2 (n - 2) ? 180? 所以由题意得 = · ,解这个方程得 n=5. n 3 n 答案:5 2.同圆的内接正三角 形与内接正方形的边长的比是( ) A. 6 6 B. C. D. 2 3 4 3 思路解析:画图分析,分别求出正三角形、正方形的边长,知应选 A. 答案:A 3.周长相等的正三角形、正四边形、正六边形的面积 S 3、S 4、S 6 之间的大小关系是( )

圆的知识点总结史上最全的

A 图4 图5 圆的总结 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; - 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 点与圆的位置关系: 点在圆内 dr 点A 在圆外 / 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dR+r # 外切(图2) 有一个交点 d=R+r 相交(图3) 有两个交点 R-r

D B B A 垂径定理: 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; / (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤ 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD " 圆心角定理 ~ 圆周角定理 圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB 圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧 ~ 即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径 即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径 " BC BD =AC AD =

最新正多边形和圆知识点整理+典型例题+课后练习

个性化辅导教案 1 2 学生姓名:授课教师:所授科目: 3 学生年级: 上课时间: 2016 年月日时分至时分共4 小时

分析:要求正六边形的周长,只要求AB 的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA ,过O 点作OM ⊥AB 垂于M ,在Rt △AOM?中便可求得AM ,又应用垂径定理可求得AB 的长.正六边形的面积是由六块正三角形 面积组成的。 例2:已知⊙O 和⊙O 上的一点A(如图). (1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ; (2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边. F D E C B A O M

例3(中考): 如图,在桌面上有半径为2 cm的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少? 课堂练习: 选择题 1.一个正多边形的一个内角为120°,则这个正多边形的边数为( ) A.9 B.8 C.7 D.6

2.如图所示,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( ) A. cm B. cm C.cm D.1 cm 第2题图第3题图第4题图 3.如图所示,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 ( ) A.7 B.8 C.9 D.10 4.如图4所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是(). A.60° B.45° C.30° D.22.5° 5.若半径为5cm的一段弧长等于半径为2cm的圆的周长,?则这段弧所对的圆心角为() A.18° B.36° C.72° D.144° 6.正六边形的周长为12,则同半径的正三角形的面积为________,同半径的正方形的周长为________. 7. 正六边形的外接圆的半径与内切圆的半径之比为 . 8.如图所示,正△ABC的外接圆的圆心为O,半径为2,求△ABC的边长a,周长P,边心距r,面积S.

圆知识点总结及典型例题.docx圆知识点总结及典型例题

《圆》章节知识点复习 一、圆的概念 集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂 线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内 ?d r ? 点A 在圆外; 三、直线与圆的位置关系 1、直线与圆相离 ?d r >?无交点; 2、直线与圆相切 ?d r =?有一个交点; 3、直线与圆相交 ?d r

四、圆与圆的位置关系 外离(图1)?无交点 ?d R r >+; 外切(图2)? 有一个交点 ?d R r =+; 相交(图3)? 有两个交点 ?R r d R r -<<+;内切(图4)? 有一个交点 ?d R r =-; 内含(图5)? 无交点 ?d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 图1 图 3 r R d 图2

正多边形和圆练习题及答案

正多边形和圆练习 一、课前预习(5分钟训练) 2?圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( 有变化 2?正三角形的商、外接圆半径、边心距之比为( C.4 : 2 ; 1 4?中心角是45。的正多边形的边数是 5?已知△ABC 的周K 为20,A ABC 的内切圆与边AB 相切于点D,AD=4,那么 BC= 二、课中强化(10分钟训练) i. 若正n 边形的一个外角是一个内角的彳时,此时该正n 边形有 称轴. 2?同圆的内接正三角?形与内接正方形的边长的比是( 3?周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关 系 是( 4?已知OO 和OO 上的一点A (如图24-3-1). (1)作OO 的内接正方形ABCD 和内接正六边形AEFCGH ; ⑵在⑴题的作图中,如果点E 在弧AD 上,求证:DE 是OO 内接正十二边形 的一边. A ?扩大了一倍 B ?扩大了两倍 C ?扩大了四倍 D ?没 3?正?五边形共有 条对称轴,正六边形共有 条对称轴. 条对 >S4>S6 >S4>3 C>S3>S4 >S6>S3

图 24-3-1 三、课后巩固(30分钟训练) 1 ■正六边形的两条平行边之间的距离为1,则它的边长为( 二边形 3?已知正六边形的半径为3 cm,则这个正六边形的周长为 4?正多边形的一个中?心角为36度,那么这个正多边形的一个内角等于 度. 5?如图24-3-2.两相交圆的公共弦AB 为2? 在OOi 中为内接正三角形的一边, 在002中为内接正六边形的一边,求这两圆的面积之比. 6?某正多边形的每个内角比其外角大100\求这个正多边形的边数. 2.已知正多边形的边心距与边长的比%,则此正多边形为( B.正方形 A ?正三角形 C ?正六边形 D ?正十 cm.

初三数学圆的知识点总结及例题详解

初三数学圆的知识点总 结及例题详解 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

圆的基本性质 1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧. 9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。 直线与圆的位置关系 1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角. 4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线. 6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径. 圆与圆的位置关系 1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦. 3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点. 正多边形基本性质 1.正六边形的中心角为60°. 2.矩形是正多边形. 3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.

圆的基本性质 1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数 是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . ° ° ° ° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . ° ° ° ° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=90 5.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离 为 . A.3cm B.4cm C.5cm D.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . ° ° ° 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . ° ° ° ° 9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. .4 C D. 10 点、直线和圆的位置关系 1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝, 那么这条直线和这个圆的位置关系为 . A.相离 B.相切 C.相交 D.相交或相离 2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 相离或相交 3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定 4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . 个 个 个 D.不能确定 ? B ? ? C B A O ? B O C A D ? B O C A D ? B O C A D D C A O ? D B C A O ? D B C A O

41【基础】正多边形和圆(基础课程讲义例题练习含答案)

正多边形和圆—知识讲解(基础) 【学习目标】 1.了解正多边形和圆的有关概念及对称性; 2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用正多边形和圆的有关知识画正 多边形; 3.会进行正多边形的有关计算. 【要点梳理】 知识点一、正多边形的概念 各边相等,各角也相等的多边形是正多边形. 要点诠释: 判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形). 知识点二、正多边形的重要元素 1.正多边形的外接圆和圆的内接正多边形 正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆. 2.正多边形的有关概念 (1)一个正多边形的外接圆的圆心叫做这个正多边形的中心. (2)正多边形外接圆的半径叫做正多边形的半径. (3)正多边形每一边所对的圆心角叫做正多边形的中心角. (4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距. 3.正多边形的有关计算 (1)正n边形每一个内角的度数是; (2)正n边形每个中心角的度数是; (3)正n边形每个外角的度数是. 要点诠释:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形. 知识点三、正多边形的性质 1.正多边形都只有一个外接圆,圆有无数个内接正多边形. 2.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形. 3.正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.

圆知识梳理+题型归纳附答案_详细知识点归纳+中考真题

圆 【知识点梳理】 一、圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; A

三、直线与圆的位置关系 1、直线与圆相离 ? d r > ? 无交点; 2、直线与圆相切 ? d r = ? 有一个交点; 3、直线与圆相交 ? d r < ? 有两个交点; 四、圆与圆的位置关系 外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧 AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 B D

2018沪科版数学九年级下册246《正多边形和圆》练习题1

24、6 正多边形与圆 第1课时 正多边形的概念及正多边形与圆的关系 1.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( ) (1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形 A.(1)(2) B 。(2)(3) C.(1)(3) D 。(1)(4) 2.以下说法正确的是 A 。每个内角都是120°的六边形一定是正六边形。 B.正n 边形的对称轴不一定有n 条。 C.正n 边形的每一个外角度数等于它的中心角度数。 D.正多边形一定既是轴对称图形,又是中心对称图形. 3、若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( ) A 。1:2:3 B 。3:2:1 C.1:2:3 D. 3:2:1 4、如图,若正方形A 1B 1 C 1 D 1内接于正方形ABCD 的内接圆,则 AB B A 1 1的值为( ) A. 2 1 B 。22 C 。 4 1 D.42 5。 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为 ______________________. 第5题图 第6题图 6.如图,正方形ABCD 内接于⊙O ,点E 在AD 上,则∠BEC= 。 7.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于 底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度. 8。从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 。 O B C D A E F E D C B A O O D E C A

圆方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1). 设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2). 给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x .

(1) 当042 2 >-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2 E D C ,半径2 422F E D r -+= . (2) 当0422=-+F E D 时,方程表示一个点??? ??-- 2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形. 注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且 0422φAF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离2 2 B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0

(完整版)正多边形与圆-练习题 含答案

正多边形与圆 副标题 题号一二总分 得分 一、选择题(本大题共5小题,共15.0分) 1.有一边长为4的正n边形,它的一个内角为,则其外接圆的半径为 A. B. 4 C. D. 2 【答案】B 【解析】解:经过正n边形的中心O作边AB的垂线OC, 则度,度, 在直角中,根据三角函数得到. 故选B. 根据正n边形的特点,构造直角三角形,利用三角函数解决. 正多边形的计算一般要经过中心作边的垂线,并连接中心与一个端点 构造直角三角形,把正多边形的计算转化为解直角三角形. 2.如图,的外切正六边形ABCDEF的边长为2,则图中 阴影部分的面积为 A. B. C. D. 【答案】A 【解析】解:六边形ABCDEF是正六边形, , 是等边三角形,, 设点G为AB与的切点,连接OG,则, , . 故选A. 由于六边形ABCDEF是正六边形,所以,故是等边三角形, ,设点G为AB与的切点,连接OG,则, ,再根据,进而可得出结论. 本题考查的是正多边形和圆,根据正六边形的性质求出是等边三角形是解答此题的关键.

3.如图,是等边三角形ABC的外接圆,的半径为2,则等 边的边长为 A. 1 B. C. D. 【答案】D 【解析】解:作于D,连接OB,如图所示: 则, 是等边三角形ABC的外接圆, , , , , 即等边的边长为; 故选:D. 作于D,连接OB,由垂径定理得出,由等边三角形的性质和已知条件得出,求出OD,再由三角函数求出BD,即可得出BC 的长. 本题考查了等边三角形的性质、垂径定理、含角的直角三角形的性质、三角函数;熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键. 4.如图,正六边形ABCDEF内接于,半径为4,则这 个正六边形的边心距OM和的长分别为 A. 2, B. , C. , D. , 【答案】D 【解析】解:连接OB, , , , , 故选:D. 正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可. 本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,

正多边形和圆及圆的有关计算

正多边形和圆及圆的有关计算 一、知识梳理: 1、正多边形和圆 各边相等,各角也相等的多边形叫正多边形。 定理:把圆分成n (n >3)等分: (l )依次连结各分点所得的多边形是这个圆的内按正多边形; (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形。 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。 正多边形的外接(或内切)圆的圆心叫正多边形的中心。外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距。 正多边形各边所对的外接圆的圆心角都相等,叫正多边形的中心角。 正n 边形的每个中心角等于n 360 正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。 若n 为偶数,则正n 边形又是中心对称图形,它的中心就是对称中心。 边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。 2、正多边形的有关计算 正n 边形的每个内角都等于n n 180)2(- 定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。正多边形的有关计算都归结为解直角三角形的计算。 3、画正多边形 (1)用量角器等分圆 (2)用尺规等分圆 正三、正六、正八、正四及其倍数(正多边形)。 正五边形的近似作法(等分圆心角) 4、圆周长、弧长 (1)圆周长C =2πR ;(2)弧长180R n L π= 5、圆扇形,弓形的面积 (l )圆面积:2R S π=; (2)扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。 在半径为R 的圆中,圆心角为n °的扇形面积S 扇形的计算公式为:3602R n S π=扇形 注意:因为扇形的弧长180 R n L π=。所以扇形的面积公式又可写为LR S 21=扇形 (3)弓形的面积 由弦及其所对的弧组成的圆形叫做弓形。 弓形面积可以在计算扇形面积和三角形面积的基础上求得。如果弓形的弧是劣弧,则弓形面积等于扇形面积减去三角形面积。若弓形的弧是优弧,则弓形面积等于扇形面积加上三

初三数学圆的知识点总结及例题详解

圆的基本性质 1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧. 9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。 直线与圆的位置关系 1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角. 4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线. 6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径. 圆与圆的位置关系 1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦. 3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点. 正多边形基本性质 1.正六边形的中心角为60°. 2.矩形是正多边形. 3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.

圆的基本性质 1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=90 5.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cm D.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.50 7.已知:如图,⊙O 中,弧A B 的度数为100°,则圆周角∠ACB 的度数是 . A.100° B.130° C.200° D.50 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.50° 9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. A.3 B.4 C.5 D. 10 点、直线和圆的位置关系 1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 . A.相离 B.相切 C.相交 D.相交或相离 2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 相离或相交 3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定 4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . A.0个 B.1个 C.2个 D.不能确定 5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 不能确定 6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D.不能确定 7. 已知圆的半径为6.5cm,直线l 和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 . ? ? C B A O ? B O C A D ? B O C A D ? B O C A D ? D B C A O ? D B C A O ? D B C A O

相关主题
文本预览
相关文档 最新文档