当前位置:文档之家› 海洋生态系统管理的原则

海洋生态系统管理的原则

海洋生态系统管理的原则
海洋生态系统管理的原则

Principles for managing marine ecosystems

prone to tipping points

Kimberly A.Selkoe,1,2,17Thorsten Blenckner,3Margaret R.Caldwell,4Larry B.Crowder,4Ashley L.Erickson,4Timothy E.Essington,5James A.Estes,6Rod M.Fujita,7Benjamin S.Halpern,1,8,9Mary E.Hunsicker,1Carrie V .Kappel,1Ryan P .Kelly,10John N.Kittinger,11Phillip S.Levin,12John M.Lynham,13Megan E.Mach,4Rebecca G.Martone,4Lindley A.Mease,4Anne K.Salomon,14Jameal F.Samhouri,12Courtney Scarborough,1Adrian C.Stier,1

Crow White,15and Joy Zedler 16

1

National Center for Ecological Analysis and Synthesis,735State Street,Suite 300,Santa Barbara,California 93101USA

2

Hawaii Institute of Marine Biology,University of Hawaii,Kaneohe,Hawaii 96744USA 3

Stockholm Resilience Centre,Stockholm University,Kra ¨ftriket 2B,10691Stockholm,Sweden 4

Center for Ocean Solutions,Stanford Woods Institute for the Environment,Stanford University,

473Via Ortega Room 193,Stanford,California 94305USA

5

School of Aquatic and Fishery Sciences,University of Washington,Seattle,Washington 98195USA

6

Department of Ecology and Evolutionary Biology,100Shaffer Road,University of California,Santa Cruz,California 95060USA

7

Environmental Defense Fund,123Mission Street,28th Floor,San Francisco,California 94105USA

8

Bren School of Environmental Science and Management,University of California,Santa Barbara,California 93106USA

9

Imperial College London,Silwood Park Campus,Buckhurst Road,Ascot SL57PY United Kingdom

10

School of Marine and Environmental Affairs,University of Washington,3707Brooklyn Avenue NE,Seattle,Washington 98105-6715USA

11

Conservation International,Betty and Gordon Moore Center for Science and Oceans,

7192Kalaniana ‘ole Highway,Suite G230,Honolulu,Hawaii 96825USA

12

Conservation Biology Division,Northwest Fisheries Science Center,National Marine Fisheries Service,

National Oceanic and Atmospheric Administration,2725Montlake Boulevard East,Seattle,Washington 98112USA

13

Department of Economics,University of Hawaii at Manoa,Honolulu,Hawaii 96822USA

14

School of Resource and Environmental Management,Simon Fraser University,Burnaby,British Columbia V5A 1S6Canada 15

Department of Biological Sciences,California Polytechnic State University,San Luis Obispo,California 93407USA

16

Botany Department,University of Wisconsin,Madison,Wisconsin 53706USA

Abstract.As climatic changes and human uses intensify,resource managers and other decision makers are taking actions to either avoid or respond to ecosystem tipping points,or dramatic shifts in structure and function that are often costly and hard to reverse.Evidence indicates that explicitly addressing tipping points leads to improved management outcomes.Drawing on theory and examples from marine systems,we distill a set of seven principles to guide effective management in ecosystems with tipping points,derived from the best available science.These principles are based on observations that tipping points (1)are possible everywhere,(2)are associated with intense and/or multifaceted human use,(3)may be preceded by changes in early-warning indicators,(4)may redistribute benefits among stakeholders,(5)affect the relative costs of action and inaction,(6)suggest biologically informed management targets,and (7)often require an adaptive response to monitoring.We suggest that early action to preserve system resilience is likely more practical,affordable,and effective than late action to halt or reverse a tipping point.We articulate a conceptual approach to management focused on linking management targets to thresholds,tracking early-warning signals of ecosystem instability,and stepping up investment in monitoring and mitigation as the likelihood of dramatic ecosystem change increases.This approach can simplify and economize management by allowing decision makers to capitalize on the increasing value of precise information about threshold relationships when a system is closer to tipping or by ensuring that restoration effort is sufficient to tip a system into the desired regime.

Key words:critical transition;ecosystem-based management;marine spatial planning;nonlinear relationships;restoration ecology;stakeholder engagement .

Citation:Selkoe,K.A.,et al.2015.Principles for managing marine ecosystems prone to tipping points.Ecosystem Health and Sustainability 1(5):17.https://www.doczj.com/doc/0a2826339.html,/10.1890/EHS14-0024.1

Introduction

Ecosystems sometimes undergo large,sudden,and surprising changes in response to stressors.Theory and Manuscript received 14December 2014;revised 3March 2015;accepted 4March 2015;final version received 22April 2015;published 15July 2015.

17E-mail:

selkoe@https://www.doczj.com/doc/0a2826339.html,

empirical evidence suggest that many complex systems have system boundaries(also called thresholds or tipping points;see Table1)beyond which the system will rapidly reorganize into an alternative regime (Lewontin1969,Holling1973,Sutherland1974,May 1977,Scheffer et al.2001,Scheffer and Carpenter2003, Folke et al.2004,Petraitis et al.2009).Tipping points can be quantified as zones of rapid change in a nonlinear relationship between ecosystem condition and intensity of a driver(Fig.1,Table2).For those who have witnessed collapsing fish stocks,cascading effects of eutrophication or overfishing,or climate-driven shifts in food webs,such tipping points may be intuitively understood.Nevertheless,rapid ecological shifts may surprise us,particularly when we have assumed linear, additive,and gradual ecological responses to impacts of human uses or natural drivers.Unanticipated ecological changes can be socially,culturally,and economically costly(Doak et al.2008,Scheffer et al.2009,Travis et al. 2014).For instance,in many aquatic systems,gradual increases in nutrient loading may have limited impacts on aquatic and marine ecosystems until a threshold nutrient level is reached,creating harmful algal blooms and oxygen-depleted zones that threaten water quality, human health,and animal life(e.g.,Rabalais et al.2010, Johannessen and Miles2011,Michalak et al.2013). However,for decades,water quality managers assumed constant,linear relationships between sewage discharge and impacts on local waterbodies,such as Lake Washington in Seattle,Washington,USA,and Tampa Bay,Florida,USA(Edmondson and Lehman1981, Greening and Janicki2006).Many such waterbodies have since tipped rapidly from clear-water,productive ecosystems to algal-dominated environments that pose health risks,compromise recreation,and threaten aquatic life.Given increasing evidence and understand-ing of complex system behavior and ecosystem tipping points,scientists,managers,stakeholders,and policy-makers may benefit from new or renewed consideration of how plans and strategies can account for possible tipping points,whether the context is ecosystem-based management,environmental restoration,single-sector management(e.g.,fisheries),or comprehensive spatial planning.

Our focus here is on managing marine systems prone to tipping points,but the issues and solutions we discuss are relevant to any setting in which ecosystems are likely to exhibit tipping points.A recent synthesis of managed ecosystems showed that,in a variety of settings,manage-ment strategies that include monitoring ecosystem state and identifying measurable tipping points tend to be more effective in achieving stated conservation and manage-ment goals than strategies that do not consider possible tipping points(Kelly et al.2014b).As a precursor to tackling implementation,this study lays out the motiva-tions and principles for acknowledging and addressing the potential for tipping points in marine ecosystems.Although many of these ideas have been articulated individually elsewhere,we synthesize them in a cohesive, accessible format,supported by theory(Table2)and applied specifically to marine natural resource manage-ment.Our focus on marine tipping points complements recent efforts to list key challenges of applying resilience theory to social-ecological systems(Walker and Salt2012) and principles for enhancing resilience of ecosystem services(Biggs et al.2012).Our approach is inspired by similar efforts to translate broad scientific insights and management ideals into specific planning guidelines by articulating principles of ecosystem-based management and marine spatial planning(Leslie and McLeod2007, Foley et al.2010).

Seven Principles for Managing Ecosystem Tipping Points

In a series of five workshops held in2013and2014with subsets of the coauthors and a dozen other scientists, marine managers,stewards,and policymakers(see Acknowledgements),we sought to generate and then prioritize a short list of principles for managing marine ecosystems prone to tipping points.We began by articulating fundamental traits of ecological and social-ecological tipping points,derived from ecological resilience theory,that participants felt were most relevant to management(Table2).We describe these traits using examples from marine systems.Next,we discuss the significance of these traits for management of social-ecological systems in marine and coastal settings.Management principles were generated through group discussion and drawn from existing literature on application of theory to management practice(Table3).

1.Tipping points are common

The ecological literature provides numerous examples of nonlinear relationships between predictor and response variables,including responses exhibited at individual, population,species,and ecosystem levels.Examples of fundamental,ubiquitous,nonlinear responses include density dependence,such as the logistic curve of population growth,the Allee effect(i.e.,accelerating likelihood of local extinction as population density falls below a minimum threshold;Stephens et al.1999,Dulvy et al.2003),and the relationship of per capita consump-tion rate to food availability(Holling1959,Arditi and Ginzburg1989,Abrams and Ginzburg2000).Dose-response curves are also pervasive in physiology,and some can cascade to ecosystem-level responses(e.g., Salazar and Salazar1991,Fairchild et al.1992,Meador et al.2002,Karnosky et al.2005,Lockwood et al.2005).A recent synthesis of empirical studies in pelagic marine systems provides further support for the ubiquity of threshold responses(M.E.Hunsicker et al.,unpublished

manuscript).Across736quantified stressor–response relationships involving a variety of climate,fishing, and food-web stressor types,over half were nonlinear. When nonlinearities occur,they are often strongly nonlinear,and thus may have detectable thresholds that can be quantified and incorporated into management decision-making(M. E.Hunsicker et al.,unpublished manuscript).

Tipping points are perhaps less often documented and/ or recognized at the ecosystem level than the species level.They occur as a consequence of changes in feedback processes that impart stability and resilience to the ecosystem’s configuration.Ecosystems tend to resist major change until a‘‘breaking point’’is reached(Table 2).Commonly observed marine ecosystem tipping points include the sudden development of anoxic conditions in estuaries,transition of coral-dominated reefs to macro-algal-dominated reefs,and rapid loss of kelp cover after urchin population explosions(Samhouri et al.2010, McClanahan et al.2011,Rocha et al.2015).A forthcoming synthesis of marine ecosystem shifts at95locations worldwide found that examples spanned a wide diver-

Table1.Foundational concepts behind the theory of tipping points.

Term Definition

Cross-scale interactions Processes at one spatial or temporal scale interact with processes at another scale,resulting in an

ecosystem tipping point.These interactions change pattern–process relationships across scales such

that fine-scale processes can influence a broad spatial extent or a long time period,or broadscale

drivers can interact with fine-scale processes to create surprising or unpredictable system dynamics

(Peters et al.2007).

Early-warning indicator A system metric that can be monitored through time and is known to show predictable changes in

advance of an event(i.e.,tipping point)to provide warning of the event or clues suggesting increase

in its probability of occurring.

Ecosystem state A multidimensional description of an ecosystem,which may include metrics of composition,structure, functions,governing processes,and other emergent properties that distinguish the state from other

possible states of interest.

External driver A force of change that can affect the ecosystem but is unaffected by the ecosystem(as measured over the most relevant temporal scale).Drivers can be natural or anthropogenic processes,events,or

activities that cause a change in an ecosystem process,component,function,property,or service.For

example,sedimentation(e.g.,from erosion caused by coastal development)is a driver of coral

mortality.A stressor is a category of driver.

Feedback An ecological process within an ecosystem that either reinforces or degrades resilience of a regime

(Briske et al.2006).Positive feedbacks are destabilizing(they amplify the amount of change the

system will experience in response to a small perturbation),whereas negative feedbacks are stabilizing

(they dampen effects of perturbations),counteracting change(Suding and Hobbs2009,Nystrom et al.

2012).

Hysteresis A pattern observed when the pathway of recovery of an ecosystem differs from its pathway of

degradation(Suding and Hobbs2009);path dependence.In other words,a different threshold must

be crossed for recovery,often with time lags to recovery even when stressors are abated

(Montefalcone et al.2011).Factors such as random chance operating on which species colonize first

and then exclude or facilitate coexistence of other species(priority effects)or the specific sequence of

habitat alteration events in a successional process can cause path dependence.

Nonlinear Nonlinear relationships have one or more curves or points of rapid change and are often used to

graphically represent tipping points in driver–response relationships of ecosystems.

Regime shift The rapid reorganization of a system from one relatively unchanging state over time to another

(Carpenter and Folke2006);synonym of tipping point.Distinct and relatively unchanging regimes are

characterized by a set of governing processes,species compositions,and relationships among species

and external drivers.Initial conditions can also shape an observed regime.

Resilience The capacity of an ecosystem to tolerate disturbance without crossing a threshold into a different regime (Folke et al.2004,Suding and Hobbs2009).Speed of recovery following perturbation is a common

empirical metric of resilience.Resilience imparts regime stability without precluding change,flexibility,

and/or adaptation.

Stressor A type of driver that is specifically linked directly or indirectly to human use(s)and/or actions that cause undesired change in an ecosystem.

Threshold A relatively rapid change from one ecological condition to another.When a system is close to an

ecological threshold,a large ecological response results from a relatively small change in a driver

(Bennett and Radford2003,Huggett2005,Groffman et al.2006,Suding and Hobbs2009).Ecological

thresholds exist at all levels of organization,including single populations and species,species

interactions,ecosystem functions/processes,and whole ecosystems.

Trigger An internal system behavior that initiates a regime shift,e.g.,disease outbreak or mass coral bleaching.

The behavior can be due to an external shock,e.g.,cyclone,or culmination of a positive feedback loop

(Suding and Hobbs2009).

Note:The concept of ecosystem tipping points largely derives from theoretical ecology,with important contributions from subdisciplines focused on ecosystems,restoration and resilience,climatology,systems biology,neurobiology,mathematics,and engineering.

Fig.1.Types of regime shifts.Phase shifts can be smooth or nonlinear,whereas alternative stable states show discontinuous change with some level of hysteresis.Modified from Dudgeon et al.(2010).

Table2.A brief primer on the theory behind ecosystem tipping point.

Theory Explanation

Ecosystems show alternative stable states,a.k.a.dynamic regimes.Ecosystems may have alternative states with different structure and function,(a.k.a.regimes),under otherwise similar environmental conditions.Initial conditions(e.g.,which species is colonized)and external conditions(e.g.,the degree of resource extraction,pollution,habitat alteration,and inherent productivity)contribute to a regime’s configuration.Stable states are not truly static:regular fluctuations and stochastic change occurs around an average state.

Changes to feedbacks cause tipping points.A small number of feedback mechanisms maintain an ecosystem in a given state.When mounting stress disrupts one or more feedback mechanisms,the system can cross a tipping point and rapidly reorganize into another regime with new stabilizing feedback mechanisms.Thus,restoration may require triggering a new tipping point by disrupting feedback mechanisms.

Resilience mediates sensitivity to tipping points.Resilience depends on factors like species diversity,functional redundancy(multiple species playing similar ecological roles),and complementarity among species(slight differences in how species carry out those roles;Chapin et al.1997,Peterson et al.1998,Luck et al.2003,Laliberte et al.2010,Karp et al.2011,Thibaut et al.2012,Mori et al.2013).Because of diversity and redundancy in feedback processes,a combination of drivers is often needed to erode resilience to the point of breaking key stabilizing feedbacks(Scheffer and Carpenter2003).

Characteristic changes in diversity and stability precede regime shifts.Loss of resilience as a system approaches a tipping point may occur in distinct stages(Briske et al.2006, McClanahan et al.2011),resulting in a series of changes in ecosystem function that precede a system-level shift.Grassland and coral reef studies have identified consistent metrics that may indicate these stages.For instance,a dip in reef species richness occurs early on,whereas estimates of coral cover show a sudden drop just prior to a shift to algal dominance(McClanahan et al.2011,Karr et al.2015).

The trigger of a tipping point may be a small-scale event.Cross-scale interactions are key to regime shifts.When stabilizing feedbacks have been altered and the system suffers a large loss of resilience,any further incremental change or shock to the system may be the final straw that produces a large response:a tipping point due to the collapse of stabilizing feedbacks.The spatial extent of a regime shift is often larger than the trigger event due to cascading effects.For example,a single lightning strike can ignite a fire that spreads nonlinearly across a vast range as the dominant processes controlling the fire move from the scale of individual trees to within patch variation in fuel load to among-patch connectivity(Peters et al.2007).The accelerating spread of an invasive species,which gets a foothold in a new region by exploiting a local disturbance event,may show similar dynamics.

Connectivity encourages nonlinear/threshold responses.Mechanisms of connectivity,such as larval dispersal,ocean currents,and migratory species,can facilitate the ripple effect of a localized regime shift by linking distant communities.However,connectivity can buffer impacts of stress when unimpacted areas serve as source populations.Thus,connectivity can enhance cross-scale interactions,which increases the likelihood of threshold responses and regime shifts(Nystrom et al.2012).

Socioeconomic tipping points may accompany ecological tipping points.When shifts give rise to new sets of dominant species and functions,associated ecosystem services often change in nature and extent(Graham et al.2013).In some cases,these feedbacks lead to hysteresis, such that recreating the previous external conditions fails to produce the former regime or the system is very slow to return to its former state.Restoring an ecosystem that has crossed a tipping point and exhibits hysteresis may not be achieved by simply reversing or abating the causal drivers,and restoration thus will likely be more costly and unpredictable.

sity of ecosystem types and geographic locations(C. Kappel,unpublished manuscript).Oceanographic connec-tivity may strengthen the nonlinearity of marine popu-lation-and ecosystem-level responses.Connectivity may facilitate spread of a regime shift across areas;conversely, connectivity can also impart stability and resilience when it allows replenishment from distant refuges(Allison et al.1998,Olds et al.2012).Importantly,even when ecological responses to stressors are relatively linear, such changes may trigger nonlinear responses in linked social-ecological systems,creating an ecosystem tipping point,such as when fishery productivity falls below a cost-effective level for fleet operation(Poe et al.2014). Management principle:in the absence of evidence

to the contrary,assume potential for nonlinear relationships and tipping points

Clearly stating assumptions about linear vs.nonlinear ecosystem responses(such as within environmental impact assessments or fishery management plans),and examining consequences of assumptions,will help guide expectations and assessment strategies.Modify-ing assumptions,monitoring plans,and management actions to presume tipping points exist may reduce risk of adverse social,economic,and ecological outcomes and surprises associated with transitions to alternative ecosystem states,despite the apparent up-front cost of these modifications.Engaging experts to quantify relationships between ecosystem response variables and drivers of concern can reduce the need for assumptions.Even preliminary estimates of tipping points serve to document their presence and motivate increased monitoring and refinement of threshold estimates.

2.Intense human use,often involving multiple drivers,may cause a tipping point by radically altering ecological structure and function Because complex systems absorb disturbance and resist change,great pressure is sometimes needed to cross a tipping point;in other cases,for systems that are already close to a tipping point or have lower resilience,smaller pressures suffice.There are several examples of systems that have crossed tipping points when local-scale anthropogenic stresses precede a period of large-scale climatic change,whether the climate change is anthro-pogenic or natural.In both the Baltic and Black Seas, overharvest of top predators and eutrophication from pollution produced significant alteration of trophic dynamics after a sudden change in climatic conditions (e.g.,a switch from a predator guild dominated by fishes to jellyfish in the Black Sea[Daskalov2002,Oguz and Gilbert2007],and a switch from piscivore to planktivore domination in the Baltic Sea[Casini et al.2009]).Effects of human exploitation can be exacerbated in ecosystems subject to large natural climatic oscillations(e.g.,the Pacific decadal oscillation and Atlantic multidecadal oscillation;AMO),perhaps because loss of resilience from human impacts hampers the ability of key species and whole food webs to weather swings in temperature and productivity(Hsieh et al.2008,Planque et al.2010). The ecological effects of climate cycles become more complex and unpredictable when intense fishing or anthropogenic climatic stressors co-occur,making tip-ping points more likely(e.g.,ocean acidification plus ocean warming;Griffith et al.2011,Lindegren et al. 2013,Ohman et al.2013).

In coastal systems,land-and ocean-based stressors can interact to cause marine tipping points.In many coral reef ecosystems,land-use changes have caused increased nearshore nutrient and sediment concentra-tions and,at the same time,overfishing of herbivorous fishes reduced grazer diversity(e.g.,Caribbean[Hughes 1994],Seychelles[Graham et al.2006]).In Discovery Bay, Jamaica,and elsewhere in the Caribbean,overfishing enabled the spiny sea urchin population to explode, which first maintained low algal cover in the absence of fish herbivory,but then succumbed to a disease epidemic.Ongoing nutrient enrichment combined with reduced grazer densities to produce algal overgrowth.A hurricane in1989then caused a significant die-off of the

Table3.Summary of principles for managing ecosystems prone to tipping points.

Social-ecological observation Management principle

1.Tipping points are common. 1.In the absence of evidence to the contrary,assume

nonlinearity.

2.Intense human use may cause a tipping point by radically altering ecological structure and function.2.Address stressor intensity and interactive,cross-scale effects of human uses to avoid tipping points.

3.Early-warning indicators of tipping points enable proactive responses.3.Work toward identifying and monitoring leading indicators of tipping points.

4.Crossing a tipping point may redistribute ecosystem benefits.4.Work to make transparent the effects of tipping points on benefits,burdens,and preferences.

5.Tipping points change the balance between costs of action

and inaction.

5.Tipping points warrant increased precaution.

6.Thresholds can guide target-setting for management. 6.Tie management targets to ecosystem thresholds.

7.Tiered management can reduce monitoring costs while managing risk.7.Increase monitoring and intervention as risk of a tipping point increases.

remaining coral.Historically,the system had recovered from hurricanes,but due to the loss of ecosystem resilience,this shock to the system shifted coral reefs to an algal-dominated regime with altered species interac-tions and feedbacks.Ocean acidification and tempera-ture stress from climate change are expected to further reduce the resilience of reefs worldwide(Hoegh-Guld-berg et al.2007).

Tipping points have also been tied to single,intense stressors,most often intense harvest of a key predator (Estes et al.1998,2011,Myers et al.2007,Baum and Worm2009,Ferretti et al.2010).Otter removal is the singular cause of rocky reef shifts from kelp forest to urchin barrens in the northeast Pacific(Estes and Palmisano1974,Estes and Duggins1995,Dean et al. 2000).Fishing is likely to be the singular cause of coral reef regime shifts in Fiji(Rasher et al.2013)and the shift from cod-to lobster-dominated food webs in the Gulf of Maine(Steneck and Wahle2013).These shifts occurred when a central node or compartment of the food web was removed,a potentially common cause of system-wide regime shifts and trophic cascades(Scheffer et al. 2001,Daskalov2002,Frank et al.2005,2011,Estes et al. 2011,O’Gorman et al.2011;C.Kappel et al.,unpublished manuscript).

Management principle:address stressor intensity

and interactive,cross-scale effects of human use

to avoid tipping points

Understanding and tracking cross-scale interactions in both human and natural dimensions of a managed system is critical.Questions to consider include:How might global or regional drivers have the potential to override local management actions?And how might large-scale tipping points cascade up from local events, such as disease outbreaks,storm damage,and changes in fleet behavior?Tying management reference points to metrics of both human and natural dimensions may assist in reducing interactive effects(Large et al.2013). For instance,during a warm AMO phase with higher total biomass available for landings,fisheries managers might consider less conservative harvest quotas for the northeastern United States shelf;in a cool AMO phase, more conservative harvest quotas may be more appro-priate.In systems dominated by a keystone species that preserves a desired ecosystem state,managers could prioritize monitoring cumulative impacts to that species. In situations with many types of human uses and threats(e.g.,most coastal zones),explicit decision rules can be adopted to address combinations of human uses. Caps on total allowable human use or total allowable harm(sensu Canadian species at risk;Ve′lez-Espino and Koops2009)can provide a vehicle for this strategy.Such an approach requires cooperation and coordination across management sectors,which often operate on different time and geographic scales,adding to the potential for cross-scale social-ecological interactions.In some cases,substantive jurisdictional incompatibilities make such coordination extremely difficult to achieve.

3.Changes in early-warning indicators

may precede ecosystem tipping points Although it is difficult to predict the exact amount of stress that will trigger a tipping point,warning signs that precede the tipping point can be instrumental in avoiding collapse.Theory predicts that diversity and functional redundancy at multiple levels(e.g.,within species,across species,and across trophic groups)affect a system’s resilience to change(Table2).As components of the ecosystem are compromised or lost,the system may lose resilience and become more prone to crossing a tipping point with the next shock or stressor(Briske et al.2006,Brandl and Bellwood2014).For example,a case study of Bristol Bay,Alaska,USA,sockeye salmon revealed how population-level diversity can maintain resilience of a heavily exploited species(Schindler et al. 2010).Diversity in genetic traits controlling behavior and environmental tolerance of individual spawning stocks creates a portfolio effect within and across watersheds:variation in timing of salmon returning from sea enhances the ability of the whole population to absorb environmental stresses,stabilizing ecosystem processes,ecosystem services,and the human econo-mies that depend on them(Schindler et al.2010).

New large-scale studies show that the particular sequence of change in measures of resilience and/or ecosystem state can be consistent at regional scales, suggesting these changes can be monitored to reveal early-warning indicators of a tipping point.System-specific metrics are beginning to emerge from syntheses of empirical data.For example,in South Pacific reef fishes,phylogenetic and functional diversity were found to be more sensitive indicators of human impacts than species richness(D’Agata et al.2014).In separate studies of Indian Ocean and Caribbean coral reefs(McClanahan et al.2011,Karr et al.2015),increased spatial variance in macroalgal cover was identified as a leading indicator of decline in coral dominance while coral cover itself was a lagging indicator;the results held at local and regional scales.Both studies suggested a rule of thumb that preserving50%of unfished biomass in the coral reef state should reduce the risk of a sudden change in state to macroalgal dominance while likely preserving high yields(Fig.2;Hilborn2010,Karr et al.2015).

When high-quality time series chronicling historical ecosystem tipping points exist,they can be mined to identify species or system traits that changed in advance of the ecosystem shift and might serve as early-warning indicators of a future tipping point.Promising early-warning indicators include variance and autocorrelation of biomass,densities,and catch,and rate of recovery from perturbation,i.e.,critical slowing down(Carpenter and Brock2006,Scheffer2009,Scheffer et al.2009,Dakos

et al.2011,2012,Dai et al.2012,2013,Kefi et al.2014).In a recent study,increased spatial variance in crustacean fishery catch was found to precede stock collapses by one to four years (Bering Sea and Gulf of Alaska;Litzow et al.2013).Finding reliable leading indicators of tipping points is a promising and growing area of research (see review by Ditlevsen and Johnsen 2010,Boettiger and Hastings 2012a ,b ,Dakos et al.2015),but still in the early stages and challenged by data needs (e.g.,attempts to find early-warning indicators based on zooplankton in central Baltic Sea time series were equivocal,perhaps due to data quality;Lindegren et al.2012).

Management principle:work toward identifying and monitoring leading indicators of tipping points

Though challenging to define and often data-intensive,early-warning indicators can enable managers to trigger rapid,adaptive management responses to pending ecosystem change (Fujita et al.2013b ).In the absence of system-specific indicator data,protecting functional diversity and redundancy may be a useful rule of thumb (Elmqvist et al.2003).Understanding species ’roles in the food web can further guide which components of diversity and redundancy are most critical.Partnering with scientists and on-the-water experts to investigate potential early-warning indicators of declining resilience (e.g.,interannual variability in catch per unit effort;Litzow et al.2008)can help managers develop indicators specific to vulnerabilities of the focal ecosystem and address priority stressors.When time-series data are unavailable,spatial data spanning a gradient of condi-tions may help characterize relationships between

anthropogenic stressors and measurable ecosystem components and identify potential leading indicators of ecosystem shifts (Fig.2;McClanahan et al.2011,Karr et al.2015).

Importantly,using early-warning indicators requires real-time data streams and management processes nimble enough to respond proactively and adaptively,ideally with strong localized control.A Pacific oyster aquaculture company in Washington State,USA,active-ly manages around a tipping point in ocean pH that leads to a precipitous decline in larval growth and viability.The operation has hourly pH measurements to enable use of an alternate water supply when acidity of nearshore waters reaches harmful levels (Barton et al.2012,Washington Blue Ribbon Panel on Ocean Acidifi-cation 2012).Management frameworks can include decision rules that enable flexibility.For instance,in coral reef systems,plans focused on coral recovery could allow for imposing temporary,immediate bans on herbivore harvest at small scales when coral bleaching levels exceed a predetermined threshold.

4.Crossing a tipping point may redistribute benefits to stakeholders

When an ecosystem crosses a tipping point,its dominant species,food-web structure,diversity,and functions change.In some cases,tipping points cause severe loss of biodiversity and benefits (e.g.,eutrophi-cation and algal domination of coasts and reefs).However,the new regime may also provide new benefits (e.g.,a switch from finfisheries to shellfisheries).For human economies to effectively capitalize on

these Fig.2.Empirically derived rules of thumb can serve as management targets focused on avoiding levels of human use associated with tipping points or degraded states in fairly data-poor situations.Coral reef studies suggest that a number of coral reef system traits widely believed to relate to resilience (e.g.,the proportion of herbivorous fishes,the number of fish species,and urchin density)show steep declines when fish biomass falls below 50%of unfished biomass.Unfished density can be estimated from established local no-take reserves.A tiered approach to risk might set response plans based on these targets (colored circles).

new benefits,societal shifts are often required,including new capital investments,supply chains,and social dynamics.Thus,tipping points may be accompanied by a period of social and economic disruption.Impor-tantly,once adaptation is underway,there can be a disincentive to support restoration of the older regime. Resource users can become entrenched in their prefer-ences and investments over time in the existing regime. In the Gulf of Maine,for example,a high-value,cod-dominated ecosystem shifted to a more lucrative, lobster-dominated state as cod were overfished(Steneck et al.2011).Many stakeholders(most obviously the lobster-fishing industry)consequently oppose efforts to restore cod dominance,which might compromise lobster productivity.Similarly,fierce debate continues over whether to avoid or support otter reestablishment in Southern California,USA,and elsewhere following decades of local extinction that allowed shellfisheries to flourish(see Otters,urchins,and kelp forests:linking tipping points to target-setting and monitoring).This entrenchment may be common in systems that exhibit tipping point behavior.The longer a regime has been stable(or the longer a user has interacted with the regime),the more managers might anticipate some resistance to restoration(Duarte et al.2009).

Even when all stakeholders would eventually gain from a changing ecosystem state,it may be difficult to implement change if the immediate cost is dispropor-tionate among stakeholders(Smith et al.2010).In some cases,a less-desired state with fewer services may be preferred when the expense of restoring or avoiding degradation is too high or uncertain(e.g.,removal of sewage input or removal of hardened shoreline and restoration of natural habitat;Kelly et al.2014a). Compromises may be possible in which novel ecosys-tems are engineered(sensu Hobbs et al.2006)to allow coexistence of otherwise mutually exclusive benefits through human or technological manipulations(e.g., mariculture,feed supplementation,hatcheries,and constructed habitats).

Management principle:work to make transparent

the effects of tipping points on distributions

of benefits,burdens,and preferences

Many management decisions are the result of decision makers trying to address underlying sets of(often contrasting)human values.Sudden and/or large shifts in ecosystem services associated with ecological tipping points highlight and possibly exacerbate potentially inequitable distribution of costs and benefits among stakeholders and sectors.For instance,recent modeling of the Baltic Sea food web estimated a lack of recovery of cod stocks following regime shift comes at an annual cost of EUR€120million(Bleckner et al.2015).Engaging user groups to explore the distribution of costs and benefits across stakeholders under possible tipping point scenarios can help foster dialogue about equity,which can inform decision-making about management alternatives.Stakeholder groups with the largest eco-nomic gains from the current regime are likely to have a louder voice(e.g.,capacity to organize and fund lobbying and participatory management activities)than marginalized groups or industries.Management pro-cesses that enable all groups to have a seat at the table may help avoid inequitable outcomes of participatory management.Improving environmental equity among groups can also help produce‘‘triple bottom line’’solutions(i.e.,social,environmental,and financial improvements),although a focus on equity can,under some circumstances,delay or lower probability of management success(Halpern et al.2013).

5.Tipping points change the balance between costs of action and inaction

Crossing tipping points may come with a high cost if valuable ecosystem benefits are lost and time to recovery is long.In contrast,if ecosystems were to respond to stressors in a linear,additive manner and improve predictably with the removal of stress,risks and costs associated with ecosystem change would be lower and relatively constant.Risk is a function of both probability of occurrence and magnitude of effect;both will rapidly climb as a tipping point is approached. Probability of tipping points may be difficult to determine,with tipping points often only understood when inevitable and imminent,or even passed(Hughes et al.2013),especially if the system is initially insensitive to mounting pressure.The impacts of crossing a tipping point are often difficult to predict but are exacerbated when hysteresis is strong,because recovery to the previous state is unlikely(Tables1and2).The high cost and difficulty of restoration in the face of hysteresis can exceed the limits and/or budgets of human ecosystem engineering(Fig.3).These various unknowns and barriers,and in particular,uncertainty in exactly where the tipping point lies,argue for increasing regulation of human uses and influences tied directly or indirectly to resilience and tipping points,especially when a system is thought to be moving toward a tipping point.

Precautionary regulation is often unpopular,finan-cially costly,or impractical,partly due to economic discounting and underestimating future risks(Scheffer 2009).However,tipping points change the balance between the costs of action and inaction.The cost of inaction skyrockets in a system that exhibits tipping points as pressure on a system intensifies,compromis-ing resilience and leaving little buffer for the system to absorb unforeseen shocks(Kelly et al.2014a).Early action to preserve resilience of a desired state is more practical,affordable,and perhaps effective than late action to prevent a tipping point by taking extreme measures to halt stress(Kelly et al.2014a).Note that if

and when probing experiments to learn about thresh-olds become possible,new knowledge may reduce the level of precaution needed (Farrow 2004).

In some cases,the decision by fisheries managers to set harvest levels below maximum sustainable yield (MSY)has been motivated by boosting precaution in order to avoid severe economic consequences of crossing a tipping point (i.e.,stock collapses;Punt et al.2012).Australia has fully adopted risk-based mea-sures throughout their fisheries management (Smith et al.2009).Similarly,scientists are calling for managers to significantly reduce take of forage fish below MSY to avoid risk of adverse ecological effects for dependent predators (e.g.,sea birds,mammals,and commercially valuable larger fish like halibut,salmon,and rockfish;Cury et al.2011,Hunsicker et al.2010,Smith et al.2011,Pikitch 2012).Managers can proactively protect func-tional redundancy and diversity in the food web,e.g.,by

protecting species or populations that might have little economic value but boost food-web resilience (Link 2007).

Management principle:tipping points warrant increased precaution

Because the exact location of a tipping point is often unknown and difficult to quantify,greater precaution in setting management targets may be justified.Rigorous cost–benefit analysis can help to inform precautionary target-setting and reveal how costs and benefits are distributed among stakeholders to assess equity.Stake-holders will vary in their risk tolerance;the role of science is to uncover those tolerances and present them on economic,ecological,and cultural axes to inform policy development (Burgman 2005,Shelton et al.2014).Increased information and tolerance for risk allow managers to approach a system ’s tipping point

more Fig.3.Recovery stymied by hysteresis.(A)Following dredging of San Diego Bay,California,USA,attempts to restore tall salt marsh cordgrass (Spartina foliosa )for nesting by the endangered Light-footed Clapper Rail (Rallus longirostris levipes )were ineffective in sandy substrates (including dredge spoil deposits).Field experiments revealed that height was nitrogen-limited,but five years of annual fertilizer additions could not restore self-sustaining tall canopies (Lindig-Cisneros et al.2003).Researchers and managers agreed that the mitigation site (shown here in its current state;photo by Joy Zedler)would never suit Clapper Rails.Fine clay soils of natural marshes could grow and sustain tall cordgrass,but importing clay and silt was not feasible.(B)Hysteresis plagues Hawaiian coral reefs within embayments downstream from erosion due to development,invasive ungulates,and native habitat removal.Very fine sediment remains trapped in protected embayments and is constantly resuspended but not flushed out by currents,blocking light and smothering corals for decades after the sedimentation event (Field et al.2008,Storlazzi et al.2009).There is no known method to safely and effectively remove such fine sediment (photos by Mike Field,USGS).

closely,while lower tolerance and knowledge gaps justify greater precaution.Factors affecting risk toler-ance for ecological tipping points include probability of crossing a tipping point,costs of precautionary actions, cost of restoration,probability of hysteresis or slow recovery,relative values of services lost and gained, costs of adapting to changes in resources and services, and the chance of triggering a socioeconomic collapse. Holding conversations among stakeholders and man-agers about the risks and costs associated with tipping points,and engaging stakeholders to clarify their tolerances for both,can yield important information for cost–benefit https://www.doczj.com/doc/0a2826339.html,municating and quantify-ing the ancillary benefits of precautionary action is also important.For example,capping harvest levels below MSY tends to increase profits,improve sport fishing, and in some cases,improve dive tourism while reducing risk of stock collapse(Grafton et al.2012).However,this approach requires strong regulatory control and access to plentiful data.Measures that make future benefits of precautionary action more salient,such as low-interest loan programs(e.g.,the California Fisheries Fund),catch shares,and other incentive-based programs,may be helpful(Grimm et al.2012,Fujita et al.2013a).

6.Thresholds can inform target-setting

for management

If threshold responses are strongly nonlinear,the thresholds themselves present logical limits that may simplify debate about how much use is acceptable (Rockstrom et al.2009).For stressors that are not under management control,understanding thresholds can still guide management responses to change.Because ecosystem stability and predictability decrease as

systems approach a threshold,using a precautionary buffer to set targets can help reduce risk of crossing a tipping point(Fig.4).Risk tolerance,cost of precaution, and uncertainty in the threshold value all factor into size of the buffer(e.g.,Samhouri et al.2010,Cury et al.2011, McClanahan et al.2011,Large et al.2013).Multiple examples of ecological threshold-based management standards exist within U.S.federal environmental laws, including MSY in the Magnuson Stevens Act,optimal sustainable production in the Marine Mammal Protec-tion Act,and jeopardy determinations under the Endangered Species Act(see Kelly et al.2014a). Management principle:tie management targets

to ecosystem thresholds

Identifying how and at what level activities and actions lead to ecosystem tipping points has high relevance to choosing effective management targets or limits.Exact targets will be influenced by societal risk tolerance, which is in turn related to the effort and expense required to mitigate risk.In restoration settings, management interventions that fall short of pushing a system past a recovery threshold may show no long-term progress.In other words,only a big investment is likely to pay off(i.e.,‘‘go big or go home’’;Fig.4;van der Heide et al.2007,Martin and Kirkman2009,Dixson et al.2014).The unhelpful resilience of the undesired state dampens response to interventions(Standish et al. 2014).For instance,models of nutrient reduction strategies to significantly reduce the dead zone in the Gulf of Mexico recently revealed that the agreed-upon goals(widely considered ambitious)are unlikely to generate a detectable change in the size of the dead zone (Dale et al.2010).

7.Tiered management can reduce monitoring costs while managing risk

Defining thresholds and setting precautionary buffers can be viewed as setting the boundaries of a system’s ‘‘safe operating space,’’in which risk of unwanted regime shift is low and resilience is high(Fig.4). Monitoring driver levels,ecosystem state indicators,

and Fig.4.A conceptual model of addressing tipping points with management targets.Maintaining or restoring a desired ecosystem regime may be aided by tying management targets to the threshold relationship(s)of top drivers to ecosystem condition.Assessments of cost,risk tolerance,and threshold confidence limits guide the width of a precaution-ary buffer that puts management targets within the safe operating space.To maintain a desired regime,the manage-ment target would be a maximum limit of a driver or cumulative impact to avoid a tipping point.To restore a desired regime,the management target would be a minimum restoration effort required to cause a tipping point.This conceptual example does not consider hysteresis,in which the threshold location differs depending on the direction of change across it(i.e.,preservation vs.restoration of a desired state).

metrics of resilience occurs with a tiered management system that boosts investments in intervention and monitoring in response to signs that the system is approaching the bounds of its safe operating space (Fig.5).Multidimensional versions of Figs.4and 5that acknowledge the many functions that make up an ecosystem,each with stressors that may contribute to ecosystem state change and require their own response plans,may be more effective when there are multiple interacting stressors and tipping points in a system (Rockstrom et al.2009).Tiered management is a type of adaptive management that depends on routine moni-toring that ramps up as a tipping point is approached.If a system is known to be far from the tipping point,i.e.,in the center of the safe operating space,then fewer resources need to be applied toward monitoring and managers can be more liberal in allowing activities affecting the system (i.e.,the low-risk tier).As the system begins to show signs of reduced resilience or proximity to a predicted tipping point,more resources can be invested in monitoring system indicators and

assessing tipping point risk and management can switch to a more precautionary mode that initiates more aggressive threat abatement (i.e.,the high-risk tier;Fig.5).For instance,fisheries management in the USA now involves tiered decision-making based on proximity of a fishery to an overfishing threshold,risk tolerance,and amount and quality of information available (i.e.,the NOAA-operated Allowable Catch Limits setting process and harvest control rules;Methot et al.2014).Also,environmental monitoring of pollutants has addressed uncertainty and risk tolerance by using tiered sets of targets:a threshold-effect limit is set at a level of harm that is considered reversible and a probable-effect limit is set at a level of harm considered irreversible (MacDonald et al.2000).

Kruger Park in South Africa uses a tiered manage-ment framework based on tipping point risk called ‘‘Thresholds of Potential Concern.’’When key indicators signal that one of these thresholds has been crossed,intense monitoring,more accurate estimation of key thresholds,detailed planning,and assessment of social preferences to inform management action are all triggered (Biggs and Rogers 2003).Importantly,before thresholds of potential concern are reached,monitoring and planning is relatively light,because intense prepa-ration and measurement that occur too early may be of low value,given the shifting nature of threats and thresholds.

Management principle:increase monitoring and intervention as risk of a tipping point increases

Development of a tiered approach tailored to a specific system can help managers respond efficiently based on proximity to a tipping point.Investment in monitoring could be reduced when system indicators suggest risk of tipping is low.Intense monitoring and increased regulation is more valuable when risk of tipping is high.Benchmarks chosen based on changes in ecosys-tem condition can signal when managers should adjust management strategy to a new tier (Fig.5).Cost–benefit analysis can make explicit the trade-offs between the cost of intense monitoring and the benefits derived from intense use when managers seek to operate close to a tipping point without crossing it.Moreover,if increased costs associated with managing close to a tipping point are acknowledged up front,these may influence decisions.Sequestering funds for management close to tipping points could further increase salience of these costs,similar to how a performance bond is designed to incentivize builders to avoid skimping to reduce costs in the short term in ways that may increase risk over the longer term (Little et al.2014).Fundamental to effective application of this tiered approach are leading indicators that are easily measurable and can help managers set benchmarks,predict ecosystem shifts,and act in a timely

fashion.Fig.5.Defining a tiered management response to risk.The top panel expands the green-shaded portion of Fig.4with further heuristic detail on delineated tiers of risk based on hypothetical indicators of approach to a tipping point.The bottom panel shows a basic response plan structure used to respond to monitoring data on changes in risk.

Otters,Urchins,and Kelp Forests:

An Example of Linking Tipping Points

to Target-setting and Monitoring

The19th century extirpation and recent recovery of sea otters along the west coast of North America has triggered ecological,cultural,and socioeconomic trans-formations that continue to elicit complex trade-offs in values and priorities among coastal communities.These trade-offs emerge because of the different ecosystem regimes that arise in systems with and without sea otters. The sea otter is a keystone predator of urchin,abalone, and other shellfish in kelp forests.On high-latitude reefs, when otters are absent,urchins undergo population booms that wipe out kelp,denuding the bottom and creating‘‘urchin barrens’’(Steneck et al.2002).Vast,old-growth kelp forests,and the diverse fish communities they support,are unable to reestablish once an urchin barren forms due to overgrazing of young plants.Long-term monitoring and experimental studies of sea otters and subtidal reefs in the Aleutian Islands(Alaska,USA), southeast Alaska,USA,and British Columbia,Canada, demonstrated that shifts between ecosystem states are rapid and absolute(Fig.6).These data further reveal that the sea otter–kelp forest system is characterized by hysteresis,where forward and backward state switches occur under different levels of otter density(Fig.7;Konar and Estes2003).

The high biodiversity and productivity of a kelp forest support a number of societal benefits:enhanced

commercial and recreational finfisheries,carbon storage, recreation,tourism,and coastal protection(Duggins 1980,Wilmers et al.2012,Schmitz et al.2014).In contrast,the urchin-dominated state provides lucrative urchin and shellfish fisheries,but its resilience is thought to be lower because biodiversity is low and the high density of shellfish increases risk of disease epidemics (Duggins et al.1989,Lafferty2004,Anthony et al.2008). Furthermore,the singular focus of the urchin fishery enhances the tendency for overexploitation and fishery collapse.Nevertheless,fishing infrastructure and life-styles have adapted to supporting the shellfishery,and the investments needed to switch to a diversified economy built around finfisheries and tourism are considerable.Thus,there may be strong preference for the lower-diversity,lower-resilience state because of socioeconomic entrenchment and,no less important, cultural legacies.

Through the lens of this well-studied example,we illustrate the relevance of each of the principles(Table3) and the use of thresholds to set targets based on risk and uncertainty.

1.Tipping points are common.Abrupt switches be-

tween kelp and urchin dominance have been

shown around the world,with evidence for

hysteresis(Fig.6;Steneck et al.2013,Filbee-

Dexter and Scheibling2014).Although kelp forest

ecosystems may be more dynamic than other

marine systems,they help highlight the need for

management to acknowledge and address tipping

point behavior.

2.Intense human use is implicated.The extirpation of

otters due to hunting is a prime example of

intense human use,in this case focused on a

keystone species,driving an ecosystem past a

tipping point.

3.Early-warning indicators are possible.Monitoring

otter,urchin,and kelp densities and rates of

population growth can indicate risk of tipping

points.In particular,declining otter densities may

offer a robust early-warning indicator of an

imminent ecosystem shift to urchin barrens,

although the threshold number of otters likely

differs among regions.

4.Ecosystem benefits shift with regimes.Kelp forests

support diverse finfisheries,recreation,and tour-

ism,while urchin barrens support lucrative

shellfisheries.Adapting infrastructure and indus-

tries to switch between these sets of services is

costly,with clear trade-offs.

5.Tipping points warrant increased precaution.To

maintain shellfisheries in the face of

otter Fig.6.Field estimates of kelp density and urchin biomass across463coastal sites in the Aleutian archipelago(Alaska, USA)between1987and2006.Open circles are sites with,6 otters/km;solid squares are sites with.6otters/km; diamonds are sites with no otter data available.These data demonstrate the nonlinear relationship with kelp cover and the lack of intermediate states,suggesting the transition between kelp-and urchin-dominated states is abrupt.Plot taken from Estes et al.(2010).Photographs by Jenn Burt and Lynn Lee.

rebound,a risk-adverse strategy was implement-ed in southern California,USA,to relocate each otter that strayed into otter exclusion zones rather than wait until signs of otter population estab-lishment or kelp regrowth to take action (Fig.8).6.

Thresholds aid target setting .Robust estimates of otter densities tied to the kelp/urchin transition point can be used to set target otter densities depending on preferred regime (Fig.7).Prefera-bly,these threshold estimates derive from local data.

7.

Tiered management efficiently responds to monitoring data .Response plans to either reduce or support otter and urchin population sizes (depending on desired regime)can be implemented with increas-ing intensity and monitoring as the tipping point is approached.To maintain kelp forests as otters declined,managers in Alaska,USA,implemented new regulations to protect critical otter habitat (Fig.8).

Discussion

Policymakers and managers have the difficult task of protecting,managing,and restoring ecosystems to

ensure sustainable delivery of ecosystem benefits (Lebel et al.2006).New tools and concepts are required to manage with a tipping points perspective.The princi-ples presented here may help managers evaluate and articulate strategies to incorporate tipping point knowl-edge into resource management frameworks (Table 3).The principles suggest priorities for applied research,such as identifying top drivers of regimes,estimating threshold levels of stressors (and confidence bounds around them),finding early-warning indicators,testing metrics of resilience and system stability,and improving assessments of risk and stakeholder preferences.As a whole,these principles support the need for formal stakeholder engagement in target-setting.Careful eval-uation of stakeholder preferences and trade-offs may complicate management in the short term,but may yield more durable results.Where stakeholders are concerned about a new management strategy ’s costs and con-straints,these principles can help articulate links between strong shifts in ecosystems and ripple effects on communities and economies,as well as the potential for cost savings.

Although the principles we outline are relevant to management of any type of ecosystem,they are especially important for marine systems.Coastal areas deliver critical services for the majority of the world ’s human population,and pelagic fisheries provide im-portant food security for the globe.The coastal zone is associated with many overlapping uses and stressors,and fragmented and mismatched governance (Crowder et al.2006).The pelagic zone is often subject to intense exploitation of species,such as herring,salmon,or tuna,whose abundances are also subject to natural and human-induced changes in climate with pervasive effects throughout the food web.

Incorporating these principles into existing manage-ment structures may not require major shifts from current practices and in some cases may create efficiency and cost savings.For instance,integrated ecosystem assessments,which are a general framework for implementing ecosystem-based management using ex-plicit targets,can be geared toward preventing a tipping point or restoring a system that has crossed a tipping point (Levin and Mo ¨llmann 2014).In other cases,responding to tipping point behavior may require fundamentally different management structures,such as Kruger Park ’s Thresholds of Potential Concern,built within a safe operating space framework (Fig.5).The appropriate management approach also depends on whether a tipping point is beyond local management control (e.g.,climate change),or conversely,driven by local activities and effects subject to regulation or mitigation.In the former case,management can focus on building resilience in the social-ecological system to abrupt changes (Dawson et al.2011).In the latter,managers might focus on preventing threshold levels of human stressors from being reached,alongside efforts

to Fig.7.Field studies of changing sea otter densities in the central and western Aleutian Islands show distinct thresholds of state change (red arrows)based on whether sites show increasing or decreasing otter densities,indicating hysteresis.Smoothed orange line is a logistic regression fit to raw data from systems with declining sea otter densities (squares;from Estes et al.[2010]),revealing a threshold of state change (ecosystem state of 0indicates urchin dominance,ecosystem state of 1indicates kelp dominance)when density falls below ;6.3otters/km;solid blue line is a linear fit to raw data from systems with increasing sea otter densities (circles;J.A.Estes et al.,unpublished data ),demonstrating that an urchin-dominated state persists despite otter density reaching .12otters/km.Dashed line estimates a potential shift to a kelp state above 12otters/km;however,otter numbers at Attu Island,where these data were obtained,began to decline,reportedly from killer whale predation,and thus a shift to the kelp-dominated state never actually occurred (Estes et al.1998).Arrows indicate the direction of change.

support a resilient state by protecting diversity and key feedback processes.In all cases,close examination of where cross-scale interactions across drivers,geography,and levels of government may add challenges and obstacles is important for proactive planning.

Ultimately,understanding shifts between ecosystem states,particularly given interacting and changing stressors,requires getting comfortable with estimation and prediction,and investing in good data.Ongoing research on effective system indicators,costs of man-agement action or inaction,and societal preferences and trade-offs among management options will continue to generate new insights into how best to manage ecosystems prone to tipping points (Graham et al.2014).

Acknowledgments

The coauthors thank our colleagues in the Ocean Tipping Points Scientific Working Group,All Hands Meeting,and Expert Management Advisory Group who provided insights and critique of our ideas and framing:Cindy Boyko,Malia Chow,William Douros,Ernie Gladstone,Elia Herman,Martha Kongsgaard,Frazer McGilvray,Will Stelle,John Weber,Steve Weisberg,Phil Williams,Joy Zedler,John Lynham,and Bruno Nkuiya.We also thank Terry Chapin,Steve Carpenter,and two

anonymous reviewers for critical feedback on this manuscript.Primary funding was provided by the Gordon and Betty Moore Foundation,with additional support to K.A.Selkoe from National Science Founda-tion (BioOCE Award 1260169).

Literature Cited

Abrams,P .A.,and L.R.Ginzburg.2000.The nature of predation:

prey dependent,ratio dependent or neither?Trends in Ecology and Evolution 15:337–341.

Allison,G.W.,J.Lubchenco,and M.H.Carr.1998.Marine reserves

are necessary but not sufficient for marine conservation.Ecological Applications 8:S79–S92.

Anthony,R.G.,J.A.Estes,M.A.Ricca,https://www.doczj.com/doc/0a2826339.html,es,and E.D.

Forsman.2008.Bald Eagles and sea otters in in the Aleutian archipelago:indirect effects of trophic cascades.Ecology 89:2725–2735.

Arditi,R.,and L.R.Ginzburg.1989.Coupling in predator-prey

dynamics:ratio dependence.Journal of Theoretical Biology 139:311–326.

Barton,A.,B.Hales,G.G.Waldbusser,https://www.doczj.com/doc/0a2826339.html,ngdon,and R.A.

Feely.2012.The Pacific oyster,Crassostrea gigas ,shows negative correlation to naturally elevated carbon dioxide levels:implications for near-term ocean acidification effects.Limnol-ogy and Oceanography 57:698–710.

Baum,J.K.,and B.Worm.2009.Cascading top-down effects of

changing oceanic predator abundances.Journal of Animal Ecology

78:699–714.

Fig.8.Two applications of the conceptual model in Fig.4to the urchin/otter case study example.(A)The management goal is maintaining an otter-free zone.In response to strong preferences by shellfishermen to maintain urchin barrens and a low tolerance for risk,between 1989and ca.2001,the U.S.Fish and Wildlife Service (FWS)captured and moved every otter in Southern California,USA,that strayed beyond the designated sea otter zone around San Nicolas Island back to San Nicolas or central California.This objective creates a very wide precautionary buffer and a management target set close to zero otters.(B)Maintaining kelp forests through otter protection.In parts of Alaska,a sea otter recovery management plan seeks to maintain a minimum density of otters to support kelp forests and the tourism trade.Otters need habitat that offers protection from orcas,so in response to mounting orca predation,FWS designated critical habitat to protect areas where orca predation success is lowest.This strategy allows for a narrower precautionary buffer and a target minimum number of otters.

Bennett, A.,and J.Radford.2003.Know your ecological thresholds.Thinking Bush2:1–3.

Biggs,H.,and K.H.Rogers.2003.An adaptive system to link science,monitoring and management in practice.Pages59–80 in J.T.du Toit,K.H.Rogers,and H.C.Biggs,editors.The Kruger experience:ecology and management of savanna heterogeneity.Island Press,Washington,D.C.,USA. Biggs,R.,M.,et al.2012.Toward principles for enhancing the resilience of ecosystem services.Annual Review of Environ-ment and Resources37:421–448.

Bleckner,T.,M.Llope,C.Mo¨llmann,R.Voss,M.F.Quaas,M.

Casini,M.Lindegren,C.Folke,and N.C.Stenseth.2015.

Climate and fishing steer ecosystem regeneration to uncertain economic futures.Proceedings of the Royal Society B 282:20142809.

Boettiger,C.,and A.Hastings.2012a.Early warning signals and the prosecutor’s fallacy.Proceedings of the Royal Society B 279:4734–4739.

Boettiger, C.,and A.Hastings.2012b.Quantifying limits to detection of early warning for critical transitions.Journal of the Royal Society Interface9:2527–2539.

Brandl,S.J.,and D.R.Bellwood.2014.Individual-based analyses reveal limited functional overlap in a coral reef fish commu-nity.Journal of Animal Ecology83:661–670.

Briske,D.D.,S.D.Fuhlendorf,and F.E.Smeins.2006.A unified framework for assessment and application of ecological thresholds.Rangeland Ecology and Management59:225–236. Burgman,M.2005.Risks and decisions for conservation and environmental management.Cambridge University,Cam-bridge,UK.

Carpenter,S.R.,and W.A.Brock.2006.Rising variance:a leading indicator of ecological transition.Ecology Letters9:308–315. Carpenter,S.R.,and C.Folke.2006.Ecology for transformation.

Trends in Ecology and Evolution21:309–315.

Casini,M.,J.Hjelm,J.C.Molinero,J.Lovgren,M.Cardinale,V.

Bartolino, A.Belgrano,and G.Kornilovs.2009.Trophic cascades promote threshold-like shifts in pelagic marine ecosystems.Proceedings of the National Academy of Sciences USA106:197–202.

Chapin,F.S.,B.H.Walker,R.J.Hobbs,D.U.Hooper,J.H.

Lawton,O.E.Sala,and D.Tilman.1997.Biotic control over the functioning of ecosystems.Science277:500–504.

Crowder,L.B.,et al.2006.Resolving mismatches in US ocean governance.Science313:617–618.

Cury,P.M.,et al.2011.Global seabird response to forage fish depletion—one-third for the birds.Science334:1703–1706. D’Agata,S., D.Mouillot,M.Kulbicki,S.Andrefouet, D.R.

Bellwood,J.E.Cinner,P.F.Cowman,M.Kronen,S.Pinca,and L.Vigliola.2014.Human-mediated loss of phylogenetic and functional diversity in coral reef fishes.Current Biology 24:555–560.

Dai,L.,K.S.Korolev,and J.Gore.2013.Slower recovery in space before collapse of connected populations.Nature496:355–358. Dai,L.,D.Vorselen,K.S.Korolev,and J.Gore.2012.Generic indicators for loss of resilience before a tipping point leading to population collapse.Science336:1175–1177.

Dakos,V.,S.R.Carpenter,E.H.van Nes,and M.Scheffer.2015.

Resilience indicators:prospects and limitations for early warnings of regime shifts.Philosophical Transactions of the Royal Society B370:20130263.

Dakos,V.,S.Kefi,M.Rietkerk,E.H.van Nes,and M.Scheffer.

2011.Slowing down in spatially patterned ecosystems at the brink of collapse.American Naturalist177:E153–E166. Dakos,V.,E.H.van Nes,P.D’Odorico,and M.Scheffer.2012.

Robustness of variance and autocorrelation as indicators of critical slowing down.Ecology93:264–271.

Dale,V.H.,et al.2010.Hypoxia in the northern Gulf of Mexico.

Springer series on environmental management.Springer,New

York,New York,USA.

Daskalov,G.M.2002.Overfishing drives a trophic cascade in the Black Sea.Marine Ecology Progress Series225:53–63. Dawson,T.P.,S.T.Jackson,J.I.House,I.C.Prentice,and G.M.

Mace.2011.Beyond predictions:biodiversity conservation in a changing climate.Science332:53–58.

Dean,T.A.,J.L.Bodkin,S.C.Jewett,D.H.Monson,and D.Jung.

2000.Changes in sea urchins and kelp following a reduction in sea otter density as a result of the Exxon Valdez oil spill.

Marine Ecology Progress Series199:281–291.

Ditlevsen,P.D.,and S.J.Johnsen.2010.Tipping points:early warning and wishful thinking.Geophysical Research Letters 37:L19703.

Dixson, D.L., D.Abrego,and M. E.Hay.2014.Chemically mediated behavior of recruiting corals and fishes:a tipping point that may limit reef recovery.Science345:892–897. Doak,D.F.,et al.2008.Understanding and predicting ecological dynamics:are major surprises inevitable?Ecology89:952–961. Duarte, C.M., D.J.Conley,J.Carstensen,and M.Sanchez-Camacho.2009.Return to Neverland:shifting baselines affect eutrophication restoration targets.Estuaries and Coasts32:29–

36.

Dudgeon,S.R.,R.B.Aronson,J.F.Bruno,and W.F.Precht.2010.

Phase shifts and stable states on coral reefs.Marine Ecology Progress Series413:201–216.

Duggins,D.O.1980.Kelp beds and sea otters:an experimental approach.Ecology61:447–453.

Duggins, D.O., C. A.Simenstad,and J. A.Estes.1989.

Magnification of secondary production by kelp detritus in coastal marine ecosystems.Science245:170–173.

Dulvy,N.K.,Y.Sadovy,and J.D.Reynolds.2003.Extinction vulnerability in marine populations.Fish and Fisheries4:25–

64.

Edmondson,W.,and J.Lehman.1981.The effect of changes in the nutrient income on the condition of Lake Washington.

Limnology and Oceanography26:1–29.

Elmqvist,T.,C.Folke,M.Nystrom,G.Peterson,J.Bengtsson,B.

Walker,and J.Norberg.2003.Response diversity,ecosystem change,and resilience.Frontiers in Ecology and the Environ-ment1:488–494.

Estes,J.A.,and D.O.Duggins.1995.Sea otters and kelp forests in Alaska:generality and variation in a community ecological paradigm.Ecological Monographs65:75–100.

Estes,J. A.,and J.Palmisano.1974.Sea otters:their role in structuring nearshore communities.Science185:1058–1060. Estes,J.A.,et al.2011.Trophic downgrading of planet Earth.

Science333:301–306.

Estes,J.A.,M.T.Tinker,and https://www.doczj.com/doc/0a2826339.html,ing ecological function to develop recovery criteria for depleted species:sea otters and kelp forests in the Aleutian Archipelago.Conser-vation Biology24:852–860.

Estes,J.A.,M.T.Tinker,T.M.Williams,and D.F.Doak.1998.

Killer whale predation on sea otters linking oceanic and nearshore ecosystems.Science282:473–476.

Fairchild,J.F.,https://www.doczj.com/doc/0a2826339.html,point,J.L.Zajicek,M.K.Nelson,F.J.

Dwyer,and P.A.Lovely.1992.Population-level,community-level and ecosystem-level responses of aquatic mesocosms to pulsed doses of a pyrethroid insecticide.Environmental Toxicology and Chemistry11:115–129.

Farrow,https://www.doczj.com/doc/0a2826339.html,ing risk assessment,benefit-cost analysis,and real options to implement a precautionary principle.Risk Analysis24:727–735.

Ferretti,F.,B.Worm,G.L.Britten,M.R.Heithaus,and H.K.

Lotze.2010.Patterns and ecosystem consequences of shark declines in the ocean.Ecology Letters13:1055–1071.

Field,M.E.,S.A.Cochran,J.B.Logan,and C.D.Storlazzi.2008.

The coral reef of south Moloka‘i,Hawai‘i;portrait of a sediment-threatened reef.U.S.Geological Survey Scientific

Investigations https://www.doczj.com/doc/0a2826339.html,GS Information Services, Denver,Colorado,USA.

Filbee-Dexter,K.,and R.E.Scheibling.2014.Sea urchin barrens as alternative stable states of collapsed kelp ecosystems.Marine Ecology Progress Series495:1–25.

Foley,M.M.,et al.2010.Guiding ecological principles for marine spatial planning.Marine Policy34:955–966.

Folke,C.,S.Carpenter,B.Walker,M.Scheffer,T.Elmqvist,L.

Gunderson,and C.S.Holling.2004.Regime shifts,resilience, and biodiversity in ecosystem management.Annual Review of Ecology Evolution and Systematics35:557–581.

Frank,K.T.,B.Petrie,J.S.Choi,and W.C.Leggett.2005.Trophic cascades in a formerly cod-dominated ecosystem.Science 308:1621–1623.

Frank,K.T.,B.Petrie,J.A.D.Fisher,and W.C.Leggett.2011.

Transient dynamics of an altered large marine ecosystem.

Nature477:86–U98.

Fujita,R.,J.Lynham,F.Micheli,P.G.Feinberg,L.Bourill′o n,A.

Sa′enz-Arroyo,and A.C.Markham.2013a.Ecomarkets for conservation and sustainable development in the coastal zone.

Biological Reviews88:273–286.

Fujita,R.,J.H.Moxley,H.DeBey,T.Van Leuvan,A.Leumer,K.

Honey,S.Aguilera,and M.Foley.2013b.Managing for a resilient ocean.Marine Policy38:538–544.

Grafton,Q.R.,T.Kompas,T.N.Che,L.Chu,and R.Hilborn.2012.

BMEY as a fisheries management target.Fish and Fisheries 13:303–312.

Graham,N.A.J.,D.R.Bellwood,J.E.Cinner,T.P.Hughes,A.V.

Norstrom,and M.Nystrom.2013.Managing resilience to reverse phase shifts in coral reefs.Frontiers in Ecology and the Environment11:541–548.

Graham,N.A.J.,J.E.Cinner,A.V.Norstrom,and M.Nystrom.

2014.Coral reefs as novel ecosystems:embracing new futures.

Current Opinion in Environmental Sustainability7:9–14. Graham,N.A.J.,S.K.Wilson,S.Jennings,N.V.C.Polunin,J.P.

Bijoux,and J.Robinson.2006.Dynamic fragility of oceanic coral reef ecosystems.Proceedings of the National Academy of Sciences USA103:8425–8429.

Greening,H.,and A.Janicki.2006.Toward reversal of eutrophic conditions in a subtropical estuary:water quality and seagrass response to nitrogen loading reductions in Tampa Bay,Florida, USA.Environmental Management38:163–178.

Griffith,G.P.,E.A.Fulton,and A.J.Richardson.2011.Effects of fishing and acidification-related benthic mortality on the southeast Australian marine ecosystem.Global Change Biol-ogy17:3058–3074.

Grimm,D.,I.Barkhorna,D.Festab,K.Bonzonb,J.Boomhowerb, V.Hovlanda,and J.Blau.2012.Assessing the key players in a food web can help guide management strategies to address tipping points.Marine Policy36:644–657.

Groffman,P.M.,et al.2006.Ecological thresholds:the key to successful environmental management or an important con-cept with no practical application?Ecosystems9:1–13. Halpern,B.S.,et al.2013.Achieving the triple bottom line in the face of inherent trade-offs among social equity,economic return,and conservation.Proceedings of the National Acad-emy of Sciences USA110:6229–6234.

Hilborn,R.2010.Pretty Good Yield and exploited fishes.Marine Policy34:193–196.

Hobbs,R.J.,et al.2006.Novel ecosystems:theoretical and management aspects of the new ecological world order.Global Ecology and Biogeography15:1–7.

Hoegh-Guldberg,O.,et al.2007.Coral reefs under rapid climate change and ocean acidification.Science318:1737–1742. Holling,C.S.1959.The components of predation as revealed by a study of small-mammal predation of the European pine sawfly.Canadian Entomology91:293–320.

Holling,C.S.1973.Resilience and stability of ecological systems.

Annual Review of Ecology and Systematics4:1–23.

Hsieh,C.H.,C.S.Reiss,R.P.Hewitt,and G.Sugihara.2008.

Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes.Canadian Journal of Fisheries and Aquatic Sciences65:947–961.

Hugget,A.J.2005.The concept and utility of ecological thresholds in biodiversity conservation.Biological Conservation124:301–310.

Hughes,T.P.1994.Catastrophes,phase-shifts,and large-scale degradation of a Caribbean coral reef.Science265:1547–1551. Hughes,T.P.,C.Linares,V.Dakos,I.A.van de Leemput,and

E.H.van Nes.2013.Living dangerously on borrowed time

during slow,unrecognized regime shifts.Trends in Ecology and Evolution28:149–155.

Hunsicker,M.E.,et al.2010.The contribution of cephalopods to global marine fisheries:Can we have our squid and eat them too?Fish and Fisheries11(4):421–438.

Johannessen,O.M.,and https://www.doczj.com/doc/0a2826339.html,es.2011.Critical vulnerabilities of marine and sea ice-based ecosystems in the high Arctic.

Regional Environmental Change11:S239–S248.

Karnosky,D.F.,K.S.Pregitzer,D.R.Zak,M.E.Kubiske,G.R.

Hendrey,D.Weinstein,M.Nosal,and K.E.Percy.2005.Scaling ozone responses of forest trees to the ecosystem level in a changing climate.Plant Cell and Environment28:965–981. Karp,D.S.,G.Ziv,J.Zook,P.R.Ehrlich,and G.C.Daily.2011.

Resilience and stability in bird guilds across tropical country-side.Proceedings of the National Academy of Sciences USA 108:21134–21139.

Karr,K.,R.Fujita,B.S.Halpern,C.V.Kappel,L.B.Crowder,K.A.

Selkoe,P.M.Alcolado,and D.Rader.2015.Thresholds in Caribbean coral reefs:implications for ecosystem-based fishery management.Journal of Applied Ecology52(2):402–412. Kefi,S.,V.Guttal,W.A.Brock,S.R.Carpenter,A.M.Ellison,V.N.

Livina,D.A.Seekell,M.Scheffer,E.H.van Nes,and V.Dakos.

2014.Early warning signals of ecological transitions:methods for spatial patterns.PLoS ONE9:e92097.

Kelly,R.P.,A.L.Erickson,and L.A.Mease.2014a.How not to fall off a cliff,or using tipping points to improve environmental management.Ecology Law Quarterly41:843–886.

Kelly,R.P.,A.L.Erickson,L.A.Mease,W.Battista,J.N.Kittinger, and R.Fujita.2014b.Embracing thresholds for better environ-mental management.Philosophical Transactions of the Royal Society B370:20130276.

Konar,B.,and J.A.Estes.2003.The stability of boundary regions between kelp beds and deforested areas.Ecology84:174–185. Lafferty,K. D.2004.Fishing for lobsters indirectly increases epidemics in sea urchins.Ecological Applications14:1566–1573.

Laliberte, E.,et https://www.doczj.com/doc/0a2826339.html,nd-use intensification reduces functional redundancy and response diversity in plant communities.Ecology Letters13:76–86.

Large,S.I.,G.Fay,K.D.Friedland,and J.S.Link.2013.Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures.ICES Journal of Marine Science70:755–767.

Lebel,L.,J.M.Anderies,B.Campbell,C.Folke,S.Hatfield-Dodds, T.P.Hughes,and https://www.doczj.com/doc/0a2826339.html,ernance and the capacity to manage resilience in regional social-ecological systems.

Ecology and Society11:19.

Leslie,H.M.,and K.L.McLeod.2007.Confronting the challenges of implementing marine ecosystem-based management.Fron-tiers in Ecology and the Environment5:540–548.

Levin,P.,and C.Mo¨llmann.2014.Marine ecosystem regime shifts: challenges and opportunities for ecosystem-based manage-ment.Philosophical Transactions of the Royal Society B 370:20130275.

Lewontin,R. C.1969.The meaning of stability.Brookhaven Symposia in Biology22:13–24.

Lindegren,M.,D.M.Checkley,Jr.,T.Rouyer,A.D.MacCall,and N. C.Stenseth.2013.Climate,fishing,and fluctuations of sardine and anchovy in the California Current.Proceedings of the National Academy of Sciences USA110:13672–13677. Lindegren,M.,V.Dakos,J.P.Groeger,A.Gardmark,G.Kornilovs, S. A.Otto,and C.Moellmann.2012.Early detection of ecosystem regime shifts:a multiple method evaluation for management application.PLoS ONE7:e38410.

Lindig-Cisneros,R.,J.Desmond,K.E.Boyer,and J.B.Zedler.

2003.Wetland restoration thresholds:can a degradation transition be reversed with increased effort?Ecological Applications13:193–205.

Link,J.S.2007.Underappreciated species in ecology:‘‘ugly fish’’in the northwest Atlantic Ocean.Ecological Applications 17:2037–2060.

Little,R.L.,J.Parslow,G.Fay,R.Q.Grafton,A.D.M.Smith,A.E.

Punt,and G.N.Tuck.2014.Environmental derivatives,risk analysis,and conservation management.Conservation Letters 7:196–207.

Litzow,M.A.,F.J.Mueter,and J.D.Urban.2013.Rising catch variability preceded historical fisheries collapses in Alaska.

Ecological Applications23:1475–1487.

Litzow,M.A.,J.D.Urban,and https://www.doczj.com/doc/0a2826339.html,urel.2008.Increased spatial variance accompanies reorganization of two continental shelf ecosystems.Ecological Applications18:1331–1337. Lockwood,J.L.,P.Cassey,and T.Blackburn.2005.The role of propagule pressure in explaining species invasions.Trends in Ecology and Evolution20:223–228.

Luck,G.W.,G.C.Daily,and P.R.Ehrlich.2003.Population diversity and ecosystem services.Trends in Ecology and Evolution18:331–336.

MacDonald,Donald D.,C.G.Ingersoll,and T.A.Berger.2000.

Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems.Archives of Environmental Contamination and Toxicology39:20–31. Martin,K.L.,and L.K.Kirkman.2009.Management of ecological thresholds to re-establish disturbance-maintained herbaceous wetlands of the south-eastern USA.Journal of Applied Ecology46:906–914.

May,R.M.1977.Thresholds and breakpoints in ecosystems with a multiplicity of stable states.Nature269:471–477. McClanahan,T.R.,N. A.J.Graham,M. A.MacNeil,N. A.

Muthiga,J.E.Cinner,J.H.Bruggemann,and S.K.Wilson.

2011.Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries.Proceedings of the National Academy of Sciences USA108:17230–17233. Meador,J.P.,T.K.Collier,and J.E.Stein.2002.Determination of a tissue and sediment threshold for tributyltin to protect prey species of juvenile salmonids listed under the US Endangered Species Act.Aquatic Conservation:Marine and Freshwater Ecosystems12:539–551.

Methot,R.D.,G.R.Tromble,https://www.doczj.com/doc/0a2826339.html,mbert,and K.E.Greene.

2014.Implementing a science-based system for preventing overfishing and guiding sustainable fisheries in the United States.ICES Journal of Marine Science71:183–194. Michalak,A.M.,et al.2013.Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consis-tent with expected future conditions.Proceedings of the National Academy of Sciences USA110:6448–6452. Montefalcone,M.,V.Parravicini,and C.N.Bianchi.2011.

Quantification of coastal ecosystem resilience.Treatise on Estuarine and Coastal Science10:49–70.

Mori,A.S.,T.Furukawa,and T.Sasaki.2013.Response diversity determines the resilience of ecosystems to environmental change.Biological Reviews88:349–364.

Myers,R.A.,J.K.Baum,T.D.Shepherd,S.P.Powers,and C.H.

Peterson.2007.Cascading effects of the loss of apex predatory sharks from a coastal ocean.Science315:1846–1850.Nystrom,M.,A.V.Norstrom,T.Blenckner,M.de la Torre-Castro, J.S.Eklof,C.Folke,H.Osterblom,R.S.Steneck,M.Thyresson, and M.Troell.2012.Confronting feedbacks of degraded marine ecosystems.Ecosystems15:695–710.

O’Gorman,E.J.,J.M.Yearsley,T.P.Crowe,M.C.Emmerson,U.

Jacob,and O.L.Petchey.2011.Loss of functionally unique species may gradually undermine ecosystems.Proceedings of the Royal Society B278:1886–1893.

Oguz,T.,and D.Gilbert.2007.Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during1960–2000: evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations.Deep Sea Research Part I:Oceanographic Research Papers54:220–242.

Ohman,M.D.,K.Barbeau,P.J.S.Franks,R.Goericke,M.R.

Landry,and https://www.doczj.com/doc/0a2826339.html,ler.2013.Ecological transitions in a coastal upwelling ecosystem.Oceanography26:210–219. Olds,A.D.,K.A.Pitt,P.S.Maxwell,and R.M.Connolly.2012.

Synergistic effects of reserves and connectivity on ecological resilience.Journal of Applied Ecology49:1195–1203. Peters,D.P.C.,B.T.Bestelmeyer,and M.G.Turner.2007.Cross-scale interactions and changing pattern-process relationships: consequences for system dynamics.Ecosystems10:790–796. Peterson,G.,C.R.Allen,and C.S.Holling.1998.Ecological resilience,biodiversity,and scale.Ecosystems1:6–18. Petraitis,P.S.,E.T.Methratta,E.C.Rhile,N.A.Vidargas,and S.R.

Dudgeon.2009.Experimental confirmation of multiple com-munity states in a marine ecosystem.Oecologia161:139–148. Pikitch,E.K.2012.The risks of overfishing.Science338:474–475. Planque,B.,J.M.Fromentin,P.Cury,K.F.Drinkwater,S.Jennings, R.I.Perry,and S.Kifani.2010.How does fishing alter marine populations and ecosystems sensitivity to climate?Journal of Marine Systems79:403–417.

Poe,M.R.,K. C.Norman,and P.S.Levin.2014.Cultural dimensions of socioecological systems:key connections and guiding principles for conservation in coastal environments.

Conservation Letters7:166–175.

Punt,A.E.,M.S.M.Siddeek,B.Garber-Yonts,M.Dalton,L.

Rugolo,D.Stram,B.J.Turnock,and J.Zheng.2012.Evaluating the impact of buffers to account for scientific uncertainty when setting TACs:application to red king crab in Bristol Bay, Alaska.ICES Journal of Marine Science69:624–634. Rabalais,N.N.,R.J.Diaz,L.A.Levin,R.E.Turner,D.Gilbert,and J.Zhang.2010.Dynamics and distribution of natural and human-caused hypoxia.Biogeosciences7:585–619. Rasher,D.B.,A.S.Hoey,and M.E.Hay.2013.Consumer diversity interacts with prey defenses to drive ecosystem function.

Ecology94:1347–1358.

Rocha,J.,J.Yletyinen,R.Biggs,T.Blenckner,and G.Peterson.

2015.Marine regime shifts:drivers and impacts on marine systems.Philosophical Transactions of the Royal Society B 370:20130273.

Rockstrom,J.,et al.2009.A safe operating space for humanity.

Nature461:472–475.

Salazar,M.H.,and S.M.Salazar.1991.Mussels as bioindicators:a case study of tributyltin effects in San Diego Bay,California USA.Canadian Technical Report of Fisheries and Aquatic Sciences1774:47–75.

Samhouri,J.F.,P.S.Levin,and C.H.Ainsworth.2010.Identifying thresholds for ecosystem-based management.PLoS ONE 5:e8907.

Scheffer,M.2009.Critical transitions in nature and society.

Princeton University,Princeton,New Jersey,USA. Scheffer,M.,J.Bascompte,W. A.Brock,V.Brovkin,S.R.

Carpenter,V.Dakos,H.Held,E.H.van Nes,M.Rietkerk, and G.Sugihara.2009.Early-warning signals for critical transitions.Nature461:53–59.

Scheffer,M.,S.Carpenter,J.A.Foley,C.Folke,and B.Walker.

2001.Catastrophic shifts in ecosystems.Nature413:591–596. Scheffer,M.,and S.R.Carpenter.2003.Catastrophic regime shifts in ecosystems:linking theory to observation.Trends in Ecology and Evolution18:648–656.

Schindler,D.E.,R.Hilborn,B.Chasco,C.P.Boatright,T.P.Quinn, L.A.Rogers,and M.S.Webster.2010.Population diversity and the portfolio effect in an exploited species.Nature 465:609–612.

Schmitz,O.J.,et al.2014.Animating the carbon cycle.Ecosystems 17:344–359.

Shelton,A.O.,J.F.Samhouri,A.C.Stier,and P.S.Levin.2014.

Assessing trade-offs to inform ecosystem-based fisheries management of forage fish.Scientific Reports4:7110. Smith,A.D.M.,et al.2011.Impacts of fishing low-trophic level species on marine ecosystems.Science333:1147–1150. Smith,D.,A.Punt,N.Dowling,A.Smith,G.Tuck,and I.Knuckey.

2009.Reconciling approaches to the assessment and manage-ment of data-poor species and fisheries with Australia’s harvest strategy policy.Marine and Coastal Fisheries1:244–254.

Smith,M.D.,J.Lynham,J.N.Sanchirico,and J.A.Wilson.2010.

Political economy of marine reserves:understanding the role of opportunity costs.Proceedings of the National Academy of Sciences USA107:18300–18305.

Standish,R.J.,et al.2014.Resilience in ecology:abstraction, distraction,or where the action is?Biological Conservation 177:43–51.

Steneck,R.S.,M.H.Graham,B.J.Bourque,D.Corbett,J.M.

Erlandson,J.A.Estes,and M.J.Tegner.2002.Kelp forest ecosystems:biodiversity,stability,resilience and future.Envi-ronmental Conservation29:436–459.

Steneck,R.S.,et al.2011.Creation of a gilded trap by the high economic value of the Maine lobster fishery.Conservation Biology25:904–912.

Steneck,R.S.,A.Leland,D.C.McNaught,and J.Vavrinec.2013.

Ecosystem flips,locks and feedbacks:the lasting effects of fisheries on Maine’s kelp forest ecosystem.Bulletin of Marine Science89:31–55.

Steneck,R.S.,and R.A.Wahle.2013.American lobster dynamics in a brave new ocean.Canadian Journal of Fisheries and Aquatic Sciences70:1612–1624.

Stephens,P.A.,W.J.Sutherland,and R.P.Freckleton.1999.What is the Allee effect?Oikos87:185–190.Storlazzi,C.D.,M.E.Field,M.H.Bothner,M.K.Presto,and A.E.

Draut.2009.Sedimentation processes in a coral reef embay-ment:Hanalei Bay,Kauai.Marine Geology264:140–151. Suding,K.N.,and R.J.Hobbs.2009.Threshold models in restoration and conservation:a developing framework.Trends in Ecology and Evolution24:271–279.

Sutherland,J.P.1974.Multiple stable points in natural commu-nities.American Naturalist108:859–873.

Thibaut,L.M.,S.R.Connolly,and H.P.A.Sweatman.2012.

Diversity and stability of herbivorous fishes on coral reefs.

Ecology93:891–901.

Travis,J.,F.C.Coleman,P.J.Auster,P.M.Cury,J.A.Estes,J.

Orensanz,C.H.Peterson,M.E.Power,R.S.Steneck,and J.T.

Wootton.2014.Integrating the invisible fabric of nature into fisheries management.Proceedings of the National Academy of Sciences USA111:581–584.

van der Heide,T.,E.H.van Nes,G.W.Geerling,A.J.P.Smolders, T.J.Bouma,and M.M.van Katwijk.2007.Positive feedbacks in seagrass ecosystems:Implications for success in conserva-tion and restoration.Ecosystems10:1311–1322.

Ve′lez-Espino,L.A.,and M.A.Koops.2009.Quantifying allowable harm in species at risk:application to the Laurentian black redhorse(Moxostoma duquesnei).Aquatic Conservation:Ma-rine Freshwater Ecosystems19:676–688.

Walker,B.,and D.Salt.2012.Resilience practice:building capacity to absorb disturbance and maintain function.Island Press, Washington,D.C.,USA.

Washington State Blue Ribbon Panel on Ocean Acidification.2012.

Ocean acidification:from knowledge to action,Washington State’s strategic response.H.Adelsman and L.Whitely Binder, editors.Publication no.12-01-015.Washington Department of Ecology,Olympia,Washington,USA.

Wilmers,C.C.,J.A.Estes,M.Edwards,https://www.doczj.com/doc/0a2826339.html,idre,and B.Konar.

2012.Do trophic cascades affect the storage and flux of atmospheric carbon?An analysis of sea otters and kelp forests.

Frontiers in Ecology and the Environment10:409–415. Copyright:ó2015Selkoe et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original author and source are credited.http:// https://www.doczj.com/doc/0a2826339.html,/licenses/by/3.0/

围填海对海洋生态系统服务功能影响评估综述

价值工程 1国外生态系统服务研究 1.1全球或区域生态系统服务价值评估Costanza (1997)首次把全球生态系统提供给人类的功能分为17种类型,并估计全球生态系统每年提供的价值为16-54万亿美元,生态系统服务总价值和1997年全球GNP 的比值为1.8:1,该研究成果的发表,在国际上引 发了广泛关注[1] 。Pimentel (1997)等对国际上有关自然资本与生态系统服务价值的研究结果进行了汇总分析,对全球生物多样性和美国生物多样性进行的比较研究,结果认为世界生物多样性的年度经济价值为2.928万亿美元,该结果不到Costanza 等所估计结果的1/10,Pimentel 等人认为其估计结果是很保守的[2]。 1.2单个典型生态系统价值评估单个典型生态系统价值评估主要集中在流域、湿地、森林体系等方面。Folke (1991)对波罗的海地区生命支撑服务价值的评估表明日益增长的工业、农业及渔业压力使得自然成本成为了限制该地区经济发展的主要因子;Seidl&Moraes (2002)利用Costanza 等人的分类体系对巴西的Pantaal 湿地进行了精确的服务价值研究,计算结果为5839万美元/公顷每年;Ronnbackdui (2002)综合考虑了红树林与其支持的鱼类捕获量和水产养殖产出量之间的生态学关系,得出红树林的生态价值为每公顷750-16750美元;Godoy R (1993)对全球热带森林非木材产品经济价值进行了评估;Kramer (1997)对美国居民对热带森林的支付意愿进行了评估。 1.3物种和生物多样性保护价值评估Holmlund 等将鱼类的生态服务功能定义为由人类需求价值演绎出的生态服务功能,认为鱼类资源的过渡捕捞不仅降低了鱼类的可捕获量,种群的生态功能等方面也处于危险境地;Bandara (1998)讨论了斯里兰卡亚洲象保护的净效益及其政策含义。 从上述研究回顾来看,发达国家的生态系统服务评估体系已近成熟,研究范围比较全面,包括各种生态系统服务的总体评估,还包括典型生态系统价值评估。由于选用的调查方式和数据分析方法的不同,导致各国之间对同一研究对象的分析结果存在较大差异。 2国内研究进展 2.1国内生态系统服务研究进展我国关于生态系统服务的研究相对较晚,在20世纪90年代后才有学者将其内涵和价值评价方法引入到中国,作为一个新的研究体系,目前国内对于生态系统服务的研究还不够完善。 2.1.1区域生态系统服务价值评估陈仲新和张新时对我国的生态系统服务价值的计算,陆地生态系统效益价值为56098.46亿 元/年,海洋生态系统效益价值为21736.02亿元/年,与当年国内生 产总值为值为1.73:1[3] ;徐中民、张志强采用条件价值法(CVM )的各种模式以及环境选择模型方法,对黑河中上游的甘肃张掖地区和黑河下游的内蒙古额济纳两个地区的生态恢复作了大量的实地调查工作,获得了支付意愿数据进行了区域生态恢复的经济价值评估,并在此基础上建立了研究区域部分地区的环境经济帐户[4]。 2.1.2单个典型生态系统价值评估肖玉等人利用市场价值法,成果参照法和专家咨询的方式对莽猎湖流域生态系统服务价值进行了评估,结果显示1990年该流域的经济价值为31.0亿元/a [5];许英勤等人以成果参照法对塔里木河下游垦区绿洲生态系统服务价值进行了估算,结果为1986年价值为7784万元/a [6];王彬等人对黄河三角洲湿地进行了支付意愿研究,结果显示居民的支付意愿 在121.3元/( 户·年)-200.22元/(户·年)之间[7];侯元兆等对林地、林木及森林的3种生态效益(涵养水源、保育土壤、固碳制氧)进行 了核算[8] 。 2.1.3物种和生物多样性保护价值评估薛达元最早利用条件价值评估法对长白山自然保护区生物多样性的非使用价值进行了支付意愿研究,结果表明该保护区生物多样性的非使用价值达4 3.19亿元,平均支付中位值为每人每年33.3元[9];肖建红对保护受三峡工程影响的珍稀濒危生物进行了经济价值评估,最后计算得出保护三峡工程影响的这些珍稀濒危生物的经济价值为82.19×108元/年,平均支付意愿值为127.82元/年[10]。 国内现阶段对自然资源和生态系统服务的价值评估方法主要局限在使用价值领域,对非使用价值尚处于模范和探索阶段,大尺度的生态系统服务评估是当前主流小区域如城市河流、湿地、森林等重要生态系统的研究应加强,国内对物种和生物多样性保护价值评估还未大规模展开,研究方法也应向直接市场法、间接市场法和假想市场技术交叉结合。 2.2围填海对我国海洋生态系统服务影响研究进展新中国成立到现在,我国已先后经历了3次大的围填海高潮。第一次是建国初期的围海晒盐,从辽东半岛到海南岛我国沿海12个省、市、自治区均有盐场分布;第二次大规模的围填海热潮是上世纪60年代中期至70年代的围垦海涂扩展农业用地;第三次大规模的围填海热 是发生在上世纪80年代中后期到90年代初的滩涂围垦养殖热, 这一阶段的围海主要发生在低潮滩和近岸海域,围海养殖的环境效应主要表现在大量的人工增殖使得水体富营养化突出,海域生态环境问题突出。 王初升等对红树林海岸围填海适宜性规模进行了评估研究,采用综合指数评价分级围填海的适宜性为HI<0.75为Ⅰ级,可以实施围填;HI=0.75-1.2为Ⅱ级,限制围填,HI>1.2为Ⅲ级,严禁围填[11]。倪晋仁等人以深圳湾为例,按照潮间带湿地生境损失补偿的难易程度,将不同填海方案造成的生境损失归纳为可接受的、需要补偿的 —————————————————————— —基金项目:国家海洋公益性行业科研专项资助项目(200805082);青岛大学 优秀研究生学位论文培育项目(YSPY2011016)。作者简介:赵斐斐(1986-),女,山东济南人,硕士研究生,主要从事可持续发 展评估方面的研究。 围填海对海洋生态系统服务功能影响评估研究综述 The Review of the Value Evaluation of the Influence of Reclamation on Ecosystem Service Function 赵斐斐①Zhao Feifei ;陈东景Chen Dongjing (青岛大学国际商学院,青岛266071) (International Business College ,Qingdao University ,Qingdao 266071,China ) 摘要:随着经济的发展和土地矛盾的加剧,围填海成为人类向海洋拓展生产生存空间缓解沿海地区人地矛盾的一种重要手段。填海造地给 人们带来经济利益的同时,也造成一系列海洋生态环境问题。本文对国内外生态系统服务价值评估理论与方法及围填海对海洋生态系统服务影 响研究进展进行了综述。 Abstract:As the development of economy and land contradictions intensifies,reclamation has become one important method to expand production space and living space and alleviate the contradiction between human and land in coastal areas.Reclamation not only brings economic interests,but also causes a series of ocean ecological environment problems.The value evaluation theory and method about domestic and international ecosystem service and the influence of surround reclamation on marine ecosystem service are reviewed in this paper. 关键词:生态系统服务;围填海;价值评估Key words:ecosystem services ;reclamation ;value estimate 中图分类号:Q146 文献标识码:A 文章编号:1006-4311(2012)01-0006-02 ·6·

研发系统文件管理规范

研发系统文件管理规范 1目的 建立并执行研发系统文件要求和管理的规定,确保研发系统文件管理工作规范、统一、有效,符合公司文件管理程序要求。 2适用范围 适用于研发系统开发文档、技术文件、程序文件、管理工作文件、指南文件的管理。 3术语和定义 无。 4职责与权限 研发管理部负责产品开发文档、技术文档、管理工作文件、指南文件及其它文件的归口管理,研发系统相关部门配合。 5内容及流程 研发系统文件包括产品开发文档、技术文档、程序文件、管理工作文件、指南文件及其它文件等。结构如下图:

研发系统文件编号及版本参考《研发系统文件编号及版本规定》。 5.1研发系统管理文件 5.1.1管理工作文件及指南文件的编写、审核、批准 5.1.1.1研发系统程序文件、管理工作文件、指南文件由技术委员会依据质量体系要求,规划研 发系统程序文件及各级工作文件,研发管理组织相关部门编写,文件编号由编写者向质管QA助理申请。编写需使用公司统一的文件模板。程序文件、管理工作文件经研发系统内部预审后,提交质管部按组织公司涉及部门评审、会签,文件经管理者代表批准后在OA上发布生效。 5.1.1.2研发系统级指南文件由研发管理部组织评审,各产品线及部门级指南文件由编写人所在 部门技术秘书负责组织评审。指南文件提交文件编写者主管部门经理审核,部门所属产品线负责人批准,研发管理部发布生效。生效后的文件电子档抄送质管部及相关部门备案。 5.1.2管理工作文件及指南文件的更改、升版 5.1.2.1程序文件、管理工作文件的更改及升版按《管理工作文件的控制办法》执行。 5.1.2.2研发指南文件的更改升版,由编写人提前知会研发管理部后进行,升版后文件按首版评 审方式审核、批准发布。 5.1.3程序文件、管理工作文件及指南文件的发布生效方式及文件共享路径 5.1.3.1管理工作文件的生效发布由质管部在公司OA-办公系统的通知栏内进行发布;工作指南 文件由研发管理部通过QQ信息发布,同时在研发系统信息平台http://vss2/default.aspx 发布备查。 5.1.3.2程序文件、管理工作文件及工作指南文件在以下路径电子文件共享:\\VSS2\研发管理\工 作文件。 5.2技术文件 产品技术文件分设计文件及工艺文件以及支持产品生产、检验的工装夹具、设备仪器文件。根据项目研发现状,我们对技术文件分别进行研发过程的受控管理及样机文件(开发样机、工程样机)质管受控管理。 5.2.1研发过程技术文件管理控制 5.2.1.1分类 研发过程技术文件分机械类过程技术文件和硬件板卡过程技术文件,其中: 机械类过程技术文件:机械零件图(C类);

应用系统管理制度

应用系统管理制度 第一条:应用系统管理指应用系统自上线至下线过程中,进行软件安装与卸载、修改配置、备份数据等运行与维护的行为。 第二条:应用系统分类 依照应用系统软件来源分为两类,来自外公司的软件产品和公司自主研发的软件产品。 第三条:应用系统管理责任人: 系统运维工程师负责应用系统管理的主要工作。 第四条:软件安装与卸载 软件安装: 所有软件在安装前必须经过测试并具有软件测试报告。 外公司软件产品由系统运维工程师负责测试,公司自主开发的软件产品由公司测试部门负责测试。 系统运维工程师根据软件测试报告,向机房负责人申请,批准后方可进行安装。 安装完成后,系统运维工程师负责撰写安装日志并存档。 软件卸载: 当软件因业务需求改变而要卸载时,先由系统维护工程师向机房负责人提出申请,批准后方可进行卸载。卸载优先级为一级的计算机设备上的软件时,需要有系统维护工程师和机房负责人同时在场。 第五条:修改应用系统配置 修改应用系统配置指因业务需求改变或网络环境、系统环境改变,需要修改应用系统配置参数以保证应用系统正常运行或提高性能的行为。

系统运维工程师向机房负责人提出配置修改申请,申请内容包括修改内容、预期目的、方案和步骤,批准后方可执行。 涉及优先级为一级的计算机设备上的应用系统配置修改,通常安排在非业务繁忙期间进行。 如果修改会中断正常业务运营的,必须提前向机房负责人申请,由机房负责人向上级和应用系统使用部门汇报,协商后方能执行。 系统运维工程师负责填写《日常配置修改日志》,整理存档。 第六条:数据备份 数据备份的内容包括系统数据备份、软件配置信息备份和业务数据备份。 系统数据备份频率为每天备份一次;软件配置信息备份在每次修改配置信息之前进行;业务数据备份频率为每天备份一次。每周对所有备份数据进行一次异地备份,由专人负责保 管。 第七条:相关单据

海洋环境与生态工程发展战略研究

041 中国工程科学 2016年 第18卷 第2期 海洋环境与生态工程发展战略研究 Study on the Development Strategy of Marine Environment and Ecological Engineering in China “中国海洋工程与科技发展战略研究”海洋环境与生态课题组 Task Force for the Study on Development Strategy of China’s Marine Engineering and Technology Marine Environment & Ecological Engineering Research Group 摘要:本文系统阐述了海洋环境与生态工程发展战略研究的意义,分析了我国海洋环境与生态发展的现状,结合世界海洋环境与生态工程发展的经验以及我国面临的主要问题,提出了我国海洋环境与生态发展的战略目标、主要任务和政策建议。关键词: 海洋环境;生态工程;战略研究中图分类号:P76 文献标识码:A Abstract: This paper summarizes the implications of research on marine environment and ecological engineering development strat-egy, analyzes the current situation of marine environment and ecology development in China. It also provides a comparative analysis of international experiences in the marine environment and ecological engineering field explains, and the main problems China faces at present. Meanwhile, the strategic goals, main tasks and major recommendations for the development of China’s marine environment and ecological engineering improvement are presented in this paper.Key words: marine environment; ecological engineering; strategic study 一、前言 我国既是陆地大国,也是海洋大国,拥有超过1.8×104 km 的大陆海岸线,6 500多个岛屿。依据《联合国海洋法公约》和我国的主张,管辖有超过3×106 km 2的辽阔海域[1,2]。在过去的几十年间,我国沿海地区社会经济快速地发展,由于在海洋开发利用过程中只重视对资源的索取,而忽略对海洋生态及环境的保护,导致我国海洋生态环境问题日益 突出。如入海污染物显著的增加,氮磷引起的富营养化问题突出,赤潮灾害多发等[3,4]。我国海洋生态安全面临严峻的挑战。 在21世纪我国经济迅速增长、城市化进程加快而陆地资源日益枯竭的背景下,如何立足陆海统筹,在开发利用海洋资源、发展海洋经济、构建现代海洋产业体系的同时,防治海洋环境污染,维护海洋生态健康,探索沿海地区经济社会与海洋生态环境相协调的科学发展模式,增强对海洋环境的管 收稿日期:2016-01-23;修回日期:2016-02-03 基金项目:中国工程院重大咨询项目“中国海洋工程与科技发展战略研究”(2011-ZD-16) 本文由《中国海洋工程与科技发展战略》丛书《海洋环境与生态卷?综合报告》改写,联系人:雷坤本刊网址:https://www.doczj.com/doc/0a2826339.html,

信息安全系统管理系统要求规范

信息安全管理规范公司

版本信息 当前版本: 最新更新日期: 最新更新作者: 作者: 创建日期: 审批人: 审批日期: 修订历史 版本号更新日期修订作者主要修订摘要

Table of Contents(目录) 1. 公司信息安全要求 (5) 1.1信息安全方针 (5) 1.2信息安全工作准则 (5) 1.3职责 (6) 1.4信息资产的分类规定 (6) 1.5信息资产的分级(保密级别)规定 (7) 1.6现行保密级别与原有保密级别对照表 (7) 1.7信息标识与处置中的角色与职责 (8) 1.8信息资产标注管理规定 (9) 1.9允许的信息交换方式 (9) 1.10信息资产处理和保护要求对应表 (9) 1.11口令使用策略 (11) 1.12桌面、屏幕清空策略 (11) 1.13远程工作安全策略 (12) 1.14移动办公策略 (12) 1.15介质的申请、使用、挂失、报废要求 (13) 1.16信息安全事件管理流程 (14) 1.17电子邮件安全使用规范 (16) 1.18设备报废信息安全要求 (17) 1.19用户注册与权限管理策略 (17) 1.20用户口令管理 (18) 1.21终端网络接入准则 (18) 1.22终端使用安全准则 (18) 1.23出口防火墙的日常管理规定 (19) 1.24局域网的日常管理规定 (19) 1.25集线器、交换机、无线AP的日常管理规定 (19) 1.26网络专线的日常管理规定 (20) 1.27信息安全惩戒 (20) 2. 信息安全知识 (21) 2.1什么是信息? (21) 2.2什么是信息安全? (21)

应用系统管理制度

柏庄置业有限公司 应用系统管理制度(第一版) 目录 1.总则 (2) 2.管理组织结构 (2) 3.系统建设与管理分工 (3) 4.系统管理规则 (5) 4.1系统总则 (5) 4.2账号管理 (6) 4.3权限管理 (7) 4.4流程管理 (7) 4.5运行管理 (8) 4.6安全管理 (9) 4.7应用系统灾难应急和恢复管理 (9) 5.应用系统配套与建设管理............................. 错误!未定义书签。 5.1总则 (10)

1.总则 1.1 为规范柏庄投资集团(以下简称“柏庄集团”)企业信息化管理工作,提高信息化工作质量,保证柏庄集团信息化建设和推广运用的顺利进行,充分发挥应用系统在企业经营管理方面的作用,特制定本制度。 1.2 本制度规定了柏庄集团信息化建设与运营期的组织结构、信息化建设与管理分工、应用系统应用管理、信息管理的评价与改进等内容,是柏庄集团全面实现信息化管理的基本规则和行为准则。各级管理组织必须严格遵循信息管理制度的相关要求,通过定期对各业务流程的评价和反馈,不断改进和完善应用系统。 2.管理组织结构 2.1柏庄集团信息化建设领导小组是柏庄集团信息化建设的领导决策机构。信 息化建设领导小组组成如下: 组长:总裁 副组长:信息化分管副总裁 成员:集团公司各副总裁,各公司总经理 2.2柏庄集团信息化工程部是信息化建设领导小组的日常办事机构。 2.3柏庄集团信息化项目建设及运用推广的辅助机构,由柏庄集团各部室(公 司)领导成员和关键用户(即业务骨干人员)、信息化专员组成。 2.4集团各部室(公司)总经理是所在单位信息化的第一责任者。

规范信息系统安全管理重要性及实施措施

规范信息系统安全管理重要性及实施措施前言 随着科学技术的发展,信息系统不断的进步,在带给我们给你更多便捷的同时,信息系统面对的安全威胁也越来越多。面对日益严峻的安全环境,国家逐步出台了对于信息系统的等级保护定级、测评的相关规定,用以保护信息系统的安全,降低其所面临的风险。比如,如何对信息系统进行规划和管理,如何保证其正常运行的相关规定和措施,出现故障后的应急方案如何制定等。根据在实际情况中所遇到问题,遵循对问题进行分析、思考、实践、改善这一系列研究过程,发现规范化管理对提高系统运行的可用性和连续性有着至关重要的意义。本文将结合笔者对信息安全等级保护的理解阐述信息系统安全管理的重要性,并结合等级保护的具体测评项目制定一些相应的自查自检措施。 一、规范化管理 1、什么是规范化管理 规范化管理是一个系统工程,要使这个系统工程正常工作,实现高效率、高质量,就需要运用科学的方法、手段和原理,按照一定的运营框架,对各项管理要素进行系统的规范化、程序化、标准化设计,

然后形成有效的管理运营机制。 2、什么是信息安全等级保护 根据信息系统在国家安全、经济建设、社会生活中的重要程度,以及受到破坏后对受侵害客体的损害程度,对信息系统的组织管理与业务结构实行分域、分层、分类、分级实施保护,保障信息安全和系统安全正常运行,维护国家利益、社会秩序、社会公共利益以及公民法人和其他组织的合法权益。 信息安全等级保护制度的主要内容是什么? 对国家秘密信息、法人和其他组织及公民的专有信息以及公开信息和存储、传输、处理这些信息的系统分等级实行安全保护,对信息系统中使用的信息安全产品实行按等级管理,对信息系统中发生的信息安全事件分等级响应、处置。 3、信息系统管理规范化概念 信息系统的管理规范化 信息系统的管理规范化,需要依据管理者对于等级保护工作内容的理解,结合等级保护要求设计管理的规范框架或流程,形成统一、规范和相对稳定的管理体系,并在管理工作中按照这些组织框架和流程进行实施,以期达到管理动作的井然有序和协调高效。

海洋生态系统

【模拟试题】(答题时间:60分钟) 1. 氧气产量最高的生态系统是() A. 森林生态系统 B. 草原生态系统 C. 海洋生态系统 D. 湿地生态系统 2. 临床上常用鲎血试剂来快速诊断哪种类型的疾病() A. 革兰氏阴性菌 B. 革兰氏阳性菌 C. 病毒性疾病 D. 真菌感染疾病 3. 石油污染导致海洋生物种群数量减少主要是因为() A. 导致成体海洋生物大量死亡 B. 海洋生物的卵和幼体大量的死亡 C. 主要导致海洋生物富营养化 D. 会造成生物富集作用 4. 哪种类型的海洋污染物然容易引起致畸、致死、致突变作用() A. 有机物污染 B. 重金属污染 C. 农药污染 D. 石油污染 5. 农业生态系统的特点说法正确的是() A. 人为管理作用突出,受自然条件影响小 B. 营养结构简单,抵抗力稳定性低 C. 物质循环可以在系统内保持动态平衡 D. 优势物种是竞争过程中发展起来的生活能力最强的物种 6. 生态农业发展的指导思想是() A. 高产,稳产,多产满足人类的需要 B. 环境与经济协调、多层次,多功能综合发展 C. 减少环境污染,生态效益是最低的效益 D. 价值增值是生态农业的根本 7. 下列属于森林生态系统的生态效益的是() A. 维持生物圈的生物多样性 B. 提供大量的木材和经济作物 C. 是宝贵的旅游资源 D. 是人类可持续发展的重要基础 8. 生物圈中物种多样性最大的生态系统是() A. 海洋生态系统 B. 森林生态系统 C. 草原生态系统 D. 城市生态系统 9. 下列说法不正确的是() A. 森林生态系统是生物圈的能量基地 B. 森林生态系统物种丰富,90%的动物和植物生活在森林中 C. 草场退化的主要原因是过度放牧和盲目开垦 D. 草原在生物圈的物质循环和能量流动中起重要作用 10. 我国对森林资源的利用策略是() A. 限额管理,采育结合,育重于采 B. 开放管理,利用森林资源的可再生性,开发森林资源 C. 限制性管理,退耕还林,封山育林,保护森林资源 D. 市场化管理,充分开发、用森林的经济效益 11. 下列自然保护区保护不属于湿地的是() A. 青海湖自然保护区 B. 黑龙江扎龙自然保护区 C. 鼎湖山自然保护区 D. 辽宁双台河口自然保护区 12. 关于划区轮牧的优点中说法错误的是() A. 牲畜能充分均匀地采食牧草

辽宁近海海洋生态系统服务及其价值测评_张华

第32卷第1期2010年1月2010,32(1):177-183Resources Science Vol.32,No.1Jan., 2010文章编号:1007-7588(2010)01-0177-07 辽宁近海海洋生态系统服务及其价值测评 张华1,2,康旭2,王利1,2,伏捷2 (1.辽宁师范大学海洋经济与可持续发展研究中心,大连116029; 2.辽宁师范大学自然地理与空间信息科学辽宁省重点实验室,大连116029) 摘要:参照千年生态系统评估的生态系统服务分类体系,以及生态系统服务类别间的相互作用,将辽宁近海海洋生态系统服务归纳为资源供给、环境调节和人文社会三大类共10项,并采用生态经济学的理论和研究方法,对辽宁近海海洋生态系统服务价值进行测评。结果表明:①2007年辽宁近海海洋生态系统服务总价值为710.35×108元,相当于2007年辽宁省GDP的6.44%。平均单位面积海域的生态服务价值为203.02×104元/km2;②在辽宁近海海洋生态系统服务总价值中,资源供给服务、环境调节服务、人文社会服务价值分别占33.18%、15.04%和 51.78%。从所评价的10项海域生态服务的价值量大小看,依次为旅游娱乐价值>食品供给价值>水质净化调节价 值>空气质量调节价值>干扰调节价值>气体调节价值>科研文化价值>基因资源供给价值>有害生物与疾病的生物调节与控制价值>原材料供给价值。 关键词:海洋生态系统;生态系统服务;价值测评;辽宁省 1引言 海洋生态系统服务即指“以海洋生态系统及其生物多样性为载体,通过系统内一定生态过程来实现的对人类有益的所有效应集合”[1],可归纳为供给服务、调节服务、文化服务以及支持服务四大基本类型[1,2]。海洋生态系统服务很大程度上满足了人类的物质资源需求、环境容量需求、精神需求和基本生存要求,是地球生命支持系统的重要组成部分,也是沿海地区社会、经济与环境可持续发展的基本要素。正确地认识、评估海洋生态系统服务功能及其生态价值,是沿海地区维持和可持续利用海洋生态系统服务、科学管理海洋生态系统的基本前提。近年来,国外学者开展了一系列与海洋生态系统服务相关的研究工作[3~10]。我国真正意义上的海洋生态系统服务研究始于2002年国家海洋局资助的胶州湾生态系统服务功能的探索[11],此后,徐丛春等[12]根据Costanza等人的研究成果[3]选取指标,尝试建立了海洋生态系统服务价值的估算框架。随着国家海洋局2005年启动的“海洋生态系统服务功能及其价值评估”研究计划[11]的实施,我国相继已在海洋生态系统服务概念、内涵的界定[1,11,13,14]及其经济属性[15]、服务类别的划分与经济价值的测评[14,16,17]、实际应用研究[18~21]等方面取得了一定研究成果。辽宁省海域广阔,是我国纬度最高、水温最低的海域,也是我国东北地区通向世界的海上门户。近年来,辽宁海洋经济发展迅速,全省海洋经济总产值从 1985年的40.0×108元,增加到2007年的1760.5×108元,海洋经济已成为辽宁经济发展新的增长点。但随着海洋开发的不断深入,辽宁海洋生态系统同样也面临着海域开发秩序混乱、近岸海域污染严重、渔业资源严重衰退等一系列问题。有鉴于此,本文以辽宁近海水域为研究区,就辽宁近海海洋生态系统服务及经济价值进行分析测评,旨在使人类充分认识和理解海洋生态系统服务,从而树立科学的海洋价值观和可持续发展观,自觉调整海洋开发利用的行为尺度,并为辽宁海洋生态系统服务的可持续利用和管理决策的制定提供生态经济理论支撑,也为合理征收海域使用金、确定海洋污染事故赔偿金 收稿日期:2009-08-16;修订日期:2009-11-28 基金项目:辽宁省教育厅创新团队项目:“辽宁近海海洋生态系统服务功能及其价值评估”(编号:2007T094);国家自然科学基金项目:“基于海域承载力的我国沿海地区经济可持续发展研究”(编号:40671052)。 作者简介:张华,女,山东东明人,博士,教授,主要从事恢复生态及生态经济研究。E-mail:zhanghua0323@https://www.doczj.com/doc/0a2826339.html,

最全系统账户权限的管理规范完整版.doc

系统账户权限管理规范 1.目的 为规范产业公司系统账户、权限管理,确保各使用单位与权限操作间的有效衔接,防止账户与权限管理失控给公司带来利益损失、经营风险。信息系统帐号的合理配置、有效使用、及时变更、安全保密,特制订本规范。 2.适用范围 本规范适用于多公司本部各单位、营销机构。 3.定义 3.1公司:指多媒体产业公司 3.2单位:指公司下属各单位,包含HR中体现为不同人事范围的直属部门、驻外机构。 3.3人事管理:指负责本单位人事信息人员,包括行政机构、驻外分公司人事经理、事业部、生产厂等部门级人事管理岗。 3.4权限管理员:负责本单位信息系统用户集中申请、变更,管理本单位信息系统用户对口的管理人员。包含单位自行开发和管理的信息系统(自行开发系统由所在部门指定系统管理员负责),如营销中心的“DDS”,研究“PDM”也是流程申请的维一发起人。 3.5系统管理员:指系统开发、系统配置管理的IT人员,部分虹信IT顾问为主。也可根据组织架构授权给某业务单位的相关人员,其负责某系统用户和权限的配置管理者。 3.6系统流:指每个系统固定的申请、审批流,原则上由系统管理员或权限管理员配置。 4.部门职责 4.1产业公司负责人: 4.1.1.公司信息系统立项、验收等审批工作。 4.1.2.公司信息系统,信息安全的第一责任人。 4.1.3.公司信息系统组织第一责任人

4.2人事部门: 4.2.1负责在人力资源管理系统(以下简称HR系统)处理人事档案,各单位权限管理员提交的信息系统需求协助。 4.2.2提供各单位的入职、调动、离职信息给信息系统管理部门。 4.2.3协助信息系统部门与人事相关的其它需求。 4.3控制中心: 4.3.1负责发布和制定信息建设规范,并组织通过技术手段或辅助工具管理。4.3.2负责组织周期性清理各信息系统账户。 4.3.3负责信息系统档案的建立。 4.3.4负责信息系统维护、权限配置、权限审核等相关事宜。 4.3.5 4.4用户申请部门和使用单位: 4.4.1各单位第一负责人管理本单位员工,各信息系统账户、权限申请、审核并对信息系统安全负责。定期组织相关人员对部门的信息系统帐号、权限进行清理和检查,申请职责可指定单位专人负责。 4.4.2权限管理员作为各单位信息系统申请的唯一发起人。 4.4.3权限管理员协助单位人事向公司人事部提交本单位入职、调动、离职信息。 4.4.4权限管理员负责本单位员工,各信息系统账户的新增、变更、冻结以及对应系统权限的申请工作。 4.4.5权限管理员负责定期核查本单位员工,对应系统账户的权限,若有偏差及时发起变更申请流程。 4.4.6帐号使用者不得将自己权限交由它人使用,部分岗位因工作需要交由同部门使用时,必须保证其安全和保密工作。 4.5系统操作部门: 4.5.1系统管理员负责对权限管理员提交的申请进行权限操作、审核。 4.5.2系统管理员定期在系统或SSU上获取信息系统的账号、权限分布表,并进行检查,对发现问题和风险的帐号及时告知相关部门并发起相应流程。 4.5.3系统管理员负责对系统故障进行处理或提交集团。 4.5.4系统管理员负责对系统操作手册的解释和编制工作。

Win7 系统管理和应用doc资料

W i n7系统管理和应 用

系统管理和应用 用户在使用计算机时,经常需要对Win 7进行个性化的设置,还要对系统进行管理,以及安装和卸载应用程序等。 一、个性化Windows 7 Win 7提供了强大的外观和个性化设置功能,用户可以根据自己的喜好来进行更换桌面主题、调整桌面图标、设置桌面背景以及设置屏幕分辨率等设置。 1、桌面图标的操作: 作为一个视窗化的操作系统,用户向系统发出的各种操作命令都是通过桌面来接收和处理的。 图标是桌面上或文件夹中用来表示Windows各种程序或项目的小图形,图标分为文件图标、应用程序图标、快捷方式图标、文档图标、驱动器图标等类型。 桌面快捷图标是指Windows为了方便、快速地使用某一对象(指Windows的各种组成元素,包括程序、文件、文件夹和快捷方式等。)而复制的可以直接访问该对象目标的替身。用户可以把自己常用的应用程序的快捷方式、经常要访问的文件或文件夹的快捷方式放在桌面上,可以不断地在桌面中添加和删除快捷图标。 ⑴添加桌面图标:进入刚装好的Win 7系统时,桌面上只有“回收 站”一个图标。如果想添加“计算机”和“控制面板”等图标到桌面,需要进行如下操作:

在桌面空白处右击,从弹出的快捷菜单中选择“个性化”命令,打开“更改计算机上的视觉效果和声音”窗口。在窗口的左边窗格中选择“更改桌面图标”选项,弹出“桌面图标设置”对话框。用户可以根据自己的需要在“桌面图标”组合框中选择需要添加到桌面上显示的系统图标,依次单击“应用”和“确定”按钮。 另外,用户可以将常用的应用程序的快捷方式放置在桌面上形成桌面图标。下面以添加“计算器”小程序图标到桌面为例。具体操作步骤如下:选择“开始”→“所有程序”→“附件”命令,弹出程序组列表。在程序组列表中选择“计算器”选项,然后单击鼠标右键,从弹出的快捷菜单中选择“发送到”→“桌面快捷方式”命令。 ⑵排列桌面图标: 在Windows 7系统中,用户可以根据自己的需要对桌面图标按照不同的方式进行排列,具体操作步骤是:右击桌面空白处,在弹出的快捷菜单中选择“排序方式”菜单,用户在提供的排列方式中选择一种排列方式,系统将自动对图标进行排序。 还可以通过“查看”菜单,对桌面图标进行显示方式的更改。 还可以隐藏桌面图标或者自动排列。 ⑶、移动、复制、删除桌面快捷图标: 我们可以利用鼠标对桌面的图标进行移动、复制、删除等操作。 ①移动图标。移动一个或多个图标时,先选择要移动的图标,按住鼠标左键拖动图标到目标位置,释放鼠标即可。

海洋污染对生态环境有哪些危害

海洋污染对生态环境有哪些危害 海洋污染海洋污染物依其来源、性质和毒性,可分为以下几类:石油及其产品。金属和酸、碱。包括铬、锰、铁、铜、锌、银、镉、锑、汞 、铅等金属,磷、砷等非金属,以及酸和碱等。那么海洋污染对生态环境有哪些危害有哪些呢? 海洋污染造成的海水浑浊严重影响海洋植物的光合作用,从而影响海域的生产力,对鱼类也有危害。重金属和有毒有机化合物等有毒物质在海域中累积,并通过海洋生物的富集作用,对海洋动物和以此为食的其他动物造成毒害。石油污染在海洋表面形成面积广大的油膜,阻止空气中的氧气向海水中溶解,同时石油的分解也消耗水中的溶解氧,造成海水缺氧,对海洋生物产生危害,并祸及海鸟和人类。由于好氧有机物污染引起的赤潮(海水富营养化的结果),造成海水缺氧,导致海洋生物死亡。海洋污染还会破坏海滨旅游资源。我国渤海湾也在一定程度上受其影响。 受其影响渤海湾生态监控区海域无机氮和活性磷酸盐污染严重,营养盐比例失衡,水体富营养化,浮游植物密度增加,浮游动物种类组成发生改变,产卵场发生退化,海洋渔业资源明显衰退。破坏

了整个海洋生态平衡。 制定海上船舶溢油和有毒化学品泄漏应急计划,制定港口环境污染事故应急计划,建立应急响应系统。目前,《中国船舶重大溢油事故应急计划》已经完成。今后将积极协调有关部门和沿海省、自治区、直辖市人民政府制定《国家重大海上污染事故应急计划》。 防止和控制海上石油平台产生石油类污染物及生活垃圾对海洋环境的污染。做到油气田及周边区域的环境质量符合该类功能区环境质量控制要求,不对邻近其他海洋功能区产生不利影响,开发过程中无重大溢油事故发生。海洋石油勘探开发应制定溢油应急方案。 为了用水安全,我们应撑握些水污染安全小知识,同时还可以用便携净水器将水处理使用,这样更有利于健康用水。

推荐-项目名称: 多重压力下近海生态系统可持续产出与

项目名称:多重压力下近海生态系统可持续产出与 适应性管理的科学基础 首席科学家:张经华东师范大学 起止年限:20XX.9至20XX.9 依托部门:教育部上海市科委

二、预期目标 1.总体目标 本项目将遵循中国海洋生态系统动力学的总体发展目标,即从人类活动和气候变化两个方面认识我国近海海洋生态系统的服务与产出功能,量化其生态容纳量及动态变化,预测生态系统的承载能力和易损性。寻求我国近海海洋可持续开发利用与资源环境相协调发展的途径,使具有陆架特色的我国近海可持续生态系统理论体系和多学科交叉研究队伍进入国际先进行列。 2.五年预期目标 针对近海生态系统的功能与服务在多重压力影响下不断地发生变化、其所提供的食物产出也受到现有管理决策的影响的现实,在本项目中,将以生物地球化学过程对食物网的影响为重点,剖析在多重压力下近海生态系统功能的变化和食物产出的可持续性。通过本项目的学科整合与持续性研究工作,提升对近海生态系统变化的预测能力,为实现我国近海生态系统的可持续食物产出与适应性管理提供科学依据。其中包括: ?深化对近海生态系统在多重压力影响下可持续发展机理的认识, 提高预测能力; ?在多重压力的背景之下,剖析近海渔业在生态系统可持续性前提下的适应性管理对策; ?提高海洋生态系统多学科交叉与整合研究队伍的能力建设,继续壮大和培育能积极参与国际前沿领域活动的优秀中青年学术群体; ?在项目实施过程中,培养研究生50 名以上,发表科学150篇以上,出版学术专著或研究专辑1-2部。 ?通过本项目的实施,进一步丰富和完善近海生态系统数据系统和资料共享平台。

三、研究方案 1.学术思路 在项目实施中,拟选择长江口外与东海陆架的缺氧区、山东半岛的增养殖区为重点调查与实验区域。 生物地球化学研究所刻画的物质流动是生态系统的一个基本组成(例如:基本物质基础与支撑功能)特点,它控制和调节着海洋中物质循环的基础过程(例如:营养限制),支撑着海洋中的食物产出的数量与品质(例如:食物网的物质传递)。在海洋中,多重压力对生态系统的影响也将通过物质输运的性质、通量及其改变体现出来。相对于针对高营养层次的生物学研究而言,生物地球化学过程对气候变化的响应更为敏感、迅速,而且其变化引起的后果贯穿于整个食物网中。我们将在中国海洋生态系统动力学的前期发展基础上,以生物地球化学过程对食物网的关键作用为研究核心,针对多重压力对近海生态系统的食物产出的主导影响进行深入地分析,提高预测的水平;项目的研究成果将为近海生态系统可持续食物生产的适应性管理对策提供基础。 在项目的实施过程中,在生物地球化学过程对全程食物网的作用意义上凸现不同的生态系统亚区在多重压力下可持续发展的取向和相应的适应性管理问题。譬如,在长江口外和东海陆架区认识黑潮涌升与陆地径流的变化对缺氧区形成和演化的控制作用,检验缺氧同富营养化在因果上的关联和脱节,以及生物地球化学循环对水层-底栖系统耦合的调控机制。在近海的增养殖区域,认识富营养化、海洋酸化与不同的增养殖策略对食物网的关键种群结构和食物产出的影响程度,在食物网不同营养层次功能群的层面上分析海洋酸化和人为的“寡营养化”所带来的不可持续发展后果。 为了使关键科学问题的多学科交叉与整合研究收到预期效果,我们将在不同的典型生态区选择相应的重点研究主题,促使各课题的研究能够目标集中、步调一致, 对应“关键问题”聚焦“共性特点”研究, 使整个项目的研究成果能够最大程度上体现国家对海洋生态系统可持续食物产出的重大需求,帮助产业界克服相关的瓶颈障碍。 2.技术途径

海洋生态系统服务的分类与计量

第26卷第1期海岸工程2007年3月文章编号:100223682(2007)0120057207 海洋生态系统服务的分类与计量 张朝晖1,吕吉斌2,丁德文1 (1.国家海洋局第一海洋研究所,山东青岛266061;2.国家海洋环境监测中心,辽宁大连116023) 摘 要:通过界定海洋生态系统服务的概念和内涵以及分析其组成结构、生态过程及生物多样性等服务的来源,详细描述了海洋生态系统所提供的食品供给、原材料供给、基因资源、气候调节、空气质量调节、水质净化调节、有害生物与疾病的生物调节与控制、干扰调节、精神文化服务、知识扩展服务、旅游娱乐服务、初级生产、物质循环、生物多样性和提供生境等15项服务。 根据这些服务的相似作用与性质,参照千年生态系统评估的分类体系,进一步归纳为供给服务、调节服务、文化服务以及支持服务这4大基本服务类型。同时,也对各项服务的内容、表现特征和计量特征进行了描述。海洋生态系统服务不仅是海洋管理的核心内容,提高和维持海洋生态系统服务更是海洋管理的最终目标。 关键词:海洋生态系统;生态系统服务;分类;计量 中图分类号:Q178.52,X171.1 文献标识码:A 占地球表面积70.8%的海洋为我们提供了极其丰富的各种资源与服务,已经成为了人类社会与经济可持续性发展的基础,也将成为构建生态和谐社会的重要部分。Costan2 za等1997年的研究结果表明,在全球的生态系统所提供的服务中有63.0%来自海洋, 37.0%来自陆地[1]。然而,海洋生态系统正面临着越来越大的压力,特别是沿海过快增长的人口数量、自然资源的消耗和人类对环境的改变[2]。同时,海洋生态系统也面临着过度捕捞、海洋倾废、海岸带遭受破坏、陆源污染及气候变化影响等问题[3]。使得海洋生态系统的资源支撑能力与环境容量这两大社会发展的支柱逐渐衰退与缩减,并进一步影响到社会经济的可持续发展。对此,我们迫切需要了解和认识海洋生态系统对当今和未来社会的经济贡献,才能在政策制定和海洋管理过程中,充分考虑到影响海洋生态系统服务的各种人类活动成本[4]。这样,就会将海洋生态系统和人类社会作为共同发展的整体,而不是以生态系统的破坏和退化换取社会的发展。我们对海洋的管理也会从传统的资源型管理转变为基于社会的和基于区域的生态系统管理[5]。要实现此目标,首先面临的最大挑 收稿日期:2006207211 基金项目:国家重点基础研究发展规划项目———中国典型河口—近海陆海相互作用及其环境效应(2002CB412406);科技部“科技基础性工作和社会公益研究专项”———典型海洋生态系统服务功能价值评估研究及应用示范(2003DIB3J113) 作者简介:张朝晖(19702),男,副研究员,主要从事海洋生态系统评估与生态系统管理等方面研究。 (段 焱 编辑)

信息系统使用管理规范

****管理制度 信息系统使用管理规范

目录 第一章总则 (1) 第二章网络系统管理员 (1) 第三章帐号使用及安全管理 (2) 第四章计算机使用及安全管理 (3) 第五章网络系统使用及安全管理 (4) 第六章电子邮件和互联网安全管理 (5) 第七章携出电脑安全管理 (5) 第八章监督和检查机制 (6) 第九章附则 (6)

第一章总则 第一条为加强集团信息安全管理,降低失密、泄密风险,特制定本规定。 第二条本规定适用于集团各单位和全体员工,管理内容包括:帐号、计算机设备、网络系统、业务系统、办公系统使用过程的安全管理;互联网浏览、电子邮件、MSN等即时通讯系统的使用安全管理;信息化项目建设的安全管理。 第二章网络系统管理员 第四条系统管理员指负责管理和保障集团计算机设备、网络、应用系统安全运营的管理人员。其主要职责是负责集团计算机设备(服务器、存储等)、网络及应用系统、数据库的运行维护;负责进行安全评估、安全审计及各类账号、用户权限的管理。 第五条系统管理员分为最高系统管理员及各岗位系统管理员,最高系统管理员拥有本单位所有服务器、网络及应用系统的安全管理、审核权限。各岗位系统管理员负责自己所管理服务器、网络及应用系统的安全管理。 第六条系统管理员需具备如下任职条件: (一)各单位最高系统管理员须计算机专业及计算机相关专业毕业,有相应岗位的专业技术认证且在集团服务三年以上,无违规记录,由各单位IT人员负责人提名报各单位负责人审批同意后方可聘任。 (二)各岗位系统管理员由各单位IT人员负责人指定,需要计算机专业及计算机相关专业毕业,有相应岗位的专业技术认证及五年以上所属岗位系统的管理、运维经验。 (三)系统管理员必须保证对公司的忠诚度,其任职前必须与集团签署保密协议及不低于3年的长期任职协议。系统管理员必须严格遵守国家法律、法规和行业规章,严守公司及岗位秘密。若有泄露安全信息、滥用权限等违记行为,一

相关主题
文本预览
相关文档 最新文档