当前位置:文档之家› 楚雄师范学院化学与生命科学系

楚雄师范学院化学与生命科学系

楚雄师范学院化学与生命科学系

楚雄师范学院化学与生命科学系科学教育专业实习教学教案

专业科学教育专业

班级09级05班

学号20091053125

姓名尹秋林

2012年12月08日

(完整版)生命科学导论课后习题

第一章 一、生命的基本特征是什么? 1.生长。生长是生物普遍具有的一种特征。 2.繁殖和遗传。生命靠繁殖得以延续,上代特征在下代的重现,通常称为遗传。 3.细胞。生物体都以细胞为其基本结构单位和基本功能单位。生长发育的基础就在于细胞 的分裂与分化。 4.新陈代谢。生物体内维持生命活动的各种化学变化的总称,包括同化和异化。 5.应激性。能对由环境变化引起的刺激做出相应的反应。 6.病毒是一类特殊的生命。 二、孟德尔在生物学研究方法上有什么创新? 孟德尔的豌豆杂交实验,为遗传学的发展奠定了科学基础。相较于前人有下面显著特点: 1.他把许多遗传性状分别开来独立研究。 2.他进行了连续多代的定量统计分析。 3.他应用了假设---推理---验证的科学研究方法。 三、有人说机械论和活力论是互补关系,你的看法如何? 个人观点觉得机械论和活力论是相对立的关系。“活力论”观点认识生命,认为生物体具有与物理化学过程不同的生命力,即活力。与活力论相对立的是“机械论”观点,认为生命问题说到底是物理和化学问题,一切生命现象都可以用物理和化学定律做出解释,生物体内没有什么与物理化学不同的生命力。其实个人觉得生物体是不同于物理化学系统,是高级的、非常复杂的生命系统,当把它还原为简单的物理化学系统以后,它所具有的一些特别的性质和功能就会失去。 四、你是否认为21世纪时生命科学的世纪? 20世纪下半叶,生物学进入分子生物学时代,研究生物大分子物质的结构、性质和功能,从分子水平上阐述生命现象。20世纪下半叶以来,生命科学文献在科学文献中所占的比例、从事生命科学研究的科学家在自然科学家中所占的比例都在迅速增长,这就是这种趋势的反应。生命系统是地球上最复杂的物质系统,是从非生命系统经过几十亿年进化的结果。现代科学技术的发展对生命科学发展起到重要的作用,生命科学的发展对整个科学技术的发展产生重要影响。生命科学与农业的可持续发展:解决粮食短缺,基因工程将在育种中发挥重要作用。应用基因工程可以改善粮食和畜牧产品品质。实现农业的可持续发展,克服农业化学化的恶果,必须生物防治,降低对农药的依赖等。 生命科学与能源问题的可持续发展:解决能源问题,对生物技术给予厚望。生命科学与人的健康长寿:研制更有效的药物、在基因组的基础上认识人体,理解疾病。生命科学与维持地球生态平衡。 五、举例说明生命科学技术引发了哪些伦理道德问题? 人类是高度社会化的生物,人类社会有特定的伦理道德,生命科学技术的在人类社会的应用时会引起伦理道德的问题。例如人工授精和试管婴儿技术,可能使子女“只知其母,不知其父”。若供卵者与怀孕的不是一个人,则生母也成了问题。例如克隆技术可以实现人的无性繁殖,那么,人类自身的生产也会批量化吗?例如应用基因工程技术改造人类本身,一些人成就了改造活动的客体,而另一些人是主体,一些认识按照另一些人的

有机化学与生命科学

第18卷第1期1998年 3月 云南师范大学学报 J ourna l of Yunna n No r m a l Unive rs ity V o l.18No.1 M a r. 1998有机化学与生命科学Ξ 周晓俊 吴 晖 (云南广播电视大学医农系,昆明650223) (云南师范大学化学系,昆明650092) 摘 要 本文对有机化学和生命科学的关系、生命科学中有机化学发展前沿和研究热点等各方面 进行较全面的讨论。阐述了有机化学与生物问题的密切结合推动了生命科学的蓬勃发展。随着科学 技术的发展,自然科学各学科之间互相渗透、互相融合,新兴边缘学科不断涌现,化学生物学就是最 富有生命力的一门新学科。在生命科学中有机化学显得尤其重要。 关键词 生命科学 有机化学 化学生物学 分子水平 当今生命科学发展到了分子水平,而且正方兴未艾。生命科学中的化学问题已成为当今化学科学的重大的前沿课题之一。这个课题关系到在分子基础上对生命现象和生命过程的深入认识,关系到对人类自身的认识,与医学和工农业的发展有直接的关系。发达国家如美国、欧洲和日本都提出相应报告并制订规划,将此课题列为今后最优先发展的研究课题。 一些著名科学家在论述今后发展趋势时,提出了“化学是中心科学”(the cen tral science)的论点。化学是在分子水平上研究物质世界的科学。说它是中心科学,是因为它联系着物理学和生物学,材料科学和环境科学,农业科学和医学,它是所有处理化学变化的科学的基础。因此,化学与这些科学的交叉就成为化学科学发展的必然趋势。在此,我们仅就化学,特别是有机化学和生命科学的关系,生命科学中有机化学发展前沿和研究热点作一综述讨论。 1 有机化学与生命科学的关系 有机化学与生命科学关系极为密切。有机化学就其最初的意义而言,是生物物质的化学。十九世纪初,化学家把物质分为从矿物质获得的和从活细胞获得的两大类。1807年,J.F.von B erziliu s首次把从活细胞中获得的化合物命名为有机化合物。那时人们对生命现象的本质没有认识,因而便赋予有机化合物以一种神秘的色彩,许多化学家认为有机物是不可能用人工的方法合成的,它们是“生命力”所创造的。但是1828年,F.W oh ler从无机物氰酸铵制得了和尿液中分离得到的完全相同的尿素。W oh ler的发现否定了关于“生命力”假说,可以说是化学家第一次干预了生命科学。 在后来的研究中,化学家们的兴趣主要在有机物的结构研究和合成方法上,较少关心它们的生物功能。尽管如此,许多化学家卓有成效的研究成果还是成为了生命科学发展过程的里程碑。 十九世纪中叶,I.Pasteu r关于左旋和右旋酒石酸经典式的研究,导致70年代V an thoff Ξ1997-11-19收稿

如何理解生命系统的结构层次

如何理解生命系统的结构层次? 教材内容分析: 生命系统的结构层次这一节内容属于高中生物必修一第一章第一节内容,放在这个位置,不仅说明了此节内容的概括性同时也表明了高中课程的设计技巧,新课标高中生物紧密与初中生物相联系,我们在初中时对于生命系统的结构有所了解,本节在这个位置不仅仅起到了承接的作用,还起到了启下的作用。 关于“生命活动离不开细胞”这一观点,是为深入学习细胞的知识作铺垫,属了解水平。教材通过事例从几个方面提供资料让学生进行分析,因此,该内容的教学目标定为“举例说出”。构成生命系统的结构层次是增加的内容,本节教材涉及较多的初中知识,同时,由于时间相隔较长而容易遗忘,因此,本节教学除完成知识上的教学目标之外,还具有熟悉学生,了解学生,激发学习兴趣的目的。在这节内容中只有种群和群落是学生没有学习过的,这些结构层次都属于基本概念,因此需要理解学习。不仅理解生命系统的这些结构层次的含义,还应理解这些结构层次是层层相依,紧密相联的,同时,还应初步理解生命系统具有复杂性和多样性。因此,教学目标定为“举例说明”。在分析组成生命系统的多层次关系的基础上,认同细胞是基本的生命系统。 “生命系统的结构层次”教学设计 地球上生物的种类和数量可谓是恒河沙数,但是这些生物,小到组成它们身体的细胞,大到一个生物个体,一个物种、甚至一个生态系统、整个生物圈,都可以一个一个的生命系统(什么是系统呢),而且这些生命系统之间还有层次的关系。(以一只龟为例分析) 单一个心肌细胞就是一个生命系统,(为什么呢?)因为细胞各个部分都是互相依存,互相影响,而使细胞能表现生命特征;心肌也是一个系统(分析略)。引导学生分析心脏、循环系统、个体、种群、群落等也是一个系统。 先指导学生看课本图1-1“生命系统的结构层次”,并提出问题引导学生思考:1.生命系统分为哪几个层次?它们从小到大的排列顺序是什么?

化学工程与工艺与生命科学的融合

化学工程与工艺与生命科学的融合 ---化学与生命健康 姓名:李海波 学号:1066115317 专业:化学工程与工艺 学院:化学与化工学院

化学工程与工艺与生命科学的融合 ――化学工程与工艺与生物学(李海波1066115317化工2010化学工程与工艺化学与化工学院)摘要:近些年来化学与生物交叉相融合,逐渐衍生出一门高端的科学,一门通过研究生物的化学组成、代谢、营养、酶功能、遗传信息传递、生物膜、细胞结构等阐明生命现象。这是一门运用化学组成、结构及生命过程中各种化学变化。从早期对生物总体组成的研究,进展到对各种组织和细胞成分的精确分析。目前正在运用诸如光谱分析、同位素标记、X射线衍射、电子显微镜一级其他物理学、化学技术,对重要的生物大分子进行分析。 关键词:生化武器;生物农药;医药与微生物;生物医学工程

正文: 一、生化武器的研制和对未来战争的需求 生化武器是指以细菌、病毒、毒素等使人、动物、植物致病或死亡的物质材料制成的武器。作为一种大规模杀伤性武器,至今仍然对人类构成重大威胁 生化武器旧称细菌武器。生化武器是利用生物或化学制剂达到杀伤敌人的武器,它包括生物武器和化学武器。生物武器是生物战剂施放装置的。 1、炭疽武器 炭疽——炭疽是一种细菌,但它具有生命力很强的孢子结构。如果这种孢子或细菌进入肺部,会不断繁殖并产生致命毒素。 美国在911事件以后,接着又发生不明人士以邮递方式展开生化武器恐怖活动,所使用之生化武器为地球上匿迹多年的炭疽菌;炭疽菌所引起的疾病称炭疽病(anthrax)。 1997年,前苏俄Sverdlovsk地区军事单位,曾发生炭疽菌芽孢气雾外泄意外,导致68人死亡。911事件以后,许多医学及相关杂志、学术刊物争相报道炭疽菌。根据传统文献过去仅针对猴子、拣选兽皮处理工所作的研究显示,只有在数千个炭疽菌孢子进入肺部深处时,才会感染吸入型炭疽热。但此次恐怖份子所使用者为经过加工精炼之炭疽菌芽孢,以粉末状之粉剂剂型处理邮件,经穿透信封的小缝隙进入信件内,收信人或邮务人员在不

揉合一体的结构化学与生命科学说课材料

揉合一体的结构化学与生命科学

我看DNA结构探索过程 毫无疑问,生命科学与化学有着密不可分的联系,我甚至认为生命科学就是用化学来解释生命。然而,仅仅知道一种物质的化学成分是远远不够的,结构才是其功能的基础。我们知道,构成元素相同的物质,由于结构不同,可能在功能上就相去甚远:左、右旋光物质的不同生理作用就是一个很好的例子。但是,我们不能孤立地来阐述生命科学与结构化学的关系,也就是说不能把生命科学看成一块,再把结构化学看成另一块,然后再说明他们间千丝万缕的联系;我认为,结构化学与生命科学是揉合在一起的,很多结构化学家在生命科学领域就有不凡的建树。鲍林就是以化学向生物学渗透的先驱者,他不仅进行了大分子研究,还对镰刀形细胞贫血分子病和大脑化学进行了大量的研究。然而我认为,最能体现结构化学与生命科学揉合一体的历史故事,就是鲍林与沃森和克里克关于DNA结构之争。在这个过程中,我们无法定义他们到底是化学家还是生物学家。而且,结构化学的知识不仅为他们建立模型提供了理论支持,而且在帮助他们判别真理与谬误、为他们的结论提供事实支持等方面起到了至关重要的作用。从这个故事中我们不仅可以看出,解决DNA结构这个世界性的生命科学课题,是许多化学家、物理学家、晶体学家、生化学家共同努力的结果,而且能受到许多在科学研究上的启发。在多学科交叉渗透的今天,我们更不能仅仅只重视专业课的学习,必须同时汲取其他学科的知识,为将来的研究打下基础。 在一九二四年以前,没有一个人真正懂得DNA的重要性。但就在那一年,科学家罗伯特·福尔根发现了一种方法能将DNA染成淡紫色。在这种方法的帮

助下,科学家们发现DNA仅存在于细胞核中。到了一九三一年,科学家乔基姆·哈默林用实验证明了植物长成什么样子完全取决于细胞核。随后的一切实验事实都表明,发出遗传信息的正是细胞核里的DNA。 于是,在美洲和欧、亚、非三洲各试验室里的人们都开始研究这个问题。在美国,著名的化学家莱纳斯·鲍林开始了对DNA的研究。在剑桥大学的卡文迪斯实验室里,英国人弗朗西斯·克里克和美国人詹姆斯·沃森也着手进行对奇异的DNA结构的探索。这是一场用结构化学来解释生命科学的竞赛,也是“一个远方传奇大力士被两个无名小卒砍倒的故事”。虽然我们已经知道了这场竞赛的结果,但我认为,这一探索的过程更让人留下深刻的印象。我将双方的研究进行了一些对比,确实从中学到了一些东西,希望和大家一起探讨。 一、双方的开端: 当时的鲍林已经是化学界的“权威”,他致力于蛋白质的研究。1951年夏天,鲍林开始深入研究有关DNA的材料,并常常找人讨论。他认为,与蛋白质相比,弄清DNA的结构不会很难,“这算不上一个最为紧迫的问题”。DNA在重量上是染色体的一种重要成分,但蛋白质也一样。大多数学者认为,蛋白质部分最有可能包含着遗传的信息。相对而言,DNA似乎就比较简单了,它很可能只是一种结构性的成分,只是用来帮助染色体折叠和打开的。鲍林就这样认为。在1952年初,几乎所有重要的遗传学学者都持这一种观点。我们可以看看后来鲍林自己的话:“我以前就知道DNA是一种遗传物质的论点,然而我没有接受这一论点。你们知道,那时我正热衷于蛋白质的研究,我认为蛋白质最有可能是遗传物质,不可能是核酸当然,核酸也有作用。在我著述的有关核酸的

化学与生命科学

浅谈结构化学与生命科学 关键词:结构化学;生命科学;研究方法 前言 毫无疑问,生命科学与化学有着密不可分的联系,我甚至认为生命科学就是用化学来 解释生命。然而,仅仅知道一种物质的化学成分是远远不够的,结构才是其功能的基础。我们知道,构成元素相同的物质,由于结构不同,可能在功能上就相去甚远:左、右旋光物质的不同生理作用就是一个很好的例子。但是,我们不能孤立地来阐述生命 科学与结构化学的关系,也就是说不能把生命科学看成一块,再把结构化学看成另一块,然后再说明他们间千丝万缕的联系;我认为,结构化学与生命科学是揉合在一起的,很多结构化学家在生命科学领域就有不凡的建树。鲍林就是以化学向生物学渗透 的先驱者,他不仅进行了大分子研究,还对镰刀形细胞贫血分子病和大脑化学进行了 大量的研究。然而我认为,最能体现结构化学与生命科学揉合一体的历史故事,就是 鲍林与沃森和克里克关于DNA结构之争。在这个过程中,我们无法定义他们到底是化学家还是生物学家。而且,结构化学的知识不仅为他们建立模型提供了理论支持,而 且在帮助他们判别真理与谬误、为他们的结论提供事实支持等方面起到了至关重要的 作用。从这个故事中我们不仅可以看出,解决DNA结构这个世界性的生命科学课题,是许多化学家、物理学家、晶体学家、生化学家共同努力的结果,而且能受到许多在 科学研究上的启发。在多学科交叉渗透的今天,我们更不能仅仅只重视专业课的学习,必须同时汲取其他学科的知识,为将来的研究打下基础。 在一九二四年以前,没有一个人真正懂得DNA的重要性。但就在那一年,科学家罗伯特?福尔根发现了一种方法能将DNA染成淡紫色。在这种方法的帮助下,科学家们 发现DNA仅存在于细胞核中。到了一九三一年,科学家乔基姆?哈默林用实验证明了 植物长成什么样子完全取决于细胞核。随后的一切实验事实都表明,发出遗传信息的 正是细胞核里的DNA。 于是,在美洲和欧、亚、非三洲各试验室里的人们都开始研究这个问题。在美国,著名的化学家莱纳斯?鲍林开始了对DNA的研究。在剑桥大学的卡文迪斯实验室里, 英国人弗朗西斯?克里克和美国人詹姆斯?沃森也着手进行对奇异的DNA结构的探索。这是一场用结构化学来解释生命科学的竞赛,也是“一个远方传奇大力士被两个无名 小卒砍倒的故事”。虽然我们已经知道了这场竞赛的结果,但我认为,这一探索的过

关于生命科学的论文

解读DNA结构的生命科学 马椿杰12号12生物技术 毫无疑问,生命科学与化学有着密不可分的联系,我甚至认为生命科学就是用化学来解释生命。但是,我们不能孤立地来阐述生命科学与结构化学的关系,也就是说不能把生命科学看成一块,再把结构化学看成另一块,然后再说明他们间千丝万缕的联系;我认为,结构化学与生命科学是揉合在一起的,很多结构化学家在生命科学领域就有不凡的建树。鲍林就是以化学向生物学渗透的先驱者,他不仅进行了大分子研究,还对镰刀形细胞贫血分子病和大脑化学进行了大量的研究。然而我认为,最能体现结构化学与生命科学揉合一体的历史故事,就是鲍林与沃森和克里克关于DNA结构之争。在这个过程中,我们无法定义他们到底是化学家还是生物学家。而且,结构化学的知识不仅为他们建立模型提供了理论支持,而且在帮助他们判别真理与谬误、为他们的结论提供事实支持等方面起到了至关重要的作用。从这个故事中我们不仅可以看出,解决DNA结构这个世界性的生命科学课题,是许多化学家、物理学家、晶体学家、生化学家共同努力的结果,而且能受到许多在科学研究上的启发。在多学科交叉渗透的今天,我们更不能仅仅只重视专业课的学习,必须同时汲取其他学科的知识,为将来的研究打下基础。 在一九二四年以前,没有一个人真正懂得DNA的重要性。但就在那一年,科学家罗伯特·福尔根发现了一种方法能将DNA染成淡紫色。在这种方法的帮助下,科学家们发现DNA仅存在于细胞核中。到了一九三一年,科学家乔基姆·哈默林用实验证明了植物长成什么样子完全取决于细胞核。随后的一切实验事实都表明,发出遗传信息的正是细胞核里的DNA。 于是,在美洲和欧、亚、非三洲各试验室里的人们都开始研究这个问题。在美国,著名的化学家莱纳斯·鲍林开始了对DNA的研究。在剑桥大学的卡文迪斯实验室里,英国人弗朗西斯·克里克和美国人詹姆斯·沃森也着手进行对奇异的DNA结构的探索。这是一场用结构化学来解释生命科学的竞赛,也是“一个远方传奇大力士被两个无名小卒砍倒的故事”。虽然我们已经知道了这场竞赛的结果,但我认为,这一探索的过程更让人留下深刻的印象。我将双方的研究进行了一些对比,确实从中学到了一些东西,希望和大家一起探讨。 一、双方的开端: 当时的鲍林已经是化学界的“权威”,他致力于蛋白质的研究。1951年夏天,鲍林开始深入研究有关DNA的材料,并常常找人讨论。他认为,与蛋白质相比,弄清DNA的结构不会很难,“这算不上一个最为紧迫的问题”。DNA在重量上是染色体的一种重要成分,但蛋白质也一样。大多数学者认为,蛋白质部分最有可能包含着遗传的信息。相对而言,DNA似乎就比较简单了,它很可能只是一种结构性的成分,只是用来帮助染色体折叠和打开的。鲍林就这样认为。在1952年初,几乎所有重要的遗传学学者都持这一种观点。我们可以看看后来鲍林自己的话:“我以前就知道DNA是一种遗传物质的论点,然而我没有接受这一论点。

生命科学大系统理论

生命科学大系统理论 ---对生物与社会两大生命系统的综合研究 (内容简介) 沈律 所谓“生命科学大系统理论”就是通过对生物与社会两大生命系统的综 合研究,建立起来的一门生命科学综合系统理论。生物系统具有生命现象已经成为学术共识,而社会系统具有生命现象也正在成为一种学术共识。“生命科学大系统理论”就是在对生物与社会两大生命系统进行综合研究的基础上建立起来的一门全方位的大系统理论。其主要内容如下: 第一,该系统理论认为,现代世界,科学技术的发展主要表现为综合化、整体化、系统化、数学化、产业化、商品化、国际化、革命化、超常化、风险化、交叉化、边缘化、横向化和复杂化等等微观发展特征,同时还强烈地表现为科学技术化,技术科学化;科技社会化,社会科技化等宏观发展趋势。这些科技发展特征与趋势,使得未来科技发展的带头学科发生了质的变化。如果说二十世纪科学技术的发展是以物理科学为带头学科,那么,二十一世纪科学技术的发展将是以生命科学为带头学科。所谓带头学科就是指在一定的历史时期对整个科学技术的发展具有普遍指导意义的学科。二十世纪,物理科学充当了这一角色,而到了二十一世纪,生命科学就要取代物理科学充当这一角色。也就是生命科学的思想理念和技术方法将要以认识论和方法论的形式渗透到科学技术发展的各个方面。生命科学技术方面的突破将会带动其它科学技术学科的迅速发展。由此看来,二十一世纪,谁把握了生命科学技术,谁就把握了科学技术发展的未来。因此,未来我国要想挤身于世界科技强国之林,并想占有一席之地,加强对生命科学技术研究与开发的投入应成为我国科学技术事业发展的重中之重。然而,对于生命科学的理解或对于生命系统的理解,目前国内外学术界基本上还处于狭义的认识阶段。即把生物科学当成是生命科学。把生物系统看成是生命系统的全部内容。主要的人力、物力和财力均投入在对生物系统的研究与开发之上。而从广义上讲,真正意义上的生命科学应是包括生物科学、社会科学和思维科学在内的大生命科学,同样生命系统也应是包括生物系统、社会系统和思维系统在内的大生命系统。因此,从大生命科学上讲,我们在加强对生物系统研究与开发的同时,还应该加强对社会系统的研究与开发以及加强对思维系统的研究与开发。而对思维系统的研究与开发则包括两个方面,一方面是对人类生物中枢神经系统的研究与开发;另一方面是对人类社会中枢神经系统的研究与开发。所以我们认为,建立“生命科学大系统理论”体系,加强对“生命科学大系统理论”的研究与开发应引起我国政府的高度重视。也就是我国政府科技决策者和科技工作者都应站在一个更广义的角度来加强对生命科学的战略抉择和研究开发。总之,从大生命科学上讲,我们不仅要研究生物系统,而且还要研究社会系统,同时还要研究人类思维系统(生物与社会两大思维系统)。只有这样,生命科学事业才会真正地走上健康正确的发展轨道。

数学与生命科学

数学与生命科学 事例DNA是分子生物学的重要研究对象,是遗传信息的携带者,它具有一种特别的立 体结构——双螺旋结构,双螺旋结构在细胞核中呈扭曲、绞拧、打结和圈套等形状,这正好是数学中的纽结理论研究的对象。 X射线计算机层析摄影仪—即CT扫描仪,它的问世是二十世纪医学中的奇迹,其原理是基于不同的物质有不同的X射线衰减系数。如果能够确定人体的衰减系数的分布,就能重建其断层或三维图像。但通过X射线透视时,只能测量到人体的直线上的X射线衰减系数的平均值(是一积分)。当直线变化时,此平均值(依赖于某参数)也随之变化,能否通过此平均值以求出整个衰减系数的分布呢?人们利用数学中的拉东变换解决了此问题,拉东变换已成为CT理论的核心。首创CT理论的A.M.Cormark(美)及第一台CT制作者C.N.Hounsfield (英)因而荣获1979年诺贝尔医学和生理学奖。另一项高技术是H.Hauptman与J.Karle 合作,发明了测定分子结构的新方法,利用它可以直接显示被X射线透射的分子的立体结构。人们应用此方法,并结合利用计算机,已测出包括维生素、激素等数万种分子结构,推动了有机化学、药物学和生物学等的发展,由此可见在此两项技术中数学起了关键的作用(两发明人分享1985年的诺贝尔化学奖)。 综述在发现DNA化学结构和发明计算机模拟后50年的今天,一场由数学和计算科学 驱动的革命正在生物学的领域发生。一系列突破性的研究正在重新定义以下领域:数学生态学、流行病学、遗传学、免疫学、神经生物学和生理学等等。美国国家科学基金会(NSF)主任科勒威尔(R. Colwell)在2000年10月向国会提交的报告中,称数学是当前所有新兴学科和研究领域的基础,要求下一年度对数学的资助要增加3倍以上,达到1.21亿美元。在这些增加的预算中,有很大的一部分被用来支持数学与其他学科的交叉研究,尤其是数学与生物学的交叉研究项目。 尽管数学一直在现代生命科学中扮演着一定的角色,如数量遗传学、生物数学等,但生物学家真正体会到数学的重要性,还是最近十几年来的事情。基因组学是这种趋势的主要催化剂。随着DNA序列测定技术的快速发展,1990年代后期每年测定的DNA碱基序列以惊人的速度增长。以美国的基因数据库(GenBank)为例,1997年拥有的碱基序列数为1×109,次年就翻了一番,到2000年GenBank已拥有近8×109个碱基序列。同样,在蛋白质组研究和转录组研究等快速推进的过程中,各种数据也在迅猛增加。据估计,现在每年产生的生物数据量可以达到1015字节。如何管理这些“海量”数据,以及如何从中提取有用的知识,成为了对当前生物学家、数学家、计算机专家等的巨大挑战。一门新兴学科——生物信息学(bioinformatics),也应运而生。此外,对细胞和神经等复杂系统和网络的研究,导致了数学生物学(mathematical biology)的诞生。NSF为此专门启动了一项“定量的环境与整合生物学”项目,以鼓励生物学家把数学应用到生物学研究中去。几乎在同一时间,美国国立卫生研究院也设立了一项“计算生物学”的重大项目。 数学不仅能帮助人们从已有的生物学实验和数据中抽象出模型和进行解释,它还可以用于设计和建造生物学模型,也许这些生物学模型在自然的状态下是根本不存在的。在这种意义上说,基于数学模型和假设进行的生物学实验,将更接近人们熟知的物理学和化学实验,更多地依赖于抽象和理性,不再是一门经验科学。

化学热力学与生命科学(1).

化学热力学与生命科学(1) 综述了热力学中熵和自由能这两 本篇论文是由3COME文档频道的网友为您在网络上收集整理饼投稿至本站的,论文版权属原作者,请不用于商业用途或者抄袭,仅供参考学习之用,否者后果自负,如果此文侵犯您的合法权益,请联系我们。 22 自由能与药物分子设计 221 自由能与反义药物设计反义药物是用WatsonCrick碱基配对原理与靶mRNA结合,并通过降解靶mRNA干扰特定基因表达的寡核苷酸类药物。反义寡核苷酸必须能够与靶mRNA进行特异杂交,才能通过RNA酶H依赖机制等降解靶mRNA。能够接近靶序列并与之杂交是反义药物具有药效的首条件,因此研究反义药物及其靶点的构效关系是研究热点之一。宋海峰等[10]选择与肿瘤细胞增殖相关的蛋白激酶Cα(PKCα)mRNA作为靶点,使用软件RNAstructure模拟mRNA二级结构,根据靶mRNA的一级与模拟的二级结构,选择二级结构自由能大于零的不稳定二级结构单元膨胀环、内环、发卡和假结等作为靶点进行反义药物设计。用肺腺癌细胞株A549评价反义药物的体外抗肿瘤生物活性,用软件SPSS进行多元回归分析。结果表明有效药物作用靶点相对集中地分布于由若干二级结构单元组成的局部二级结构区域,称之为“靶二级结构域(靶域)”。“靶域”结构相对稳定,但其中包含不稳定二级结构单元,即其自由能大于零。针对不同“靶域”设计的反义药物显示不同的生物活性(P<0.01),但靶向同一“靶域”的反义药物生物活性无统计差别。结论提示“靶域”现象有助于反义药物靶点的选择,并对探针、引物设计及mRNA局部功能的研究具有重意义。 222 自由能与直接药物设计中的分子对接直接药物设计是从生物靶标大分子结构出发,寻找、设计能够与它发生相互作用并调节其功能的小分子,分为分子对接和全新药物设计两种方法。分子对接法是通过将化合物三维结构数据库中的分子逐一与靶标分子进行“对接”,通过不断优化小分子化合物的位置、方向以及构象,寻找小分子与靶标生物分子作用的最佳构象,计算其与生物大分子的相互作用能。利用分子对接对化合物数据库中所有的分子排序,即可从中找出可能与靶标分子结合的分子。分子对接的核心问题之一就是受体和配体之间结合自由能的评价,精确的自由能预测方法能够大大提高药物设计的

生科有机化学习题

习题一 1. 写出只有伯氢原子,分子式为C8H18烷烃的结构式。 2. 写出分子式为C9H20,含有8个20氢原于和12个10氢原子的烷烃的结构式。 3. 命名下列化合物: 4. 写出符合下列条件的烷烃或环烷烃的结构式: (1)不具有亚甲基,并含4个碳原子的烷烃; (2)具有12个等性氢原子,分子式为C5H12的烷烃; (3)分子式为C7H14 ,只有1个伯碳原子的环烷烃,写出可能的结构式并 命名。 5. 画出2,3—二甲基丁烷以C2―C3键为轴旋转,所产生的最稳定构象的Newman 投影式。 6. 化合物A的分子式为C6H12,室温下能使溴水褪色,但不能使高锰酸钾溶液褪色,与HBr反应得化合物B(C6H13Br)。A氢化得2,3—二甲基丁烷。写出化合

物A、B的结构式。 7. 用Newman投影式表示下列化合物的优势构象: 8. 写出5—甲基—3,3—二乙基—6—异丙基壬烷的结构式.并指出各碳原子的类型。 习题二 1. 用系统命名法命名下列化合物: 3. 写出下列化合物的结构式:

(1) 2-甲基-2-丁烯(2) 1,4-己二炔(3) 异丁烯 (4) 2,5-二甲基-3-己炔(5) 1-丁烯-3-炔 4. 写出下列反应的主要产物: 5. 用简便易行的化学方法区别下列各组化合物: (1) 2-甲基丁烷,3-甲基-1-丁炔,3-甲基-1-丁烯 (2) 1-戊炔,2-戊炔,戊烷 6. 分子式为C4H8的两种链状化合物与溴化氢作用生成相同的溴代烷。试推测原来两种化合物是什么?写出它们的结构式。 7. 分子式为C4H6的化合物能使高锰酸钾溶液褪色,但不能与硝酸银的氨溶液发生反应,写出化合物一切可能的结构式。 8. 具有相同分子式的两个化合物A和B,氢化后都可以生成2-甲基丁烷,它们也都与两分子溴加成,但A可与AgNO3的氨溶液作用产生白色沉淀,B则不能。试推测A和B两个异构体的可能结构式。 9. 某一烯烃经酸性高锰酸钾溶液氧化后,获得CH3CH2COOH、CO2和H2O。另一烯烃经同样处理后则得C2H5COCH3和(CH3)2CHCOOH。请写出这两种烯烃的结

(完整版)生物化学与分子生物学知识总结

生物化学与分子生物学知识总结 第一章蛋白质的结构与功能 1.组成蛋白质的元素主要有C、H、O、N和 S。 2.蛋白质元素组成的特点各种蛋白质的含氮量很接近,平均为16%。 100克样品中蛋白质的含量 (g %)= 每克样品含氮克数× 6.25×100 3.组成人体蛋白质的20种氨基酸均属于L- -氨基酸氨基酸 4.可根据侧链结构和理化性质进行分类 非极性脂肪族氨基酸极性中性氨基酸芳香族氨基酸酸性氨基酸碱性氨基酸 5.脯氨酸属于亚氨基酸 6.等电点(isoelectric point, pI) 在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。 氨基酸与茚三酮反应生成蓝紫色化合物 7.蛋白质的分子结构包括: 一级结构(primary structure) 二级结构(secondary structure) 三级结构(tertiary structure) 四级结构(quaternary structure) 1)一级结构定义:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。主要的化学键:肽键,有些蛋白质还包括二硫键。 2)二级结构定义:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及

氨基酸残基侧链的构象主要的化学键:氢键 ?蛋白质二级结构 包括α-螺旋 (α -helix) β-折叠 (β-pleated sheet) β-转角 (β-turn) 无规卷曲 (random coil) 3)三级结构定义:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。主要的化学键: 8. 模体(motif)是具有特殊功能的超二级结构,是由二个或 三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。 9.分子伴侣(chaperon)通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构。 蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。 ?蛋白质胶体稳定的因素: 颗粒表面电荷、水化膜 10.蛋白质的变性: 在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。 变性的本质:破坏非共价键和二硫键,不改变蛋白质的一级结构。 ?造成变性的因素: 如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等。 由于空间结构改变,分子内部疏水基团暴露,亲水基团被掩盖,故水溶性降低。由于变性蛋白质分子不对称性增加,故粘度增加。由于变性蛋白质肽键暴露,易被蛋白酶水解。

化学与生命科学学院生物系九六年级

化学与生命科学学院生物系九六年级 动物生理学课程期终考试试卷 一九九八—一九九九学年第一学期 姓名学号 得分阅卷人 一、单项选择(每格1分,共50分) 1、食物进入口腔后,引起唾液腺、胃腺和胰腺分泌,属于 a、神经调节 b、体液调节 c、神经-体液调节 d、自 身调节 e、反馈调节 2、小肠平滑肌的自动节律性来源于_________。 a. 环形肌 b. 纵形肌 c. 壁内神经丛 d. 植物神经支配 3、心电图S-T段期间,心房肌处于 _________ 状态,心室肌处于 _________ 状态。 a. 舒张 b. 收缩 4、在一定范围内,随着回心血量上升,心肌的射血分数 _________。 a. 上升 b. 下降 c. 不变 5、皮肤粘膜的游离神经末梢属于 a、感受器 b、传入神经 c、传出神经 d、效应器 6、气体通过呼吸膜的扩散速度与气体分子量的平方根成 _________ ,与气体的溶解度成 _________ ,与气体的分压差成 _________ 。 a. 正比 b. 反比 7、可兴奋组织的强度-时间曲线上的任何一点都代表一个 a、强度阈值 b、阈刺激 c、时值 d、时间阈值 8、当吸入气中CO2浓度上升时,呼吸频率 _________ ,血中PH值 _________ ,氧解离曲线 _________ 。 a. 上升 b. 下降 c.左移 d. 右移

9、在体循环和肺循环中,基本相同的是 a、收缩压 b、舒张压 c、脉搏压 d、外周阻力 e、 心输出量 10、心动周期中,左心室内压力最高的时期是 a、心房收缩期末 b、等容收缩期末 c、心室收缩期末 d、 快速射血期 e、快速充盈期末 11、血量分配比例最高的部位是 a、动脉 b、静脉 c、毛细血管 d、肝脏及脾脏 12、肾小球毛细血管压较 _________ ,有利于 _________ 。肾小 管周围毛细血管压较 _________,血浆胶体渗透压较 _________,有利于 _________ 。 a. 高 b. 低 c. 渗透 d. 重吸收 e. 滤过 13、胃和小肠的蠕动频率主要取决于 _________ 的频率。 a. 基本电节律 b. 平滑肌动作电位 c. 植物神经冲动 14、肾动脉血压在 80-180mmHg范围内变动时,肾血流随着血压的 升高而 _________ ,肾小球滤过率 _________。 a. 升高 b.下降 c. 基本不变 15、人从海平面登上6000米的山峰时, a、肺活量随之上升。 b、时间肺活量随之上升。 c、血中CO2含量下降。 d、血中O2饱和度不变。 16、右心衰竭时组织液生成增加而致水肿,主要原因是 a、血浆胶体渗透压降低 b、毛细血管血压增高 c、淋巴回流受阻 d、组织液静水压降低 e、组织液胶体渗透压增高 17、缺碘会引起 a、血中ACTH含量上升。 b、血中TSH含量上升 c、中枢神经系统兴奋性上升。

生命科学篇-期末复习思考题

复习思考题: 一、生命系统与生命科学 1 从生物学角度,对生命如何定义? 2 简要阐述奥巴林的生命起源假说——“团聚体假说”,美国学者米勒的实验证实了其中的哪一个过程? 3 简述生命的本质特征-化学成分的同一性;严整有序的结构;新陈代谢;应激性和运动;内稳态;生长发育;繁殖与遗传;适应。 4 蛋白质由20种氨基酸组成。 5 除了病毒外,生命的基本单位是细胞。 6 什么是“内稳态”? 7 “适应”的含义? 8 生命研究的一般过程:认识问题——搜集资料——提出假说——检验假说——评价数据——结果报道。 二、生命科学进展 1 简述“细胞学说”的主要内容。 (1)细胞是所有动、植物的基本结构单位。 (2)每个细胞相对独立,一个生物体内各细胞之间协同配合。 (3)新细胞由老细胞繁殖产生,不是由于细胞分裂就是细胞融合。单个细胞可分裂而形成组织。 (4)细胞为一切生物的生理单位。 2 生物学三大基石是什么?1839年施莱登、施旺创立“细胞学说”;1859年达尔文提出“生物进化论”1900年孟德尔“遗传定律”。 3 19 世纪自然科学的三个重大发现是什么?1、细胞学说;2、进化论;3、能量守恒及转换定律 4 病毒是一类不具细胞结构的生命形态。 5生物膜主要由脂质和蛋白质组成,其中脂分子和蛋白质分子的运动具有不对称性与流动性特点。 6 生物膜的功能:物质传送作用;能量转换作用;信息传递作用。 膜上蛋白质是膜功能主要负责者。 7 细胞超微结构可分为膜相结构和非膜相结构。 膜相结构:包括细胞膜、内质网、高尔基复合体、线粒体、溶酶体、叶绿体和核膜等。 非膜相结构:包括核糖体、中心体、细胞基质、核基质、染色体、核仁和细胞骨架等。 8 细胞核由两层生物膜围成,遗传信息贮藏在核内,是DNA 复制和RNA 合成场所。 9 叶绿体是光合作用的场所。 10 有两种细胞死亡: 因环境因素突变或病原物入侵而死亡,称为病理死亡,或细胞坏死。 因个体正常生命活动的需要,一部分细胞必定在一定阶段死去,称细胞凋亡。 11 孟德尔学说的重要意义? (1)孟德尔第一次明确提出遗传因子的概念, 并且提出了遗传因子控制遗传性状的若干规律: 大多数生物体通常由一对遗传因子(后来称为两个等位基因)控制同一性状。这样的生物体称为2n 个体。 遗传因子可以区分为显性和隐性。 控制不同性状的遗传因子是各自独立的。

生命科学与化学学院.

生命科学与化学学院 生命科学与化学学院下设生物系(师范)、化学系(师范)、食品系(工科),含生命科学,化学科学,食品科学工程, 食品科学工程(制冷与空调方向),生物工程技术,生物制药等6个专业,是一个师资雄厚,教学管理严谨,人文环境优良,理工并蓄、特色鲜明的二级学院,并且连续两年学生考研率名列全院第一。 生命科学与化学学院现有教师55名,其中教授4人,副教授28人,博士后3人、博士6名、硕士24名,学生1000余人。学院具有较强的科研能力、丰富的教学经验和深厚的专业知识。近年来,先后完成省级科研课题14项,市级科研课题16余项,与企业合作项目6项,共获得科研经费50余万元。出版教材20部,撰写论文570篇,其中多篇论文被权威刊物转载或获奖。 生命科学与化学学院设有生物与食品基础实验中心、生物与食品专业实验室、基础化学实验中心和化学专业实验室。实验室(中心)可承担动物学、植物学、生物技术、生物制药、显微技术、原子吸收、气相色谱、无机化学、有机化学、食品检验、食品工艺等四十余门实验课程。 生物科学专业 本专业培养掌握生物科学的基本理论、基本技能和可持续发展的专门人才。学生毕业后主要从事初、高中学生物教学工作,并具备从事生命科学研究和向农、林、医等方面发展的知识和能力。 开设的主要课程有:植物学、动物学、人体解剖、人体及动物生理学、微生物学、生物化学、遗传学、分子生物学等。同时开设生化大实验、发育生物学等

二十余门专业选修课。 本专业自建立以来,为社会培养了500余名生物教师。其中大多数已成为各中学生物专业的骨干教师,有十多名毕业生已成为学校领导。 生物科学专业为师范类本科,学制四年。符合学位授予条件的毕业生授予理学学士学位。 化学专业 化学专业培养掌握化学的基本理论、基本技能的德、智、体全面发展的中学化学教育师资,为本地区经济建设和社会发展提供化学或化工短缺人才。 开设的主要课程:有机化学及实验、无机化学及实验、分析化学及实验、物理化学及实验、仪器分析及实验、化工原理及实验、结构化学及实验、配位化学、现代分析概论、化学史等课程。同时开设配位化学、化学化工开发概论等三十余门专业选修课。 本专业自开设以来,为社会培养了900多名化学教师,其中多数已成为骨干教师或已走上了中学的领导岗位。 化学专业为师范类本科,学制四年。符合学位授予条件的毕业生授予理学学士学位。 食品科学与工程专业 本专业培养掌握食品科学基础理论知识,具备初步科研创新能力,以及具有实际操作技能的高级食品科学与工程技术人员,为高速发展的国家支柱产业——食品工业提供优秀的科研、管理、技术人才。

2021年安徽大学生命科学学院631生物化学考研核心题库之有机化学机理题精编

特别说明 本书根据历年考研大纲要求并结合历年考研真题对该题型进行了整理编写,涵盖了这一考研科目该题型常考试题及重点试题并给出了参考答案,针对性强,考研复习首选资料。 版权声明 青岛掌心博阅电子书依法对本书享有专有著作权,同时我们尊重知识产权,对本电子书部分内容参考和引用的市面上已出版或发行图书及来自互联网等资料的文字、图片、表格数据等资料,均要求注明作者和来源。但由于各种原因,如资料引用时未能联系上作者或者无法确认内容来源等,因而有部分未注明作者或来源,在此对原作者或权利人表示感谢。若使用过程中对本书有任何异议请直接联系我们,我们会在第一时间与您沟通处理。 因编撰此电子书属于首次,加之作者水平和时间所限,书中错漏之处在所难免,恳切希望广大考生读者批评指正。

重要提示 本书由本机构编写组多位高分在读研究生按照考试大纲、真题、指定参考书等公开信息潜心整理编写,仅供考研复习参考,与目标学校及研究生院官方无关,如有侵权请联系我们立即处理。 一、2021年安徽大学生命科学学院631生物化学考研核心题库之有机化学机理题精编 1. 【答案】 2. 【答案】此反应为碳负离子历程,即为交叉酯缩合反应。 3.写出下列反应的反应机理。 (1) (2) 【答案】这两道题均是频哪醇(Pinacol)重排反应,Pinacol重排反应的立体化学要求是,迁移基团从离去基团的反位迁移至缺电子中心,反应机理为: (1)

(2) 4. 【答案】 5.为下面的反应提出合理的分步反应机理。 【答案】 6. 【答案】

7.写出下列反应的机理 【答案】 8.解释下列反应机理 【答案】 9. 【答案】反应物是具有活性亚甲基的酮酸酯,在碱性条件下提供亲核的碳负离子,然后进攻环氧氯丙烷,碱性开环后给出氧负离子,氧负离子进攻酯羰基生成内酯。 10. 【答案】此反应为碳正离子历程。

信息论在生物学和化学领域的应用

信息论在生物学和化学领域的应用 信息科学与技术学院** 指导教师** 摘要:信息论近年来迅速发展,已广泛渗入物理、化学、生物、医学、自动控制、计算机、人工智能、仿生学、经济和管理等不同领域。本文阐述信息论在现代生物学、化学等学科中的应用。 关键词:信息论;生物信息论;化学信息论;基因编码 一、概述 1948年,Claude E.Shannon在BSTJ发表题为“The Mathematical Theory of Communica-tion”的著名论文,创立了后人所称的“信息论”,揭开了人类认识史上的新纪元:由材料和能量的 时代开始走向自觉地认识和利用信息的时代。现在,人们越来越清楚地看到,Shannon信息论 的确是科学史上一座巍峨的里程碑,它把科学领进了信息世界的大门。但是,Shannon信息论 并没有穷尽信息问题的研究。正如Shannon本人所说:“企求一次就揭开自然的全部奥秘,这 种期望是不切实际的”。事实上,一个具有旺盛生命力的理论必然会不断地渗透到新的领域,不断地改变自己的面貌[1]。现如今,信息熵概念广泛渗入物理、化学、生物、医学、自动控制、计算机、人工智能、仿生学、经济和管理等不同领域。信息过程不仅是通讯研究的对象,而且被当作控制社会的手段来研究[2]。就正是由Shannon信息论经过不断的开拓、发展和升华的结果,它是信息理论发展的全新阶段。 二、信息论与生物学 (一)信息与遗传[2] 1944年细菌转化现象的发现,第一次证实了细胞核内DNA核酸是遗传的物质基础。1953 年沃森和克里克提出 DNA螺旋结构模型,认为是由两条多核苷酸链靠碱基间确定配对关系而 联系在一起,形成犹如螺旋状的长梯子,第一梯级相当一对碱基。梯级很多,若以500梯级的 大分子计,其结构可能取型的数目为10330信息量。历史上有过物种,最高估计是40亿种,其 信息量不过才是10g24*109=31.9比特,可见DNA结构可储存遗传信息量大得足以使每一物种 内各个个体间都可以有差别。

相关主题
文本预览
相关文档 最新文档