当前位置:文档之家› 616G3安川变频器驱动电路图说

616G3安川变频器驱动电路图说

616G3安川变频器驱动电路图说
616G3安川变频器驱动电路图说

《616G3-55kW安川变频器》主电路

HI-35E2T2CU-U/70A

R

r/R

U

V

W 3CN/4

16CN

风扇故障检测端子

2.3开路时跳FAN故障

开路时跳FU故障

开路时跳OH故障

14CN/15CN

开路时跳OH故障

《616G3-55kW安川变频器》主电路图说

所有变频器主电路的结构都是相似的,乃至于是相同的。而安川变频器的主电路和台湾东元变频器的主电路更是如出一辙。稍后我观察到两机的控制面板是一样的,控制面板和参数的设置也是相似的。发现两种从硬件到软件都相似甚至于是相同的机器,给安装调试与维修,都会带来很多的方便。只要手头有一种技术资料参考,就可以调试和维修二种设备了。

打开这两种大功率变频器的外壳,检查主电路时,安装于逆变模块上方(与模块并联的)的六只长方形盒体状的大东西,首先会引起我们的兴趣——与每相上臂IGBT管子并联的是型号为MS1250D225P,与下臂IGBT管子并联的型号为MS1250D225N。用句网络上的话说:这究竟是个什么东东?安装于此处意欲何为呢?

大凡并联在IGBT管子上的东西,或电容或阻容网络,均是为保护IGBT管子而设置的。即当该管子截止时,快速消耗掉反向电压所形成的能量,提供一个反向电流的通路,以保护IGBT管子不承受(实质上是使其承受得少一点罢了)反压的冲击。众所周知,无论是双极型或是场效应器件,在承受正向电压上往往有一定的富裕量,但对于反向电压的耐受能力却是极其脆弱的。所以在IGBT管子上并联的一嘟喽一嘟喽的东西,可以说都是完成此一消耗反压任务的。

需要说明的是:MS1250D225P和MS1250D225N的内部电路,笔者并未打开实物进行验证,模块损坏后,这两种器件往往都是完好的,所以也不便将其破坏后拆解。上图的内部电路是据测量揣摩画出的,仅为读者朋友提供一个参考。我查找了大量资料和在网络上进行了搜寻,均未找到此元件的资料。从揣测电路的基础上进行原理上的分析,显然容易产生误导。故暂时省略对其原理的解析。

但在模块上并联了此类元件后,将在检修上给我们带来新的体验。见下述。

按照常规的检修方法,我们在更换损坏的模块后,进行通电试验前,须将上图中的P点切断,串入两只25W(或40W)灯泡,再行上电,这样万一逆变模块回路或驱动电路异常,造成上、下臂两只IGBT管子共通对直流电源的短路时,因灯泡的限流作用,使昂贵的IGBT模块免遭损坏。其它品牌的变频器,在管子两端并联皮法级的小容量电容,在通电或变频器启动后,只要U、V、W输出端子空载,灯泡是不会亮的。但安川变频器在检修中的表现就有所不同了。在P点串入灯泡,上电,灯泡不亮,是对的,我松了一口气;按操作面板启动变频器,灯泡变为雪亮!坏了,输出模块有短路现象!这是我的第一判断。停电检查模块和驱动电路,均无异常。回头查看电路结构,在拆除掉MS1250D225P和MS1250D225N后,启动变频器后灯泡不亮了。测空载输出三相电压正常。这两只元件与外接10Ω80W电阻,提供了约百毫安的电流通路,使25W灯泡变为雪亮。以几十瓦的功耗的牺牲换来IGBT管子更高的安全性,这是安川变频器的模块保护电路的特色。

变频器空载启动后,由于MS1250D225P和MS1250D225N等元件的关系,逆变电路自身形成了一定的电路通路,并非为逆变模块不良造成。该机是一个特例。有了电路通路,也并一定是模块已经损坏了,观察一下,是哪些元件提供了此电流的通路?当新鲜的经验固化成思维定式,对故障的误判就在所难免了。

整机控制电源是由图下方一只多抽头变压器来取得的。插座3CN和4CN的短接线不同,可调整输入电压的级别,以保证次级绕组AC220V电压的精确度。散热风机是采用AC220V电源的,此电源又经整滤波做为开关电源的输入。单独检修驱动板时,须将风扇端子的2、3;接触器端子的3、4;14CN,15CN,16CN的端子均短接,人为消除欠压(FU/LU)、过热(OH)、风扇坏(FAN)等故障信号,才能使CPU输出六路脉冲信号,便于对驱动电路进行检查。

《616G3-55kW安川变频器》驱动/保护电路

G E

G E

G E

《616G3-55kW安川变频器》驱动电路/保护电路图说

驱动电路的种类也是大同小异的。我们见得最多的是用PC929、A316J等IC 构成的驱动电路,模块故障检测电路(保护电路)也同时集成在内了。虽然可以找到有关A3316J等的电路资料,能看到内部的单元方框电路图和对电路原理的介绍,但对其保护电路的具体构成,总是感到一丝“触不到实处”的茫然——IC 内部的保护电路,的确是看不到也摸不着的呀。恰巧本电路是用分立元件构成的检测与保护电路,更便于理解检测与保护动作过程。将上图中的一路脉冲与保护电路稍为改画,即可看出IGBT管压降检测电路是如何对模块实施保护动作的了:

W

电路原理:由CPU引脚来的PWM脉冲信号,经U2光电耦合器隔离和放大后,送入模块保护电路。正常状态下,此脉冲信号再经Q2和Q3的推挽式功率放大电路放大,直接驱动IGBT模块。一般认为,IGBT模块为电压型驱动模块,此种观念有失偏颇。IGBT管子的输入栅-射结电容,恰恰需要瞬态的大涌入电流!这就是为什么会采用Q2、Q3来做功率放大的原因。驱动信号的引入电阻,也是5Ω8W的功率电阻。而从这个意义上来讲,从本质上来看,IGBT模块,仍为电流型驱动器件。这是笔者的看法,不知当否?当驱动电路的电流输出能力不足时,会使三相输出电流产生断续,电机振动,发出隆隆声。脉冲处理电路原理另见其它图说,此处重点是看保护电路如何动作的。

在变频器未接受启动信号时,U2的输出脚7、8为截止负电压,如以0V电源线做为参考点的话,此时7、8脚电压约-9.5V(忽略内部管子的饱合压降),此负压经R13、R3引入到Q2和Q3的基极。Q2因反偏压而截止,Q3因正偏压而导通,IGBT模块的栅偏压为负,处于截止状态。电阻R1、R2对+15V和负-9.5V分压得到3V的电平。D9为击穿电压值为9V的稳压管,R1与R2的分压值不足以使其击穿,故Q3无偏流,处于截止状态。光电耦合器U1无输入电流,故无GF (接地)和OC(过载、短路)等故障信号返回CPU。当CPU发送驱动脉冲的时

候,U2的7、8脚变为峰值为15V的正脉冲电压,D1的正极此际便上升为+15V,此时便出现了两种情况:一种情况下是模块良好,IGBT管子在正激励脉冲驱动下迅即导通,可认为P、E两点之间瞬时短接了。D1的负端电位瞬即拉为0V,也将D2的负端电位拉为1V以下,因未达到D2的击穿值,使Q3仍无基极偏流而截止;一种情况下是模块已或因负载异常使运行电流过大,或因Q3等驱动电路本身不良使IGBT管子并未良好地导通,D1的负端为高电位而截止,+15V经R1使D2击穿,Q3得到偏流导通,将Q2基极的正脉冲电压拉为零电平,IGBT 模块失去脉冲而截止。同时Q3的导通产生了U1的输入电流,U1将模块故障信号送入CPU。可见此电路是保护电路先切断了IGBT管子的驱动脉冲,同时送出了模块故障信号。保护是及时和快速的。

《616G3-55kW安川变频器》驱动/FU电路

G

E

《616G3-55kW安川变频器》驱动/FU电路图说

驱动电路的保护电路,是根据激励脉冲发送期间,IGBT管子的管压降的大小,来实施保护动作和发送OC信号的。据资料上介绍:IGBT模块在正常(额定电流)情况下的导通压降为3V左右。而当其管压降达到7V以上时,说明IGBT模块中流过的电流已超过Ie的180%至200%,此时的保护动作当然是愈快愈好的了。设置此保护电路的目的,是弥补电流互感器等后续电流检测电路保护动作迟缓的不足——电流检测电路中不可避免地应用较大容量的滤波电容,使电路有了一定时间常数,而反应迟缓。而IGBT的管压降检测电路,则由于反应迅速可称之为快速保护动作电路,犹如快速行动部队,是处理应急事件的。对轻微过流和限流调节等处理,还是由电流互感器回路的电流检测电路来实施的。

在驱动电路中还附设了保险熔断的检测电路。一般变频器,是在主电路P点处串入一只快速熔断保险,来实施模块保护的。而本机电路却在每相输出模块上各串入了一只保险。每个厂家生产的变频器,大致都有如此的趋势:早期产品不免粗老笨重之嫌,其用户控制功能上不够完善,但在其制作选料上却有较大的富裕量;在保护性能上有保守之嫌,却不惜添加现在看来是多余的元器件,来保障保护电路的可靠性。安川变频器的早期产品也未能免俗。而随着产品技术的进步和市场竞争的激烈,变频器功能提升,而成本下降甚至有偷工减料之嫌。变频器的运行可靠性也因此打了折扣,国产变频器当以此为戒。

三路保险熔断的检测电路,是将下三臂驱动电源的0V线与主直流回路的N 线做比较,来判断熔丝是否正常的。正常状态下,驱动电源的0V线与N线是经保险相连的,是等电位的。即下三臂IGBT管子的E极是与主直流回路的N线是相连的。故三极管Q4、Q19、Q28的基极偏压为零。三只管子均截止。当任一相输出模块的保险断开时,N线与该相驱动电源的0V线产生了巨大的电位差,三极管承受正偏压而导通。Q5、Q20、Q29三只光耦接成或门电路,任一只光耦的输入信号都会传输到同一个输出点上,将快速保险的熔断信号传送给CPU,使CPU报出FU(熔丝)断信号,并拒绝接受启动信号。

安川变频器的故障信号报警,也有一个先后次序的有趣问题。如过热、欠压、过流、风扇故障、保险熔断故障等,上电时,即给出故障代码的警示,并拒绝启动操作;在启动期间,由模块保护电路检测到的模块故障,以GF(接地故障)代码警示。而在运行过程中检测到模块故障时,则报以OC(运行过流,负载短路等)故障代码信号。IGBT管压降检测电路输出的同一个信号,因输出的时机不同(一个是在启动过程中,一个是在运行过程中),变频器报出的却是两个不同的故障代码(GF:接地故障;OC:过载或短路故障)。同样,在电流和电压检测电路,有时也会采用相同的手段,同一处保护电路报出的过流或过压信号,则因变频器工作状态的不同(启动中或运行中),而有可能报出不相同的故障代码或对此采取不相同的处理措施。这一切取决于软件设计者的思路。每一个厂家的变频器,在控制思路上,必然会有大同小异之处。注意变频器报故障的相关特点,便于高效率地判断故障所在。2009-11-22--旷野之雪

分析保护电路,要配合主电路和驱动(保护)两部分或三部分综合起来看,好多图纸是分解成各个单元电路来绘制的。读者诸君必须强化自己综合读图、连贯读图的能力。这是我送给您的一个忠

变频器常用光耦驱动PC923和PC929详解

变频器常用光耦驱动PC923和PC929详解在变频器驱动芯片中,PC923与PC929算是比较常见的了。在知名品牌如台安变频器,安川变频器,富士变频器中都有使用到。两者可谓是黄金搭档。本文将对这两个驱动芯片的原理和应用进行详细的剖析! 图2 配对应用的驱动IC:PC923(8引脚)、PC929(14引脚) PC923用于上三臂IGBT管的驱动,PC929则用于驱动下三臂IGBT管,同时承担对IGBT导通管压降的检测,对IBGT实施过流保护和输出OC报警信号的任务。PC929与普通驱动IC的不同,在于内部含有IGBT保护电路和OC信号输出电路,将驱动和保护集于一体。 PC923的相关参数:输入IF电流5∽20mA,电源电压15∽35V,输出峰值电流±0.4A,隔离电压5000V,开通/关断时间0.5μs。可直接驱动50A/1200V以下的IGBT模块。PC923的电路结构同TLP250等相近,但输出引脚不一样。5、8脚之间可接入限流电阻,限制输出电流以保护内部V1、V2三极管。常规应用,是将5、8脚短接,接入供电电源的正极。如果将输出侧引线改动一下,也可以与TLP520、3120等互为代换。它的上电检测方法也同于TLP250,在此不予赘述。 PC929的相关参数与PC923相接近,在电路结构上要复杂的多。1、2脚为内部发光二极管阴极,3脚为发光管阳极,1、3脚构成了信号输入端。4、5、6、7脚为空端子。输入信号经内部光电耦合器、放大器隔离处理后经接口电路输入到推挽式输出电路。 10、14脚为输出侧供电负极,13脚为输出侧供电正端,12脚为输出级供电端,一般应用中将13、12脚短接。11脚为驱动信号输出端,经栅极电阻接IGBT或后置功率放大电路。PC929的9脚为IGBT管压降信号检测脚,9、10脚经外电路并联于IGBT的C、E 极上。IGBT在额定电流下的正常管压降仅为3V左右。异常管压降的产生表明了IGBT运行在过流状态下。PC929的8脚为IGBT管子的OC(过载、过流、短路)信号输出脚,由外接光耦合器将故障信号返回给CPU。

变频器基本电路图

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。 通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司生产的IPMPM50RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为20KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。 逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护 1、概述 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器,变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:4极电机 60Hz 1,800 [r/min],4极电机 50Hz 1,500 [r/min],电机的旋转速度同频率成比例。本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机

616G3安川变频器驱动电路图说

《616G3-55kW安川变频器》主电路 HI-35E2T2CU-U/70A R r/R U V W 3CN/4 16CN 风扇故障检测端子 2.3开路时跳FAN故障 开路时跳FU故障 开路时跳OH故障 14CN/15CN 开路时跳OH故障

《616G3-55kW安川变频器》主电路图说 所有变频器主电路的结构都是相似的,乃至于是相同的。而安川变频器的主电路和台湾东元变频器的主电路更是如出一辙。稍后我观察到两机的控制面板是一样的,控制面板和参数的设置也是相似的。发现两种从硬件到软件都相似甚至于是相同的机器,给安装调试与维修,都会带来很多的方便。只要手头有一种技术资料参考,就可以调试和维修二种设备了。 打开这两种大功率变频器的外壳,检查主电路时,安装于逆变模块上方(与模块并联的)的六只长方形盒体状的大东西,首先会引起我们的兴趣——与每相上臂IGBT管子并联的是型号为MS1250D225P,与下臂IGBT管子并联的型号为MS1250D225N。用句网络上的话说:这究竟是个什么东东?安装于此处意欲何为呢? 大凡并联在IGBT管子上的东西,或电容或阻容网络,均是为保护IGBT管子而设置的。即当该管子截止时,快速消耗掉反向电压所形成的能量,提供一个反向电流的通路,以保护IGBT管子不承受(实质上是使其承受得少一点罢了)反压的冲击。众所周知,无论是双极型或是场效应器件,在承受正向电压上往往有一定的富裕量,但对于反向电压的耐受能力却是极其脆弱的。所以在IGBT管子上并联的一嘟喽一嘟喽的东西,可以说都是完成此一消耗反压任务的。 需要说明的是:MS1250D225P和MS1250D225N的内部电路,笔者并未打开实物进行验证,模块损坏后,这两种器件往往都是完好的,所以也不便将其破坏后拆解。上图的内部电路是据测量揣摩画出的,仅为读者朋友提供一个参考。我查找了大量资料和在网络上进行了搜寻,均未找到此元件的资料。从揣测电路的基础上进行原理上的分析,显然容易产生误导。故暂时省略对其原理的解析。 但在模块上并联了此类元件后,将在检修上给我们带来新的体验。见下述。 按照常规的检修方法,我们在更换损坏的模块后,进行通电试验前,须将上图中的P点切断,串入两只25W(或40W)灯泡,再行上电,这样万一逆变模块回路或驱动电路异常,造成上、下臂两只IGBT管子共通对直流电源的短路时,因灯泡的限流作用,使昂贵的IGBT模块免遭损坏。其它品牌的变频器,在管子两端并联皮法级的小容量电容,在通电或变频器启动后,只要U、V、W输出端子空载,灯泡是不会亮的。但安川变频器在检修中的表现就有所不同了。在P点串入灯泡,上电,灯泡不亮,是对的,我松了一口气;按操作面板启动变频器,灯泡变为雪亮!坏了,输出模块有短路现象!这是我的第一判断。停电检查模块和驱动电路,均无异常。回头查看电路结构,在拆除掉MS1250D225P和MS1250D225N后,启动变频器后灯泡不亮了。测空载输出三相电压正常。这两只元件与外接10Ω80W电阻,提供了约百毫安的电流通路,使25W灯泡变为雪亮。以几十瓦的功耗的牺牲换来IGBT管子更高的安全性,这是安川变频器的模块保护电路的特色。 变频器空载启动后,由于MS1250D225P和MS1250D225N等元件的关系,逆变电路自身形成了一定的电路通路,并非为逆变模块不良造成。该机是一个特例。有了电路通路,也并一定是模块已经损坏了,观察一下,是哪些元件提供了此电流的通路?当新鲜的经验固化成思维定式,对故障的误判就在所难免了。 整机控制电源是由图下方一只多抽头变压器来取得的。插座3CN和4CN的短接线不同,可调整输入电压的级别,以保证次级绕组AC220V电压的精确度。散热风机是采用AC220V电源的,此电源又经整滤波做为开关电源的输入。单独检修驱动板时,须将风扇端子的2、3;接触器端子的3、4;14CN,15CN,16CN的端子均短接,人为消除欠压(FU/LU)、过热(OH)、风扇坏(FAN)等故障信号,才能使CPU输出六路脉冲信号,便于对驱动电路进行检查。

变频器基本电路图

变频器基本电路图 目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元

件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。 通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司生产的IPMPM50 RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为2 0KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。 逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护

变频器电路原理详解经典

要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动! 变频器维修入门--电路分析图 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

科沃—工控维修的120 .gzkowo. 驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路科沃—电梯维修的120 .gzkowo. 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,部都具有保护功能。

安川H1000变频器常用参数--行车

安川(H1000)变频器常用参数 1、A1-00语言选择7 汉语 2、A1-02控制模式选择 2 无PG矢量控制(起升) 0 无PGV/F控制(平移) 3、A1-03初始化2220 两线制顺控 4、A1-06用途选择 6 起升 7 平移 5、b1-01频率指令选择1 0 操作器 6、b1-02运行指令选择1 1 控制回路端子 7、b1-03停止方法选择0 减速停车 8、d1-01频率指令1 5HZ 9、d1-02频率指令2 15HZ 10、d1-04频率指令4 35HZ 11、d1-08频率指令4 50HZ 12、E2-01额定电流名牌参数 13、E2-04电机极数名牌参数 14、E2-011电机容量名牌参数 15、H1-01 S1端子40 正转 16、H1-02 S2端子41 反转 17、H1-03 S3端子 3 二速 18、H1-04 S4端子 4 三速 19、H1-05 S5端子 5 四速 20、H1-06 S6端子14 故障复位 21、H2-01 M1-M2端子 5 频率检出2 22、H3-06 A3端子1F 未使用 23、H3-10 A2端子1F 未使用 24、L1-01 电机保护 2 变频专用电机 25、L3-04 减速时防止失速 3 有效(带制动电阻器) 26、L4-01 频率检出值2HZ 27、L4-02 频率检出幅度0.5HZ 28、L8-55 内置制动单元保护0 内置 1外置 29、C1-01 加速时间2S 30、C1-02 减速时间 1.5S 自学习 1、T1-01 自学习模式0旋转 1静止 2、T1-02---T1-11 自学习参数 监视 1、U1-02 输出频率 2、U1-03 输出电流 3、U1-05 电机速度 4、U1-10 输入端子状态 5、U1-11 输出端子状态

变频器驱动电路详解

变频器驱动电路详解 测量驱动电路输出的六路驱动脉冲的电压幅度都符合要求,如用交流档测量正向激励脉冲电压的幅度约14V左右,负向截止电压的幅度约7.5V左右(不同的机型有所差异),对驱动电路经过以上检查,一般检修人员就认为可以装机了,此中忽略了一个极其重要的检查环节——对驱动电路电流(功率)输出能力的检查!很多我们认为已经正常修复的变频器,在运行中还会暴露出更隐蔽的故障现象,并由此导致了一定的返修率。 变频器空载或轻载运行正常,但带上一定负载后,出现电机振动、输出电压偏相、频跳OC故障等。 故障原因:A、驱动电路的供电电源电流(功率)输出能力不足;B、驱动IC或驱动IC后置放大器低效,输出内阻变大,使驱动脉冲的电压幅度或电流幅度不足;C、IGBT低效,导通内阻变大,导通管压降增大。 C原因所导致的故障比例并不高,而且限于维修修部的条件所限,如无法为变频器提供额定负载试机。但A、B原因所带来的隐蔽性故障,我们可以采用为驱动增加负载的方法,使其暴露出来,并进而修复之,从面能使返修率降到最低。IGBT的正常开通既需要幅值足够的激励电路,如+12V以上,更需要足够的驱动电流,保障其可靠开通,或者说保障其导通在一定的低导通内阻下。上述A、B 故障原因的实质,即由于驱动电路的功率输出能力不足,导致了IGBT虽能开通但不能处于良好的低导能内阻的开通状态下,从而表现出输出偏相、电机振动剧烈和频跳OC故障等。 让我们从IGBT的控制特性上来做一下较为深入的分析,找出故障的根源所在。 一、IGBT的控制特性: 通常的观念,认为IGBT器件是电压型控制器件——为栅偏压控制,只需提供一定电平幅度的激励电压,而不需吸取激励电流。在小功率电路中,仅由数字门电路,就可以驱动MOS型绝缘栅场效应管。做为IGBT,输入电路恰好具有MOS型绝缘栅场效应管的特性,因而也可视为电压控制器件。这种观念其实有失偏颇。因结构和工艺的原因,IGBT管子的栅-射结间形成了一个名为Cge的结电容,对IGBT管子开通和截止的控制,其实就是Cge进行的充、放电控制。+15V的激励脉冲电压,提供了Cge的一个充电电流通路,IGBT因之而开通;-7。5V的负向脉冲电压,将Cge上的“已充电荷强行拉出来”,起到对充电电荷的快速中和作用,IGBT因之而截止。 假定IGBT管子只对一个工作频率为零的直流电路进行通断控制,对Cge一次性充满电后,几乎不再需要进行充、放电的控制,那么将此电路中的IGBT管子说成是电压控制器件,是成立的。而问题是:变频器输出电路中的IGBT管子工作于数kHz的频率之下,其栅偏压也为数kHz频率的脉冲电压!一方面,对于这种较高频率的信号,Cge的呈现出的容抗是较小的,故形成了较大的充、放电电流。另一方面,要使IGBT可靠和快速的开通(力争使管子有较小的导通内阻),在IGBT的允许工作区内,就要提供尽可能大的驱动电流(充电电流)。对于截止的控制也是一样,须提供一个低内阻(欧姆级)的外部泄放电路,将栅-射结电容上的电荷极快地泄放掉!

变频器完整电路图(清晰版)

6&+('$ $ & 6 3&% $&2',&( '$7$ 25,*,1$/( 8/7,0$ 5(9 *8,'$ 5(9 15 )* 5(9 352*(77,67$ 9,7$/, )$%,2&200(66$ 8 '(6&5,=,21(6&+('$ &219(57,725( 6,1862,'$/( ',*,7$/( (/(1&2 '2&80(17$=,21( O DVWHULVFR LQGLFD OD GRFXPHQWD]LRQH LQWHUHVVDWD GDOO XOWLPD PRGLILFD 120( 120( 120( 120( 120( ( B ( B ( B ( B ( B ( B ( B / B 7 B 7 B 0 B 127( ', 0217$**,2 1 0217 '$ 87,/,==$5( 3(5 ,/ &20321(17( 1 0217 3(51 0217 3(5 1 0217 3(51 0217 3(5 1 0217 3(51 0217 3(5 1 0217 3(51 0217 3(5 5(9 '$7$ (6(*8,7$ '$'(6&5,=,21( 02',),&$ 3URJHWWLVWD 9,7$/, )DELR &RPPHVVD ,O FRGLFH ( SURP VX ULFKLHVWD GHOO?XIILFLR 647 6LJ 3DVTXHWWL q VSRVWDWR QHOOD GLVWLQWD FRQ OD OHWWHUD ILQDOH 7 3URJHWWLVWD 9,7$/, )DELR &RPPHVVD ,O FRGLFH 3RQWH UDGGUL]]DWRUH q VWDWR WROWR GDOOD GLVWLQWD SHUFKp XWLOL]]DWR QHOO?DVVLHPH GHOO?D]LRQDPHQWR 5XQQHU %DVH 3URJHWWLVWD 9,7$/, )DELR &RPPHVVD 9DULDWR LO YDORUH GHOOD UHVLVWHQ]D 5 GD RKP D RKP ,QVHULWL L FRGLFL GHOOH IDVFHWWH QHOOH PLQXWHULH GHOOD VFKHGD

变频器驱动电路的结构及原理

变频器驱动电路的结构 15KW以下的驱动电路,则由PC923和PC929经栅极电阻直接驱动IGBT,中、大功率变频器,则由后置放大器将驱动冗输出的驱动脉冲进行功率放大后,再输入了的C、E极。 驱动电路的电源电路,是故障检测的一个重要环节要求,而且要求其具有足够的电流(功率)输出能力一不但要求其输出电压范围满足正常-带负载能力。每一相的上、下化IGBT驱动电路,因IGBT的触发回路不存在共电位点,驱动电路也需要相互隔离的供电电源。由开关电源电路中的开关变压器绕组输出的交流电压,经整流滤波成直流电压后,又由R68、 VS1(10V稳压二极管)简单稳压电路处理成正和负两路电源,供给驱动电路。电源的0V(零电位点)线接人了PC2的2、3极,驱动化的供电脚则接人了 28V的电源电压。 光耦合器的输入、输人侧应有独立的供电电源,以形成输入电流和输出电流的通路。PC2的2、 3脚输入电流由+5V*提供。此处,供电标记为十5V*,是为了和开关电源电路输出的+V5相区分。+5V*供电电路如图4-10所示。该电路可看作一简单的动态恒流源电路,R179为稳压二极管的限流电阻,稳压二极管的击穿电压值为 3.5V左右。基极电流回路中稳压电路的接入,使流过发射结的Ib 维持一恒定值,进而使动态Ic也近似为恒定值。忽略VT8的导通压降,电路的静态输出电压为+5V,但动态输出电压值取决于所接负载电路的“动态电阻值”,而动态输出电流总是接近于恒定的,这就使得驱动电路内部发光二极管能维持一个较为恒定的光通量,从而使传输脉冲信号的“陡峭度”比较理想,使传输特性大为改善。 变频器驱动电路的原理 由CPU主板来的脉冲信号,经R66加到PC2的3脚,在输人信号低电平期间,PC2形成由+5V*、 PC2的2、 3脚内部发光二极管、信号源电路到地的输入电流通路,〔2内部输出电路的晶体管VU导通,PC2的6脚输出高电平信号18V峰值),经R65为驱动后置放大电路的VT10提供正向偏流,VT10的导通将正供电电压经栅极电阻引人到IGBT的G极,IGBT开通;在输人信号的高电平期间,PC2的3脚也为+5V高电平,因而无输人电流通路,PC2内部输出电路的晶体管VT2导通,6脚转为负压输出(10V峰值),经R65为驱动后置放大电路的VT11提供了正向偏流,VT11的导通将供电的负电压——IGBT的截止电压经栅极电阻R91引人到IGBT的G极,IGBT关断。在待机状态,PC2的3脚输入信号一直维持在+5V高电平状态,则驱动电路一直输出-10V的截止电压,加到CN1出触发端子上,IGBT—直维持于可靠的截止状态上。 因IGBT栅-射极间结电容的存在,对其开通和截止的控制过程,实质上是对IGBT栅-射极间结电容进行充、放电的过程,这个充、放电过程形成了一定的峰值电流,故功率较大的IGBT模块须由VT10、 VT11组成的互补式电压跟随放大器来驱动。

安川变频器学习笔记

安川变频器学习笔记 一、结构 1、触发器 2、PG卡通讯板主控板电源端子板数字操作器

PG卡:把测速编码器的信号转化为驱动器可识别的信号.完成电机速 度信号的反馈. 通迅板:主要功能是进行驱动器与PLC的CPU之间通迅信号的转换.以便驱动器与PLC之间能进行信号传输. 主控板:主要进行驱动器各种信号的集中处理,储存驱动器的各种参数. 手操器:驱动器外部参数输入的操作面板和各种参数的显视面板.在驱动器出现故障时,显示故障代码和名称. 触发板:供给驱动器内部各线路板的工作电源和IGBT的触发极电源. 变频器工作原理 变频器主要有“整流”和“逆变”两部分。 变频器送电后2~3秒后电压上升到80%,INV内部的M接触

器吸合。 整流后的直流电压为:Vac=1.35X460V=760V. 吊具下降时,吊具处于发电状态,通过并联在IGBT旁的二极管桥式整流,使直流电压升高,再通过DBU消耗。Master DBU作为检测,Master和Slave同时执行。 变频器只能消耗20%的反馈电压,80%需要通过DBR消耗。 二、数字操作器 驱动模式:是变频器可运行的模式。进行频率指令、输出电流等的监视显示,故障内容显示、故障记录显示等。 QUICK程序模式:进行变频器运行最低限所必要的参数的参照、设定。

ADVANCED程序模式:进行变频器全部参数的参照、设定。 效验模式:进行与出场设定值不同的参数的读取设定。 自学习模式:用矢量控制模式运行不知道参数的电机时,自动计算、设定电机的参数。也可只测定电机线间电阻。 三、变频器参数的构成 A:环境设定。 B:应用。 C:调整。 D:指令。 E:电机参数。 F:选择件。 H:选择端子功能。 L:保护功能。 N:特殊调整。 O:操作器关系。 T:电机的自学习。 U:监视。 A1-02(控制模式)。选择“3”是带PG矢量控制。 A1-01(参数的存取等级)。 A1-04(密码)。 A1-05(设定密码)。 B1-01(选择频率指令)。 B1-02(选择运行指令)。 O2-01(本地/远程键的功能)。 O3-01(拷贝功能的选择) 一、变频器主回路中有有保险、IGBT、驱动板、PG卡。 IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,

变频驱动与控制技术介绍

变频驱动技术

绪论 以交流(直流)电动机为动力拖动各种生产机械的系统我们称之为交流(直流)调速系统,也称交流(直流)电气拖动系统。变频调速技术是交 流电气传动系统的一种。 目的 根据设备和工艺的要求通过改变电动机速度或输出转矩改变终端设备的速度或输出转矩。 意义 序号意义有代表意义的行业或设备 1节能风机、水泵、注塑机 2提高产品质量机床、印刷、包装等生产线 3改善工作环境电梯、中央空调 注:并不是所有的设备使用调速装置后都可以节能

调速系统构成 中间传动机构 交流电源输入 终端机械 交流电机 直流调速装置 直流输出 皮带轮、齿轮箱等风机、泵等 直流电机 交流调速装置 交流输出 执行机构 变频器

交、直流调速系统的特点 直流调速系统特点: ●控制对象:直流电动机 ●控制原理简单,一种调速方式●性能优良,对硬件要求不高●电机有换向电刷(换向火化)●电机设计功率受限 ●电机易损坏,不适应恶劣现场●需定期维护交流调速系统特点: ●控制对象:交流电动机 ●控制原理复杂,有多种调速方式●性能较差,对硬件要求较高 ●电机无电刷,无换向火化问题●电机功率设计不受限 ●电机不易损坏,适应恶劣现场●基本免维护

国内调速技术现状 (1)晶闸管交流器和开关断器件(DJT、IGBT、VDMOS)斩波器供电的直流调速设备。 随着交流调速的发展,该设备在缩减,但由于我国旧设备改造任务多,以及它在几百至一千多kW范围内价格比交流调速低得多,所以在短期内有一定市场。国产设备能满足需要,部分出口。自行开发的控制器多为模拟控制,近年来主要采用进口数字控制器配国产功率装置。 (2)IGBT等逆变器供电的交流变频调速设备。这类设备的市场很大,总容量占的比例不大,但台数多,增长快,应用范围从单机扩展到全生产线,从简单的V/f控制到高性能的矢量控制。约有50家工厂和公司生产,其中合资企业占很大比重。 (3)负载换流式电流型晶闸管逆变器供电的交流变频调速设备。这类产品在抽水蓄水能电站的机组起动,大容量风机、泵、压缩机和轧机传动方面有很大需求。国内只有少数科研单位有能力制造,目前容量最大做到12MW。功率装置国内配套,自行开发的控制装置只有模拟式的,数字装置需进口,自己开发应用软件。 (4)交-交变频器供电的交流变频调速设备。这类产品在轧机和矿井卷扬传动方面有很大需求,台数不多,功率大。主要靠进口,国内只有少数科研单位有能力制造。目前最大容量做到7000~8000kW。功率部分国产,数字控制装置进口,包括开发应用软件。

变频器驱动电路常用的几种驱动IC

变频器驱动电路常用的几种驱动IC 变频器驱动电路中常用IC,共有为数不多的几种。可以设想一下,变频器电路的通用电路,必定是主电路(包括三相整流电路和三相逆变电路)和驱动电路,即便是型号的功率级别不同的变频器,驱动电路却往往采用了同一型号的驱动IC,甚至于驱动电路的结构和布局,是非常类似的和接近的。 早期的和小功率的变频器机种,经常采用TLP250、A3120(HCPL3120)驱动IC,内部电路简单,不含IGBT保护电路;以后被大量广泛采用的是PC923、PC929的组合驱动电路,往往上三臂IGBT采用PC923驱动,而下三臂IGBT则采用PC929驱动。PC929内含IGBT检测保护电路等;智能化程度比较高的专用驱动芯片A316J,也在大量机型中被采用。 通过熟悉驱动IC的引脚功能和掌握相关的检测方法,达到对驱动电路进行故障判断与检测的能力,以及能对不同型号的驱动IC应急进行代换与修复。 一、TLP250和HCPL3120驱动IC: 8 Vcc 7 Vo 6 Vo 5 GND 8 Vcc 7 Vo 6 Vo 5 GND 8 Vcc 7 Vo 6 Nc TLP250 HCPL3120/ J312 HCNW3120 图1 三种驱动IC的功能电路图 TLP250:输入IF电流阀值5mA,电源电压10∽35V,输出电流±0.5A,隔离电压2500V,开通/关断时间(t PLH/ t PHL)0.5μs。可直接驱动50A1200V的IGBT模块,在小功率变频器驱动电路中,和早期变频器产品中被普遍采用。 HCNW3120(A3120):与HCPL3120、HCPLJ312内部电路结构相同,只是因选材和工艺的不同,后者的电隔离能力低于前者。输入IF电流阀值2.5mA,电源电压15∽30V,输出电流±2A,隔离电压1414V,可直接驱动150A/1200V的IGBT模块。 三种驱动IC的引脚功能基本一致,小功率机型中可用TLP250直接代换另两种HCNW3120和HCPL3120,大多数情况下TLP350、HCNW3120可以互换,虽然它们的个别参数和内部电路有所差异,如TPL250的电流输出能力较低,但在变频器中功率机型中,驱动IC往往有后置放大器,对驱动IC的电流输出能力就不是太挑剔了。 驱动IC实质上都为光耦合器件,具有优良的电气隔离特性。输入侧内部电路为一只发光二极管,有明显的正、反向电阻特性。用指针式万用表×1k档测量,2、3脚正向电阻约为100kΩ左右,反向电阻无穷大;用×10k档测量,正向电阻约为25kΩ左右,反向电阻也为无穷大。当然2、3脚与输出侧各引脚电阻,都是无穷大的。5、6脚和5、8脚之间,均有鲜明的正、反向电阻,当5脚搭红表笔时,有10kΩ/30 kΩ的电阻值,5脚接黑表笔时,电阻值接近于无穷大。因选材、工艺和封装型式的不同和测量

变频器工作原理图解

变频器工作原理图解 1 变频器的工作原理 变频器分为1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图 三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通 短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子 控制电路原理图 上图就是变频器控制电路的原理示意图。上半部为主电路,下半部为控制电路。主要由控制核心CPU 、输入信号、输出信号和面板操作指示信号、存储器、LSI电路组成。 外接电位器的模拟信号经模数转换将信号送入CPU,达到调速的目的。外接的开关量信号

安川L1000A_变频器驱动同步电机有称重+PG-X3卡电梯调试流

安川L1000A 变频器驱动同步电机有称重+PG-X3卡 电梯调试流程 L1000A+pg-x3(有称重传感器)的调试步骤 1、接线: ①l1000a安装,主回路输入r\s\t、曳引机输出u\v\w,正反转s1\s2,使能端子(bb)s3(设定h1-03=9),多段速s4\s5\s6,外部电源公共端sc(sc、sp出厂短接线卸掉),模拟量电压a1\ac,输出信号m1\m2(功能定义h2-01=4)、m3/m4(功能定义h2-02=50)、m5/m6(功能定义h2-03=6)、故障节点mb(常闭)\mc,制动单元+3/-(小容量变频器接制动电阻 b1/b2); ②pg-x3卡接线,电源正极ip,电源负极ig,输入端子a+/a-、b+/b-、z+/z-,输出端子a+/a-、b+/b-,屏蔽线端子fe; 2、设定控制方式a1-02=7; 3、空轿箱停在底楼,手动松抱闸,上行溜动,监视u1-05。若为正值,则f1-05无需改动;若为负值,则将f1-05现有值改掉(0→1,1→0) 4、静止形自学习有三步(输出接触器闭合,抱闸不用打开): ①t2-01=1(静止形自学习),t2-04电机功率,t2-05额定电压,t2-06额定电流,t2-08 极数,t2-09额定转速,t2-16编码器脉冲数;验证e1-□□和e5-□□是否与电机名牌一致; ②t2-01=3(初次磁极检测参数自学习); ③t2-01=4(电梯角度自学习)后,开慢车上行,曳引机旋转5圈以上,查看磁极角度e5-11;断电重新做t2-01=4,验证e5-11三次,每次角度差异在5°以内,否则检查编码器安装及其接线(若开慢车曳引机发生剧烈抖动,调整u/v/w其中两相相序,重新做t2-01=4); 5、加减速时间(c1-01、c1-02)、s字时间(c2-01~05)同L7b; 6、多段速设定(d1-□□)与L7b相同; 7、编码器相关参数f1-□□同L7b; 8、模拟量输入口a1设定:h3-01端子电压选择(h3-01=0电压选择0~10v),h3-02端子功能选择(h3-02=14转矩补偿功能),h3-03端子输入增益,h3-04端子输入偏置; 9、称重转矩补偿功能相关参数s3-27、s3-28、s3-29、s3-30;-50%(s3-27)转矩补偿量0v(s3-29=0.0%)10v(s3-30=100.0%)50%(s3-28)称重传感器电压 ①空载时往对重倒溜,s3-27以5%为单位往负的方向增大即:s3-27=-55%,-60%,-65%,-70%……马达侧观察钢丝绳倒溜的距离是否越来越小;若发现倒溜越来越大,s1-24往正的方向调整,直到调整到不倒溜为止。(5%的单位只是经验值,客户可根据自己的电梯特性确定调整单位); ②满载时往轿厢倒溜,s3-28以5%为单位往正的方向增大即:s3-28=55%,60%,65%,70%……马达侧观察钢丝绳倒溜的距离是否越来越小;若发现倒溜越来越大,s3-28往负的方向调整,直到调整到不倒溜为止。(5%的单位只是经验值,客户可根据自己的电梯特性确定调整单位); 10、运行中的舒适度,调整asr参数(c5-01~c5-07);

变频器驱动IC的区别和OC报警的解除方法

PC817 驱动IC 的区别和OC 报警的解除方法 ——答shihong888网友的提问 一、各类驱动IC 的区别: 变频器驱动电路的核心元器件是驱动IC ,常用型号有TLP250、A3120、PC923、PC929、A316J 等。驱动IC 实质上是光耦器件的一种,采用光耦器件的目的,一是实现对耦输入、输出侧不同供电回路的隔离,二是输出侧有一定的功率驱动能力,是兼有电气隔离和功率放大两种作用的。 普通四线端光耦器件,如PC817等,内部电路由一只输入发光二极管与输出光敏三极管构成,在输入侧有了输入电流(典型应用值5—10mA )通路后, 输出侧三极管产生被激发光电子而导通。主传输,如变频器的数字信号控制端子,多采 作为驱动IC 的光耦器件,在结构上比PC817稍微复杂一些,输出级多由射极输出到补放大器构成,如TLP250、A3120、PC923等,输出级由V1、V2两级射极互补电路组成。V1导通将VCC 正供电电压经输出6、7脚加到IGBT 的栅射结上,提供IGBT 开通的驱动电流。如果把IGBT 的栅射结看作是一只电容的话,则V1导通提供了IGBT 栅射结电容的充电电流,令其开通;而V2的导通,则将输出6、7脚拉为GND 地电平或负供电电压,提供所驱动IGBT 栅射结电容的电荷泄放通道,令其快速截止。工作中V1、V2两管交替导通,实施对IGBT 的开通与截止控制。需要说明的是,对此驱动电路的供电往往采用+15V 、-7.5V 的正负双电源,以增强其控制能力。 8 Vcc 7 Vo 6 Vo 5 GND (1).TLP250IC PC929则在TLP250、A3120、PC923等的电路结构基础上,又添加了IGBT 保护电路,又称为IGBT 导通管压降检测电路,主要承担对IGBT 的过流、短路的快速保护。大家知道,在变频器U 、V 、W 输出回路中,已经串接了两只或三只电流互感器(由霍尔元件采集电流信号并经放大电路所处理),其输出信号经后级电路分别处理成模拟和开关量信号,送入CPU ,进行电流显示、输出控制、

康沃变频器电路图CVF

《康沃CVF-G-5.5kW变频器》主电路图

《康沃CVF-G-5.5kW变频器》主电路图说 这台5.5kW康沃变频器的主电路,就是一个模块加上四只电容器呀。除了模块和电容,没有其它东西了。在维修界,流行着这样的说法:宁修三台大的,不修一台小的;小机器风险大,大机器风险小。小功率变频器结构紧凑,有时候检查电路都伸不进表笔去,只有引出线来测量,确实麻烦。此其一;小功率变频器,主电路就一个模块,整流和逆变都在里面了。内部坏了一只IGBT管子,一般情况下只有将整个模块换新,投入的成本高,利润空间小。而且万一出现意外情况,换上的模块再坏一次,那就是赔钱买卖了。要高了价,用户不修了,要低的价,有一定的修理风险。如同鸡肋,食之无味,弃之可惜。修理风险也大。大机器空间大,在检修上方便,无论是整流电路还是逆变电路,采用分立式模块,坏一只换一只,维修成本偏偏低下来了。而大功率变频器的维修收费上,相应空间也大呀。修一台大功率机器,比修小的三台,都合算啊。 因变频器直流电路的储能电容器容量较大,且电压值较高,整流电路对电容器的直接充电,有可能会造成整流模块损坏和前级电源开关跳闸。其实这种强Y 充电,对电容器的电极引线,也是一个大的冲击,也有可能造成电容器的损坏。故一般在整流电路和储能电容器之间接有充电电阻和充电继电器(接触器)。变频器在上电初期,由充电电阻限流给电容器充电,在电容器上建立起一定电压后,充电继电器闭合,整流电路才与储能电容器连为一体,变频器可以运行。充电电阻起了一个缓冲作用,实施了一个安全充电的过程。 当负载转速超过变频器的输出转速,由U、V、W输出端子向直流电路馈回再生能量时,若不能及时将此能量耗散掉,异常升高的直流电压会危及储能电容和逆模块的安全。BSM15GP120模块内置制动单元,机器内部内置制动电阻RXG28-60。虽有内置制动电阻,但机器也有P1、PB外接制动电阻端子,当内置电阻不能完全消耗再行能量时,可由端子并接外部制动电阻,完成对电机发电的再生能量的耗散。制动单元的开关信号由GB、N两个控制端子引入,制动开关信号是由CPU主板提供的。 对IGBT逆变电路的保护,1、过流、短路保护电路——IGBT管压降检测电路,又称为模块故障检测电路。驱动电路一般也兼有模块故障检测功能。在IGBT 模块内流通异常电流时,实施快速停机保护;2、电压保护电路——直流电路的电压检测电路,逆变电路供电异常时,实施停机保护;3、个别机器还有输入三相电源检测电路,和输出三相电压检测电路,在输入电源电压缺相和缺出异常时,均会实施停机保护;4、温度保护电路——模块温度检测电路,在运行状态中检测模块温度异常上升时,实施停机保护。一般的温度检测电路,由温度传感元件与后续电路构成。BSM15GP120模块内部,内置有模块温度检测电路,模块温升异常时输出高电平信号给CPU。 早期生产的变频器产品,逆变功率电路有采用可控硅器件的,在可控硅的关断和换相上控制较为复杂,载波频率往往也较低。电机运行的噪声和振动都要大一些。是不是也有人考虑过用双极型器件(晶体三极管)做功率逆变电路的,但因三极管为电流驱动型器件,驱动电路须提供很大的驱动功率,这会带来极大驱动功耗和驱动电路应做成一块相当大的线路板,这样不光考虑模块的散热,还要考虑驱动电路的散热了。也有人考虑用场效应晶体管来做,但场效应晶体管的导导通压降太大,这会形成管子本身的功耗,而且场效应晶体管的功率容量也是有限的。再后来,随着技术的进步,出现了新型器件——IGBT管子。该器件融合了双极型器件和场效应器件两者的优点——电压控制、较小的导通压降和较大的功率容量。使驱动电路和IGBT模块本身的功耗都大为降低,并且易于驱动。所以现在所有的变频器的功率输出电路,一律都是采用IGBT模块了。

相关主题
文本预览
相关文档 最新文档