当前位置:文档之家› 初始预应力值对张弦梁结构受力性能的影响_史三元

初始预应力值对张弦梁结构受力性能的影响_史三元

初始预应力值对张弦梁结构受力性能的影响_史三元
初始预应力值对张弦梁结构受力性能的影响_史三元

张弦梁找形与结构分析

张弦梁找形与结构分析 摘要:本文在阅读了相关文献的基础之上,粗略的介绍了张弦梁的一些基本知识、找形方法和结构分析的一些成果。 关键字:张弦梁;找形;结构分析; 张弦梁(Beam String structure,BSS),是一种大跨度空间结构体系,是由上部刚性构件(一般为梁、拱)、中间撑杆和下弦拉索中组成的一种自平衡体系。其结构受力特点有:索受拉力,撑杆为受压二力杆、拱为压弯构件。加之,预应力的引入,使得三者之间相互平衡,能够形成有有机的受力整体,使得结构材料的力学性能得到最大的发挥,有利于承载力的提高。 然而对于张弦梁而言,由于只有在张拉完毕之后,各组成部分才会形成受力整体,结构整体拥有较大的刚度,而在张拉过程之中,结构刚度较弱,随着预应力的加载,会有较大的变形。这就导致了,张弦梁不能像一般的刚性结构一样施工放样,存在着找形问题。 Figure 1张弦梁结构示意图 1找形分析 1.1相关概念 对于张弦梁找形问题,需要明确以下三种概念[2]: 零状态几何:体系在无自重、无外荷载、无自内力的情况下的几何形态。其仅对上部结构梁单元构件的下料长度有意义,对下弦索和竖向压杆建议采用应力下料。 初状态几何:体系在自重、屋面附加恒荷载、全部或一半屋面活载和自内力情况下的几何构形。其力学意义在于考虑结构常态荷载,即重力荷载和预应力共同作用下,体系上部结构各构件的内力最小,全部或部分控制节点的竖向位移为

0,即体系上部结构重力场作用下引起的变形和内力为最优。 荷载态几何:体系在各种作用组合工况下的几何构形。 目前较为一般的观点认为,应取初状态几何为计算参考构形且初状态几何等价于建筑设计几何。三种几何状态的先后关系,一般为零状态下料施工到初状态几何,初状态结合进入使用阶段进入荷载态几。而一般设计都从初状态几何切入,找到零状态几何,然后再由此上前。 1.2张弦梁形状确定问题 确定下弦索的曲线形状和竖向杆的布置和数量是找形分析的重点。文章[2],采用局部分析法确定初状态几何下,全部竖杆的设计预内力的分布和水平,然后由下部索杆体系的拓扑几何关系推出矩阵H确定竖杆下节点的竖向坐标。对水平间距相等的竖杆,在设计预应力相等的情况下,下弦索的曲线形状为二次抛物线,并做出了简单的推导。 1.3预应力模拟方式 在张弦梁结构中,用有限元模拟预应力主要有三种方式[13],如下: 力模拟法,通常是在两端索段加上力来模拟预应力。其能够比较好的模拟张拉过程中,索力—位移曲线,但不能进行施工阶段的加载分析。 初应变模拟法,通过某些索段或者整个索段施加初应变,来施加预应力。能够实现预应力张拉完毕后,接着进行施工阶段的加载分析。但它只能用于一次预应力张拉施工,无法完成实际工程中多次预应力张拉。 等效降温法,是根据物体的热胀冷缩特性, 对张弦梁下弦的钢索进行降温使之收缩,对收缩进行限制从而产生了下弦受拉、腹杆受压、上弦受到压弯作用的效果, 于是便可有效地模拟施加预应力的张拉过程。能够很好的模拟预应力张拉过程,完成多次张拉预应力,并且保证结构的完整性,在结构张拉完毕之后,可以进行荷载态分析。但得到的结构初状态对后续的计算存在温度差值的影响[4]。 1.4找形方法 张弦梁找形,解决的是怎样从给定某个与拉力范围的初状态几何逆算出零状

预应力砼结构施工技术

第六章预应力砼结构施工技术 1、什么叫先张法?什么叫后张法?比较它们的异同点。 2、先张法对所用夹具有何要求? 3、施加预应力的方法有几种?其预应力值是如何建立和传递的? 4、先张法的长线台座由哪几部分组成?各起什么作用?如何进行台座的稳定性验算? 5、先张法的张拉程序如何? 6、超张拉的作用是什么?有何要求? 7、先张法的张拉设备有哪些? 8、预应力筋放张的条件是什么? 9、后张法常用的锚具有哪些?对锚具有何要求? 10、后张法孔道留设方法有哪几种?各适用于什么情况? 11、后张法的张拉设备有哪些? 12、后张法的张拉顺序是如何确定的? 13、预应力筋伸长值如何校核? 14、预应力筋张拉与钢筋冷拉有何区别? 15、分批张拉时,如何弥补混凝土弹性压缩造成的预应力损失? 16、叠层生产的预应力损失是如何产生的?怎样弥补? 17、孔道灌浆的作用是什么?对灌浆材料有何要求? 18、有粘结预应力与无粘结预应力施工工艺有何区别? 19、如何制作无粘结预应力筋? 参考答案: 1.试述沥青卷材屋面防水层的施工过程铺贴一般要求 答:(1)沥青防水层的铺设准备: 防水层施工前,应将油毡上滑石粉或云母粉刷干净,以增加油毡与沥青胶的粘结能力,并随时做好防火安全工作。

(2)卷材铺贴的一般要求: ①卷材防水层施工应在屋面其他工程全部完工后进行。 ②铺贴多跨和有高低跨的房屋时,应按先高后低、先远后近的顺序进行。 ③在一个单跨房屋铺贴时,先铺贴排水比较集中的部位,按标高由低到高铺贴,坡与立面的卷材应由下向上铺贴,使卷材按流水方向搭接。 ④铺贴方向一般视屋面坡度而定,当坡度在3%以内时,卷材宜平行于屋脊方向铺贴;坡度在3%~15%时,卷材可根据当地情况决定平行或垂直于屋脊方向铺贴,以免卷材溜滑。 ⑤卷材平行于屋脊方向铺贴时,长边搭接不小于70mm;短边搭接,平屋面不应小于100mm,坡屋面不小于150mm,相邻两幅卷材短边接缝应错开不小于500mm;上下两层卷材应错开1/3或1/2幅度 ⑥平行于屋脊的搭接缝,应顺流水方向搭接;垂直屋脊的搭接缝应顺主导风向搭接 ⑦上下两层卷材不得相互垂直铺贴。 ⑧坡度超过25%的拱形屋面和天窗下的坡面上,应尽量避免短边搭接,如必须短边搭接时,搭接处应采取防止卷材下滑的措施。 2.常用防水卷材有哪些种类? 答:有三大类:沥青防水卷材、高聚物改性沥青防水卷材和合成高分子防水卷材。 3.试述高聚物改性沥青卷材的冷粘法和热熔法的施工过程。 答:(1)冷粘法铺贴卷材: 在构造节点部位及周边200mm范围内,均匀涂刷一层不小于1mm厚度的弹性沥青胶粘剂,随即粘贴一层聚酯纤维无纺布,并在布上涂一层1mm厚度的胶粘剂。基层胶粘剂的涂

张弦梁介绍

《大跨空间钢结构分析与概念设计》王秀丽机械工业出版社 张弦梁结构是近十余年发展起来的一种大跨预应力空间结构体系。张弦梁结构最早的得名来自于该结构体系的受力特点是“弦通过撑杆对梁进行张拉”。但是随着张弦梁结构的不断发展,其结构形式日趋多样化,20世纪日本大学M.Saitoh 教授将张弦梁结构定义为“用撑杆连接抗弯受压构件和抗拉构件而形成的自平衡体系”。可见张弦梁结构由三类基本构件组成,即可以承受弯矩和压力的上弦刚性构件、下弦的高强度拉索以及连接两者的撑杆。 辐射式张弦梁结构,这种结构由中央按辐射状放置上弦张弦梁,梁下设置撑杆,撑杆用环向索或斜索连接。该结构形式适用于圆形平面或椭圆行平面的屋盖。从受力形态上来看,张弦梁结构又通常被认为是一种“半刚性”结构。像悬索结构等柔性结构一样,根据张弦梁结构的加工、施工及受力特点通常也将其结构形态定义为零状态、初始状态和荷载态三种。其中零状态时拉索张拉前的状态,实际上是指构件的加工和放样形态;初始态是拉索张拉完毕后,经过安装就位的形态,也是建筑施工图中所明确的结构外形;而荷载态是指外荷载作用在初始态结构上发生变形后的平衡状态。 以上三种状态的定义,对张弦梁结构来说具有现实意义。对于张弦梁结构零状态,主要涉及到结构构件的加工放样问题。张弦结构的初始状态时建筑设计所给定的基本形态,即结构竣工后的验收状态。如果张弦梁结构的上弦构件按照初始形态给定的几何参数惊醒加工放样,那么在张拉索时,由于上弦构件刚度较弱,拉索的张拉力势必导致上弦构件产生向上的变形。当张拉索张拉完毕后,结构中上弦构件的形状将偏离初始状态,从而不满足建筑设计的要求。因此张弦结构上弦构件的加工放样通常要考虑拉索张拉产生的变形影响。 《大跨度空间结构》张毅刚薛素铎杨庆山范峰机械工业出版社 张弦梁结构的受力机理为:通过在下弦拉索中施加预应力使上弦压弯构件产生反挠度,结构在荷载作用下的最终挠度得以减小,而撑杆对上弦的压弯构件提供弹性支承,改善结构的受力性能。上弦的压弯构件一般采用拱梁或桁架拱,在荷载作用下拱的水平推力由下弦的抗拉构件承受,减轻拱对支座产生的负担,减小滑动支座的水平位移。由此可见,张弦梁结构可充分利用高强索的强抗拉性改善整体结构受力性能,使压弯构件和抗拉构件取长补短,协同工作,达到自平衡,充

张弦梁结构

关于张弦梁结构 日本一家游泳馆的馆顶就是张弦梁结构 前天在“西班牙的奥伦塞千禧桥”的文章中谈到了张弦梁结构,一些朋友问我什么是张弦梁,以及受力特性。在此,借博客再进一步说说,做一些概念上的说明。 张弦梁结构早期由前南斯拉夫和日本学者各自独立提出。南斯拉夫学者称之为双弦结构(Two Chord Structure),日本学者则称为张弦梁结构(Beam String Structure),目前在中国还是以张弦梁的叫法为主。 在中国,张弦梁结构的架设是在上个世纪九十年代。国内第一次应用就是1999年在上海浦东国际机场的航站楼,最大跨度的水平投影长度82.60米。后来,在广州国际会议展览中心、哈尔滨国际会议中心、北京全国农业展览馆中心及国家体育馆先后采用了张弦梁结构。 张弦梁结构主要由柔性索和刚性梁或拱、再加上撑杆组成。其中梁或拱作为结构的上弦部分,索作为结构下弦部分,通过预应力及撑杆的作用形成张弦梁整体结构,预应力锚固在上弦杆两端部。

从受力来看,由于张弦梁结构的下弦索预应力作用,有向径向作用力,这个力通过撑杆传递到上弦杆下部,形成了对梁体或拱的弹性支撑。所以在相同荷载作用下,对于同样的结构如果有张弦梁支撑会使结构内力大为降低,从而达到减少截面面积,降低结构自重减少材料用量的目的。从另一个方面来说,由于张弦梁的作用也是结构的跨越能力得以提升,所以在大跨度的厂房,候机厅及体育馆所都会优先考虑张弦梁结构。 张弦梁结构的特点可以归纳出这几个方面。结构简单,受力明确,轻盈而通透,跨越能力达,便于工厂化制造、运输及安装;对于空间的张弦梁结构更是刚度大、稳定性好。故此,张弦梁在大跨度的工业与民用建筑中广泛的应用,新建桥梁上应用目前只是一种起步,相信以后会作为结构一部分加以利用或作为独立结构架设。 2007年在上海的时候,在浦东国际机场候机,就发现了张弦梁结构。当时只是没有像今天感觉这样深刻,也没有今天这种认识深度。出于本能,还是拿出了单发数码拍了下面的几张照片。今天看来,我的第六感官仍在起着作用,只是在有形与无形之间那种潜意识的东西一直在向外涌出,支撑着我对自己专业的思考与执着。 西班牙的奥伦塞千禧桥在主跨跨中就用到了张弦梁,不过它是以斜拉结构加劲的辅助结构出现的。所以,在桥梁加固工程上根据现场情况有可能用到张弦梁,把它作为一种技术的手段还是很可行的!

张弦梁结构

精心整理张弦梁结构的历史、现在和未来 一、简介? 张弦梁也称弦支梁,属于张弦结构的一种。张弦梁结构是一种由刚性构件上弦、柔性拉索、中间连以撑杆形成的混合结构体系,其结构组成是一种新型自平衡体系,是一种大跨度预应力空间结构体系,也是混合结构体系发展中的一个比较成功的创造。其拉索的作用主要是通过刚性撑杆给刚性梁提供弹性支撑,减小梁跨度,减少刚性梁的弯矩峰值,进而起到增加刚度,减小挠度的作 1851 1979年Madrid 二、 表1。 分别对3个模型施加沿跨度方向15kN/m的均布线荷载,将拱梁(曲梁)离散为20个相等的直梁元,其上的线荷载等效为节点荷载,分10个相等的荷载增量步,其计算结果的比较见表2。

型2 (1 (2 (3 (4)张弦梁结构与预应力双索体系(由承重索、相反曲率的稳定索即两者之间的联系杆共同组成的平面预应力体系)比较,张弦梁结构所需的预拉力要小得多,因而使支撑结构的受力大为减小。如果在施工过程中适当分级施加预拉力和分级加载,将有可能使张弦结构施于支撑结构的作用力减到最小限度。 对张弦梁结构的受力特点从不同的角度可理解为: (1)理解一:张弦梁结构是在双层悬索体系中的索梁基础上,将上弦索替换成刚性构件而产生的。这样处理的好处是上弦刚性构件可以承受弯矩和压力,一方面可以提高梁的刚度,另一方面结构

中构件内力可以在其内部平衡(自平衡体系),而不再需要支撑系统的反力来维持。 (2)理解二:张弦梁结构是用拉索替换常规梁的受拉下弦而形成的结构体系,这种替换的有点事不仅梁的下弦拉力可以由高强度拉索来承担,更为重要的是可以通过张拉拉索在结构中产生预应力,从而达到改善结构受力性能的目的。 (3)理解三:张弦梁结构是体外布索的预应力梁,通过预应力来改善结构的受力性能。 张弦梁结构的工程应用: (1)国外工程应用: 如英国 1 距5m 2 3 大屋盖的4 5) 90m。 6 合作设计完成。 日本掘之内城镇体育馆 除了以上介绍的工程外,还有一些张弦梁工程较为典型,如日本大学理工学部CST大厅、日本山梨学院悉尼纪念馆游泳馆、日本大海中学体育馆以及日本唐户市场等。 (2)国内工程应用: 自20世纪90年代后期由于张弦梁结构的优越性,国内的张弦梁结构工程如雨后春笋般蓬勃发展。其中代表性的工程有:

组合结构设计原理课程收获与感想

组合结构设计原理课程收获 1.组合结构的定义和特点 有两种以上性质不同的材料组合成的整体并能共同工作的构件称为组合构件,由各种组合构件构成的结构称为组合结构。狭义的组合结构仅包括由钢和混凝土两种材料组成的组合柱、组合梁、组合板。自上世纪80年代以来,经济建设持续高速发展,随着大量建筑物的兴建,各种新的结构形式不断涌现,组合结构作为一种新兴结构得到越来越广泛的应用与推广,而且应用前景越来越好。组合结构将不同材料或构件组合在一起的结构形式,同时在设计时应将不同材料和构件的性能纳入整体进行考虑,以最有效地发挥各种材料和构件的优势,从而获得更好的结构性能和综合效益,其具有施工方便、节省材料、经济效果好等优点,因此,组合结构将成为继传统的四大结构(钢结构、钢筋混凝土结构、木结构及砌体结构)以后的第五大结构体系。 组合结构具有多种多样的组合方式和途径,如材料间的粘结力、机械连接件的抗剪抗拔力、构件或材料间的相互约束与支持等。合理运用各种组合方式,可以使各种材料扬长避短,获得一系列性能优越的组合构件或体系。例如,钢.混凝土组合梁通过抗剪连接件将钢梁与混凝土翼板组合,充分发挥了混凝土抗压强度高和钢材抗拉性能好的优点。而钢管混凝土将钢管与混凝土组合,钢管的约束作用使混凝土处于三向受压从而提高了混凝土的强度和延性,混凝土对钢管的约束则防止了钢管的屈曲。此外,钢板混凝土剪力墙、钢板混凝土组合井壁等也都使两种或多种结构材料通过不同的方式进行有效组合,可以获得更高的性能。 2.组合结构的优缺点 钢-混凝土组合结构,它是一种优于钢结构和钢筋混凝土结构的新型结构,它分别继承了钢结构和钢筋混凝土结构各自的优点,也克服了两者的缺点而产生的一种新型体系结构,可充分利用钢和混凝土的特点,按照最佳几何尺寸,组成最优的组合构件,使它具有构件刚度大,防火,防腐性能好,具有较大的抗扭及抗倾覆能力(与钢结构相比),而且具有重量轻,构件延性好,增加净空高度和使用面积,同时缩短施工周期,节约模板(以上与钢筋混凝土结构相比),特别在高层和超高层建筑用桥梁结构中,更加体现了它的承载能力和克服结构在施工技术难题的优点。 其缺点是结构需要特定的剪力连接件和专门焊接设备和专门焊接技术人员,与钢结构相比,还有一定量的二次抗火设计(指组合构件,而不是劲性构件),还有压型钢板混凝土组合析在施工期间,在混凝土初凝期,当混凝土厚度不够厚时(一般混凝土板厚应大于100mm),易使混凝土出现临时裂缝,特别指高标号混凝土(由于压型钢板阻止混凝土收缩所致)。 下面,我会介绍几种常见的组合结构,和它们的特点。 3.压型钢板与混凝土组合楼板

预应力混凝土结构设计

预应力混凝土结构设计 《现代预应力混凝土》 复习思考题 第一章 钢筋混凝土结构概念及材料物理力学性能 1. 什么是混凝土的徐变?影响混凝土徐变的主要因素有哪些?徐变对混凝土 结构造成哪些影响? 2. 什么是混凝土的收缩?引起混凝土收缩的主要原因是什么?收缩对混凝土 结构产生的影响有哪些? 3. 混凝土收缩与徐变的主要区别表现在哪里? 第十二章 预应力混凝土结构的概念及其材料 1. 什么是预应力混凝土结构?简述预应力混凝土结构的基本原理? 2. 简述与钢筋混凝土构件相比,预应力混凝土结构的优、缺点? 3. 什么是预应力度?请简述不同配筋混凝土构件预应力度的取值? 4. 我国《公路桥规》根据预应力度将结构分为几类? 5. 预加应力的主要方法有几种? 6. 简述先张法和后张法施工预应力混凝土构件的主要

施工工序,并指出其在施 加预应力方法上的不同之处。 7. 预应力混凝土构件对混凝土有哪些要求?为什么提出这些要求? 8. 公路桥梁中对预应力混凝土结构所使用的预应力钢筋有何要求?其常用的 预应力钢筋有哪些? 9. 锚具和夹具各指什么?预应力混凝土构件对锚具有何要求?按照传力锚固 的原理,锚具如何分类? 10. 公路桥梁中常用的制孔器有哪些? 11. 如何理解预应力混凝土结构的三种概念?它们在结构受力分析和设计中有何作用? 第十三章 预应力混凝土受弯构件的设计与计算 1. 预应力混凝土受弯构件从预加力到最后破坏一般经历哪些受力阶段? 2. 何为预应力筋的张拉控制应力?何为预应力筋的永存预应力? 3. 预应力混凝土受弯构件计算中,何为消压弯矩?何为消压状态?该状态下构 件截面上的应力特征是什么? 4. 预应力混凝土受弯构件计算中,何为开裂弯矩?其

张弦梁结构知识

张弦梁结构简介 ]张弦梁结构最早是由日本大学M.Saitoh教授提出,是一种区别于传统结构的新型杂交屋盖体系。张弦梁结构是一种由刚性构件上弦、柔性拉索、中间连以撑杆形成的混合结构体系,其结构组成是一种新型自平衡体系,是一种大跨度预应力空间结构体系,也是混合结构体系发展中的一个比较成功的创造。张弦梁结构体系简单、受力明确、结构形式多样、充分发挥了刚柔两种材料的优势,并且制造、运输、施工简捷方便,因此具有良好的应用前景。 张弦梁结构的受力机理 目前,普遍认为张弦梁结构的受力机理为通过在下弦拉索中施加预应力使上弦压弯构件产生反挠度,结构在荷载作用下的最终挠度得以减少,而撑杆对上弦的压弯构件提供弹性支撑,改善结构的受力性能。一般上弦的压弯构件采用拱梁或桁架拱,在荷载作用下拱的水平推力由下弦的抗拉构件承受,减轻拱对支座产生的负担,减少滑动支座的水平位移。由此可见,张弦梁结构可充分发挥高强索的强抗拉性能改善整体结构受力性能,使压弯构件和抗拉构件取长补短,协同工作,达到自平衡,充分发挥了每种结构材料的作用。 所以,张弦梁结构在充分发挥索的受拉性能的同时,由于具有抗压抗弯能力的桁架或拱而使体系的刚度和稳定性大为加强。并且由于张弦梁结构是一种自平衡体系,使得支撑结构的受力大为减少。如果在施工过程中适当的分级施加预拉力和分级加载,将有可能使得张弦梁结构对支撑结构的作用力减少的最小限度。 张弦梁结构的分类 张弦梁结构按受力特点可以分为平面张弦梁结构和空间张弦梁结构。 平面张弦梁结构是指其结构构件位于同一平面内,且以平面内受力为主的张弦梁结构。平面张弦梁结构根据上弦构件的形状可以分为三种基本形式:直线型张弦梁、拱形张弦梁、人字型张弦梁结构。 直梁型张弦梁结构主要用于楼板结构和小坡度屋面结构,拱形张弦梁结构充分发挥了上弦拱得受力优势适用于大跨度的屋盖结构,人字型张弦梁结构适用于跨度较小的双坡屋盖结构。 空间张弦梁结构是以平面张弦梁结构为基本组成单元,通过不同形式的空间布置所形成的张弦梁结构。空间张弦梁结构主要有单向张弦梁结构、双向张弦梁结构、多向张弦梁结构、辐射式张弦梁结构。 单向张弦梁结构由于设置了纵向支撑索形成的空间受力体系,保证了平面外的稳定

大跨度网壳结构的稳定性分析

大跨度网壳结构的稳定性分析 xx xxxx 摘要:空间结构是一种倍受瞩目的结构形式,其中网壳结构是近半个世纪以来发展最快、应用最广的空间结构之一。随着大跨度单层网壳结构的不断涌现,其结构重要性不言而喻,结构的稳定性问题尤为突出。本文主要介绍了网壳结构的稳定性问题并以某大跨度球类馆为工程实例,采用非线性有限元法针对承载力计算时的11种工况进行整体稳定计算,考虑了材料和几何非线性,对实际工程进行了第一类和第二类稳定分析,结果表明:该网壳结构的第一类稳定符合相关规范的要求;其第二类稳定性较差。因此,第二类稳定分析应该受到重视。 关键词:网壳结构;稳定性;非线性有限元;大跨度;稳定系数 STABILITY ANALYSIS OF LONG-SPAN LATTICED SHELLS xxx Department of Civil Engineering ,xxx Abstract: Space structure is a very attractive structure system, and the latticed shell is one of the furthest development and the most widely applied space structure in the recent half century. The stability analysis is the key problem in the design of latticed shells, especially in single-layer latticed shells. This paper introduces the stability of latticed shells and a long-span ball gymnasium is adopted as a practical work, and it is analyzed by nonlinear finite element method under the first and the second kinds of stability problems. The holistic calculation aimed at 11 conditions in bearing capacity, material and geometric nonlinearity are considered. The results show that the first kind of stability of this latticed shells accords with the requirements of correlative specifications; the second kind of stability is poorer. Therefore, the analysis of the second kind of stability should be paid attention.. Keywords: latticed shells; stability; nonlinear finite element; long-span; stability factor 1 前言 自20世纪以来,大跨度、大空间的建筑在世界各地得到了迅猛发展。平面结构从技术经济方面讲,很难跨越很大的空间,也很难满足建筑平面、空间和造型方面的要求。解决大跨度建筑结构最具有竞争性的结构就是空间结构,即在荷载作用下,具有三维受力特性并呈空间工作地结构。网壳结构作为空间网格结构的优秀代表,在过去半个多世纪得到了快速发展和广泛应用。它构造简单、轻型化、受力合理、造型优美等优点,深受建筑与结构工作人员的喜爱。 网壳结构是一种与平板网架类似的空间杆系结构,系以杆件为基础,按一定规律组成网格,按壳体结构布置的空间构架,它兼具杆系和壳体的性质。其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。网壳结构又包括单层网壳结构、预应力网壳结构、板锥网壳结构、肋环型索承网壳结构、单层叉筒网壳结构等。网壳结构除广泛用于工业与民用建筑的屋盖和楼层外,还用于形态新颖、功能各异的特种结构,如:塑像骨架、标志结构、各种用途的整个球面网壳结构、高耸塔架、网架墙体、网架桥梁、装饰网架等。 对于网壳结构,稳定性分析是非常重要的,特别是单层网壳结构。稳定性分析的目的是

张弦梁的结构特点

大跨度张弦梁的结构特点 提要:张弦梁结构是近十余年来发展起来的一种新型大跨结构形式。结构由抗弯刚度较大的刚性构件和高强度的拉索组成,自重较轻,可以跨度很大空间。本文在简要介绍张弦梁结构特征、成形过程和研究现状的基础上,对需要研究的课题提出建议。 关键词:张弦梁,施工控制,结构稳定,振动 一概述 大跨度张弦梁结构(Beam String Structure,简称BSS)是近十余年来快速发展和应用的一种新型大跨空间结构形式。结构由刚度较大的抗弯构件(又称刚性构件,通常为梁、拱或桁架)和高强度的弦(又称柔性构件,通常为索)以及连接两者的撑杆组成;通过对柔性构件施加拉力,使相互连接的构件成为具有整体刚度的结构,如图1所示。由于综合应用了刚性构件抗弯刚度高和柔性构件抗拉强度高的优点,张弦梁结构可以做到结构自重相对较轻,体系的刚度和形状稳定性相对较大,因而可以跨越很大的空间。一般说来,尽管张弦梁的梁、拱和桁架截面可为空间形状,但结构的整体仍表现为平面受力结构。同时,张弦梁的组合亦可构成空间受力结构,如1991年日本建造的天城穹顶就是以张弦梁为基本受力单元组合成的空间穹顶结构 (1) 。 张弦梁结构已经应用于若干实际工程中。二十世纪九十年代,在日本建造了诸如Green Dome Maebashi,Ogasayama Dome,Urayasu Municipal Sports Hall 等十几座类型各异的以张弦梁为主要受力结构的场馆,其中Green Dome Maebashi的平面尺寸达167×122m (2) 。1997年建成的上海浦东国际机场候机

楼是我国首次将张弦梁结构应用于超大跨空间结构中,其最大跨度达82.6m (3) ;目前在建的广州国际会展中心也在屋盖体系中采用张弦梁结构,其最大跨度达126.5m;拟建的深圳会展中心,其张弦梁结构跨度也将达124m。张弦梁结构在我国的研究和应用尚处于初级阶段,本文拟简单介绍张弦梁结构的结构特征、成形过程和若干理论问题的研究现状,并在此基础上对需要进一步研究的课题提出建议。 二张弦梁的结构特征 张弦梁结构的整体刚度贡献来自抗弯构件截面和与拉索构成的几何形体两个方面,是种介于刚性结构和柔性结构之间的半刚性结构 (4) ,这种结构具有以下特征: ⑴承载能力高 张弦梁结构中索内施加的预应力可以控制刚性构件的弯矩大小和分布。例如,当刚性构件为梁时,在梁跨中设一撑杆,撑杆下端与梁的两端均与索连接,如图2(a)所示。在均布荷载作用下,单纯梁内弯矩见图2(b); 在索内施加预应

张弦梁结构的发展及应用

张弦梁结构是近十余年来发展起来的一种新型大跨结构形式。结构由抗弯刚度较大的刚性构件和高强度的拉索组成,自重较轻,可以跨度很大空间。本文在简要介绍张弦梁结构特征、成形过程和在福州火车南站无柱站台雨棚中的应用。 关键词:张弦梁;施工控制;结构稳定;无柱雨棚 张弦梁结构的发展及应用

以福州火车南站站台雨棚为例 一、张弦梁结构特征 张弦梁结构的整体刚度贡献来自抗弯构件截面和与拉索构成的几何形体两个方面,是种介于刚性结构和柔性结构之间的半刚性结构,这种结构具有以下特征:(一)承载能力高 张弦梁结构中索内施加的预应力可以控制刚性构件的弯矩大小和分布。例如,当刚性构件为梁时,在梁跨中设一撑杆,撑杆下端与梁的两端均与索连接,在梁内引起负弯矩。当预应力使梁的跨中弯矩也达到时,张弦梁结构中梁的最大弯矩最终只有单纯梁时最大弯矩的1/4。同时,调整撑杆沿跨度方向的布置,还可以控制梁沿跨度方向内力的变化,使各个截面受力趋于均匀。而且由于刚性构件与绷紧的索连在一起,限制了整体失稳,构件强度可得到充分利用。 (二)使用荷载作用下的结构变形小 张弦梁结构中的刚性构件与索形成整体刚度后,这一空间受力结构的刚度就远远大于单纯刚性构件的刚度,在同样的使用荷载作用下,张弦梁结构的变形比单纯刚性构件小得多。 (三)自平衡功能 当刚性构件为拱时,将在支座处产生很大的水平推力。索的引入可以平衡侧向力,从而减少对下部结构抗侧性能的要求,并使支座受力明确,易于设计与制作。 (四)结构稳定性强 张弦梁结构在保证充分发挥索的抗拉性能的同时,由于引进了具有抗压和抗弯能力的刚性构件而使体系的刚度和形状稳定性大为增强。同时,若适当调整索、撑杆和刚性构件的相对位置,可保证张弦梁结构整体稳定性。 (五)建筑造型适应性强 张弦梁结构中刚性构件的外形可以根据建筑功能和美观要求进行自由选择,而结构的受力特性不会受到影响。例如浦东国际机场屋盖上弦是焊接钢管组成的截面,结构外形如振翅欲飞的鲲鹏;广州国际会展中心屋盖上弦是空间桁架,结构外形如游曳的鱼。张弦梁结构的建筑造型和结构布置能够完美结合,使之适用于各种功能的大跨空间结构。 (六)制作、运输、施工方便 与网壳、网架等空间结构相比,张弦梁结构的构件和节点的种类、数量大大减少,这将极大地方便该类结构的制作、运输和施工。此外,通过控制钢索的张拉力还可以消除部分施工误差,提高施工质量。 二、工程概况 福州火车南站无站台柱雨棚面积78553平方米,分成3个区域,其中南北雨棚共有90根梁,地铁区高架通道有24根,每根钢梁分别有4个拉索撑杆。由于轨道呈非对称排列,163米的跨度分别由3根梁组成。福州火车南站雨棚采用张弦梁结构,张弦梁结构最早是由日本大学M.Saitoh教授提出,是一种区别于传统结构的新型杂交屋盖体系。大跨度张弦梁结构(Beam String Structure,简称BSS)是近十余年来快速发展和应用的一种新型大跨空间结构形式。结构由刚度较大的抗弯构件(又称刚性构件,通常为梁、拱或桁架)和高强度的弦(又称柔性构件,通常为索)以及连接两者的撑杆组成;通过对柔性构件施加拉力,使相互连接的构件成为具有整体刚度的结构。由于综合应用了刚性构件抗弯刚度高和柔性构件抗拉强度高的优点,张弦梁结构可以做到结构自重相对较轻,体系的刚度和形状稳定性相对较大,因而可以跨越很大的空间。从受力来看,由于张弦梁结构的下弦索预应力作用,有向径向作用力,这个力通

组合结构

高等混凝土结构 王吉忠 电话:84708275(O) E-mail: wang_jizhong@https://www.doczj.com/doc/0a2196947.html, 办公室:综合实验楼522 第八章钢-混凝土组合结构 8.1 钢-混凝土组合梁 混凝土板和钢梁的楼盖结构中。 如果在钢梁上翼缘设置足够的剪力连接件并伸入混凝土板,阻止板和钢梁之间的相对滑移,使它们的弯曲变形协调,形成整体共同承担外荷载的作用,这种梁称为组合梁。 混凝土板 滑移错动 钢梁

8.1.2 钢-混凝土组合梁的优点 (1)节约钢材 (2)混凝土板参加梁的工作,使截面高度增大(3)增强了钢梁的侧向刚度 (4)可以利用钢梁的刚度和承载力 (5)抗火与抗震性能更好 (6)托架与牛腿 8.1.3 钢—混凝土组合梁的形成 (1)工字钢 (2)箱形钢梁 (3)轻钢桁架梁及普通钢桁架梁等

8.2 钢与混凝土的共同工作 8.2.1 叠合梁和组合梁 采用剪力件连接形成组合梁后,其强度和刚度比叠合梁显著增大。 8.2.2 掀起作用 组合梁中,这种上下层分离的趋势称为掀起作用。 8.2.3 剪力连接件 (1)栓钉连接件 (2)槽钢连接件 (3)方钢连接件 (4)T 形钢连接件T形钢0.50.60.4 0.2 极限剪力 1.00.8剪力 2.0滑移(mm)1.0 1.5 2.5 槽钢栓钉

弯筋连接件

8.3 组合梁的承载力计算 8.3.1 钢-混凝土组合梁的受力性能 组合梁从受力到破坏,可分为弹性、弹塑性和塑性三个阶段。 8.3.2 计算方法及计算假定 早期钢-混凝土组合梁的设计,一直沿用弹性理论为基础的容许应力计算方法。 按塑性理论计算组合梁的计算假定如下: (1)混凝土板与钢梁为完全剪力连接组合; (2)塑性中和轴以上的混凝土达到抗压设计强度; (3)忽略塑性中和轴以下混凝土的抗拉强度; (4)塑性中和轴以下钢截面的拉应力和塑性中和轴以上钢截面的压应 力分别达到0.9f sy ;f sy 为钢材强度设计值,0.9是按塑性设计时钢材强度 折减系数。 1c f

预应力混凝土结构基本构件习题答案

第10章预应力混凝土构件 10.1选择题 5. 其他条件相同时,预 应力混凝土构件的延性比普通混凝土构件的延性 A. 相同; B. 大些; C. 小些; D. 大很多; 6.全预应力混凝土构件在使用条件下,构件截面混凝土( A. C20 ; B. C30 ; C. C35 ; D. C40 ; 预应力混凝土先张法构件中, 混凝土预压前第一批预应力损失 1应为( A. 11 12 ; B. 11 12 13 ; C. 11 12 13 14 ; D. 11 12 13 14 15 ; 下列哪种方法可以减少预应力直线钢筋由于锚具变形和钢筋内缩引起的预应力损失 11 ( C )° A. 两次升温法; B. 采用超张拉; C. 增加台座长度; D. 采用两端张拉; )° B C 3. 2. ( C 1 .《混凝土结构设计规范》规定, ( 预应力混凝土构件的混凝土强度等级不应低于 4. 对于钢筋应力松弛引起的预应力的损失,下面说法错误的是: A. B. C. D. 应力松弛与时间有关系; 应力松弛与钢筋品种有关系; 应力松弛与张拉控制应力的大小有关,张拉控制应力越大,松弛越小; 进 行超张拉可以减少,应力松弛引起的预应力损失; A. 不出现拉应力; B. 允许出现拉应力; C. 不出现压应力; D. 允许出现压应力; 7.《混凝土结构设计规范》规定, 当采用钢绞线、钢丝、热处理钢筋做预应力钢筋时, D 混凝土强度等级不应低于(

10 ?先张法预应力混凝土构件,预应力总损失值不应小于( 9 11 ?后张法预应力混凝土构件,预应力总损失值不应小于( 80N/mm ) 12. 预应力轴心受拉构件, 加载至混凝 土预应力被抵消时, ( A )。 A . PC A ; B . PC A 0 ; C . PC A n ; D . PC A n ; 10.2判断题 1 ?在浇灌混凝土之前张拉钢筋的方法称为先张法。 ( v ) 2.预应力混凝土结构可以避免构件裂缝的过早出现。 ( V ) A. C20 ; B. C30 ; C. C35 ; D. C40 ; &《规范》规定, 应小于( B 预应力钢筋的张拉控制应力不宜超过规定的张拉控制应力限值 )° A . 0.3f Ptk ; B . 0.4 f ptk ; C . 0.5 f ptk ; D . 0.6 f ptk ; 9.预应力混凝土后张法构件中, 混凝土预压前第一批预应力损失 l 应为( A. 11 l2 ; B. 11 l2 l3 ; C. 11 l2 l3 l4 ; D. 11 l2 l3 l4 l5 ; ,且不 2 100N /mm )。 此时外荷载产生的轴向力为

利用MIDAS软件仿真模拟大跨度预应力张弦梁安装

利用MIDAS软件仿真模拟大跨度预应力张弦梁安装 发表时间:2019-01-14T15:11:47.610Z 来源:《建筑学研究前沿》2018年第31期作者:姚辉姜体标于新涛赵鹏飞[导读] 文章结合实际案例阐述了利用MIDAS软件建立空间三维模型,在施工前仿真模拟大跨度预应力张弦梁结构受力,分析施工过程张弦梁应力状态,验证施工方案的可行性,指导过程施工。 中国建筑第八工程局西北分公司陕西西安 710000 摘要:文章结合实际案例阐述了利用MIDAS软件建立空间三维模型,在施工前仿真模拟大跨度预应力张弦梁结构受力,分析施工过程张弦梁应力状态,验证施工方案的可行性,指导过程施工。 关键词:仿真模拟;MIDAS;大跨度;预应力;张弦梁 1 工程概况及设计参数 1.1工程概况 榆林榆阳机场二期扩建工程旅客航站楼等工程建筑面积4.25万平米,航站楼(主楼)楼长172.2米,宽93.2米,屋盖高28米,结构为钢框架+混凝土框架+预应力张弦梁结构屋盖。其中屋盖单榀钢结构桁架跨度为60米,共15跨,每跨间隔12m。桁架型钢截面形式主要为□1300(400)×400×36、拉锁采用PIP180×12、PIP500(300)×25、PIP600×25。 图1 张弦梁结构屋盖 1.2设计参数 结构形式:分叉柱支承体系+预应力张弦梁结构屋盖; 主体结构:局部地下室1层,地上2层,2层高度7.35m,砼强度C35,最大屋盖标高约28m; 支承体系:整个主楼屋盖由30个树形柱和15个V形柱支承; 屋盖结构:主楼屋盖由16榀张弦梁、水平撑杆、钢梁及檩条等构件组成; 关键尺寸:分叉柱柱距12.0m,张弦梁跨度48.5m,最大悬挑8.8m; 2 钢结构吊装整体思路: 根据现场施工安排,航站楼钢结构中间分段采用50吨汽车吊上二层楼板吊装,两端分段采用1台150吨和1台80吨汽车吊在东西两侧吊装,预应力拉索在弦杆、吊杆安装完成后后张拉施工,在主体结构二层楼面布置三条汽车吊吊装行走路线,该路线范围及相邻跨楼板下部脚手架保留至屋盖构件吊装完成。在场外沿结构外西侧和东侧布置两条施工道路,满足材料运输。单榀桁架共分为9个单元件,进行现场高空拼接。 3 利用MIDAS软件仿真模拟 3.1 吊装机械在楼板上的承载力分析 图3 MIDAS软件分析楼板受力状态 本工程中,50t汽车吊在F2层楼面进行树形柱和屋盖结构的吊装作业,混凝土楼板厚度130mm,钢筋强度为HRB400,注量尺寸为500mm×1000mm,次梁尺寸为300mm×700mm。吊车质量41000kg,吊装时最大吊重为15100kg(考虑吊钩吊绳),吊装半径为6m。后轮轮压作用面积0.2409㎡,前轮轮压作用面积0.1419 ㎡。在MIDAS软件中建立模型进行分析,如下图:通过软件计算分析,50吨汽车吊工作状态,支腿直接或通过转换梁落在混凝土梁上,混凝土梁承载力满足要求。 3.2 拉索施加预应力仿真计算模拟分析 根据设计图纸建立Midas有限元计算模型,按照设计提出的累积加载法,进行预应力施加过程计算。具体计算边界及其它条件如下:①支座约束形式按照设计图纸及设计要求进行建立;②计算过程中使用累积加载方法进行施工过程计算分析:采用软件自带施工阶段分析,每步计算过程都是在前一步计算基础上进行的,即每步都考虑了前一步计算的影响;③计算模型跟实际情况相同,在拉索两张拉端施加初张力,计算模型考虑节点摩擦等预应力损失(按照2%预应力损失)。分析模型如下:

网壳结构

网壳结构具体案例分析——国家大剧院 姓名:宋建宇班级:2011级5班学号201101020530 摘要:网壳结构即为网状的壳体结构,或者说是曲面状的网架结构。其外形为壳,其形成网格状,是格构化的壳体,也是壳形的网架。它是以杆件为基础,按一定规律组成网格,按壳体坐标进行布置的空间构架,兼具杆系结构和壳体结构的性质,属于杆系类空间结构。与平面网架不同,它的承载力特点为沿确定的曲面薄膜传力,作用力主要通过壳面内两个方向的拉力或压力以及剪力传递。网壳结构兼有薄壳结构和平板网架结构的优点,是一种很有竞争力的大跨度空间结构。关键字:壳体结构、优缺点、未来展望 正文: 国家大剧院外部为钢结构壳体呈半椭球形,平面投影东西方向长轴长度为212.20米,南北方向短轴长度为143.64米,建筑物高度为46.285米,比人民大会堂略低3.32米,基础最深部分达到-32.5米,有10层楼那么高。国家大剧院壳体由18000多块钛金属板拼接而成,面积超过30000平方米,18000多块钛金属板中,只有4块形状完全一样。钛金属板经过特殊氧化处理,其表面金属光泽极具质感,且15年不变颜色。中部为渐开式玻璃幕墙,由1200多块超白玻璃巧妙拼接而成。椭球壳体外环绕人工湖,湖面面积达3.55万平方米,各种通道和入口都设在水面下。 国家大剧院是空间双层网壳结构,这一结构更完整,更纯粹。”大剧院的壳体钢结构总重6750吨,网壳面积3.5万平方米,没有一根立柱支撑,全靠148榀弧型钢梁承重。虽然这一壳体的高、重、大为中华第一,但它同时也是大跨度空间结构中单位用钢量最少的,每平方米不到200公斤,仅为卢浮宫钢结构每平方米用钢的三分之一。如此“轻便”的穹顶大大减少了承重钢梁的压力,建筑物的安全系数将会很高。另外,考虑到风、雪、地震等自然因素,壳体钢结构还体现了柔性设计理念。钢梁接触地面的一端允许相应滑动,整个结构的最大变形度大约为20厘米。 国家大剧院主体建筑钢结构椭球体壳体(以下简称:壳体)为一超大空间壳体,东西长约212m,南北约144m,高约46m。整个钢壳体由顶环梁、梁架构成骨架;梁架之间由连杆、斜撑连接。顶环梁通长采用ф1117.6-25.4THK钢管,中间矩形框采用矩形箱型梁。整个顶环梁长约60m,宽约38m。顶环梁半圆区内搁栅呈放射状分布;矩形框内南北向搁栅采用60m钢板梁,东西向采用ф194钢管,搁栅呈网格状分布。整个顶环梁总重约7O0t。 梁架分为A类(短轴梁架)、B(长轴梁架);A类梁架采用60mm厚钢板制作,B 类梁架采用上下翼缘不等的焊接H型钢。A类梁架共46榀,B类梁架共102榀。斜撑及连杆均采用钢管;短轴梁架之间连杆节点采用铸钢节点连接,长轴梁架连杆采用钢套筒连接。 国家大剧院的结构特点如下: (l)该壳体为一超大型空间结构,结构体量大。整个结构待壳体完全形成后,方为稳定的空间结构,所以保证施工阶段的结构稳定至关重要; (2)该壳体为非正椭圆球体,且壳体内外两球面的椭圆方程并不一样,因而施工中平面、空间定位测量的难度颇大; (3)壳体的主要结构体—梁架(尤其是短轴梁架,侧向厚度仅为60mm)平面外刚度极差,因而构件的起扳、搬运、起吊难度颇大;

一个张弦梁工程实例的探讨

一个张弦梁工程实例的探讨 摘要 张弦梁结构最早是一种区别于传统结构的新型杂交屋盖体系,按其结构形式可将其分为平面张弦梁结构和空间张弦梁结构。本文所涉及的结构即为平面张弦梁结构的张拉拱形式,本文通过对现场的工程实例中出现的实际问题及其分析、解决办法进行介绍,并分别从设计和施工两个角度分别对结构形式、钢拉杆张拉方案等设计本身及施工中实际遇到的问题进行剖析,从理论上提出了解决办法及其理论依据,并通过实践使解决办法得到了验证。 关键词:张弦梁张拉拱钢拉杆张拉 一、工程实例 1.1工程概况 北京某地铁线高架站站房屋架设计采用平面张弦梁张拉拱形式,上拱梁采用φ299×12mm钢管,材质为Q345B,张拉段梁长度为11.3m;柔性拉索采用Q650B 材质的φ40mm的钢棒拉杆,拉杆上端通过耳板与横梁下连接板销钉连接,下端通过耳板与竖向撑杆下端销钉连接,连接采用直径Φ40mm销钉;竖向撑杆上端设计亦采用Φ40mm销钉和拱梁连接,竖向撑杆为1根主杆为Φ83×7mm的钢管,各榀梁在横梁顶部沿屋架纵向用Φ102×5mm钢管系杆连接系杆横向间距4m。 设计施工图明确张弦梁初始态的上弦失高为34mm,拉索(杆)张拉力为124KN;拉杆的张拉采用旋拧拉杆两端的六角螺母施加预应力而进行。 工程实体照片及构件位置关系 1.2施工深化方案及产生问题 1.2.1施工深化方案 施工单位对设计图纸进行审图和深化设计,确定采用把张弦梁各组成部分采用散件吊装,进行高空拼接最后张拉的方案。因此,为了钢结构施工高空安装方便,深化设计时,竖向撑杆和拱梁销钉连接处的连接板间游隙预留为5mm;张拉杆采用厂制成品钢拉杆,按照设计拉杆尺寸定制专用张拉螺母,螺母设计按照螺纹沿杆轴方向承压600KN以上设计。 施工单位对横梁深化设计时,考虑结构自重、设计张拉力及初始态上拱值,使用结构软件利用反迭代法进行零状态的计算,确定放样状态。张拉钢拉杆预拉力采用扭矩—拉力转换的方式确定,利用经验公式扭矩T = KPd,系数K值由经

相关主题
文本预览
相关文档 最新文档