当前位置:文档之家› 第五节 多自由度体系的水平地震作用

第五节 多自由度体系的水平地震作用

第五节   多自由度体系的水平地震作用
第五节   多自由度体系的水平地震作用

第五节 多自由度体系的水平地震作用

一、振型分解反应谱法

多质点弹性体系地震反应同单质点弹性体系一样,可以通过运动方程的建立和求解来实现。

假定建筑结构是线弹性的多自由度体系,利用振型分解和振型正交性原理,将求解n 个多自由度弹性体系的地震反应分析分解成n 个独立等效的单自由度体系的最大地震反应,分别利用标准反应谱,求得结构j 振型下,质点i 的F ,再按一般力学方法,求j 振型水平地震作用产生的作用效应(弯矩、剪力、轴力和变形),最后,按一定法则将各振型的作用效应进行组合,(但应注意,这种振型间作用效应的组合,并非简单的求代数和。)便可确定多自由度体系在水平地震作用下产生的作用效应。由于各个振型在总的地震效应中的贡献总是以自振周期最长的基本振型(第一振型)为最大,高振型的贡献随振型阶数增高而迅速减小。实际上,即使体系的自由度再多,也只计算对结构反应起控制作用的前k 个振型就够了,一般需考虑的振型个数k=2—3,即取前2—3个振型的地震作用效应进行组合,就可以得到精度很高的近似值,从而大胆减少计算工作量。

1、振型的最大地震作用

第j 振型I 质点最大地震作用

i ji j j ji G X F γα=

式中: j α —— 相应于第j 振型自振周期T 的地震影响系数

j γ —— j 振型的振型参与系数

∑∑===n i ji

i

n i ji

i j X m X m 121γ ji X —— j 振型i 质点的水平相对位移——振型位移

i G —— 集中于i 质点的重力荷载代表值

上述方法繁琐,工作量大,计算不方便,因此工程中为了简化计算,在满足一定条件下,可采用近似的计算法,即底部剪力法。

2、振型组合

(1)SRSS (平方和开方法)

∑=2

j S S

(2)CQC (完整二次项组合法)

二、底部剪力法

1、 适用条件:

(1) 高度不超过40m ;

(2) 以剪切变形为主(房屋高宽比小于4)

(3) 质量和刚度沿高度分布比较均匀

(4) 近似于单质点体系

当结构满足上述条件时,结构振动位移反应以基本振型(第一振型)为主,且基本振型接近于直线。先计算出作用于结构的总水平地震作用,也就是底部的剪力,然后将此总水平地震作用按照一定的规律在分配给各个质点。

2、 基本公式:

(1)结构底部剪力(总水平地震作用标准值)EK F

∑∑∑=====n i i

ji j j

i JI J J N I JI J G

G X G G X F V 11110γαααγα

∑==n i i G G 1

结构总水平地震作用EK F

Gq G G X G V F n j n J i ji

j j n j EK j 112

111120αγααα=??

??

??==∑∑∑===

∑∑==??

?? ??=n j n J i ji j j G G X q 12

11γαα1

215.1++=n n q 85

.0=q eq EK G F 1α= ∑==n i i eq G G 1

85.0

(2)质点的地震作用(质点水平地震作用标准值)

i i i i i i i i G H G X F F ηγαγα1111==≈ ① i

i

H X 1=η 质点水平相对位移与质点计算高度比例系数

质点计算高度

∑∑∑=====

=n j j j n j j i N J J EK G H G H F F 11111111ηγαηγα ∑==n j j

j EK

G H F 1

11ηγα

② EK n j j

j i

i i F H G H G F ==∑=1

(3)顶层附加水平地震作用标准值

对于基本自振周期较长的多层钢筋混凝土房屋、多层内框架砖房按上述公式分配计算所得的 比振型分解反应谱的计算结果小。为减小这一误差,《规范》采取以下方法进行调整。 ()n EK n j j

j

i i i F H G H G F δ-=∑=11 3.109 EK n n F F δ?=

3.106

式中: —— 按 —T 曲线采用,对于多层砌体房屋、底层框架和多层内框架砖房, —— 顶部附加地震作用系数。

* 对于多层内框架砖房,

* 对于多层钢筋混凝土房屋,按表3.4采用。

* 其他房屋不考虑。

(4)鞭端效应:对于突出屋面的部位,比如屋顶间(电梯机房、水箱间等)、女儿墙、烟囱等,它们的质量和刚度相对而言突然变小,在地震作用下其地震反应随之增大,这种现象,工程称之为“鞭端效应”。

《规范》规定:

* 采用底部剪力法时,采取极大系数的方法进行调整。其值为3,即局部突出屋顶处的地震

作用效应应按计算结果极大至3倍考虑,但增大的部分不应往下传递

(计算以下各层地震时不考虑),但与该突出部分相连的构件应予计

入。

* 采用振型分解法时,突出屋面部分可作为一个质点。

* 对于 的建筑有突出下屋时计算所得的 应置于主体房屋的顶部而不应置于局

部突出小屋的屋顶处。

* 除此之外,其他有关局部位置的剪力和弯矩,也要按有关部门规定予以调整。Ⅱ

第五节 多自由度体系的水平地震作用

第五节 多自由度体系的水平地震作用 一、振型分解反应谱法 多质点弹性体系地震反应同单质点弹性体系一样,可以通过运动方程的建立和求解来实现。 假定建筑结构是线弹性的多自由度体系,利用振型分解和振型正交性原理,将求解n 个多自由度弹性体系的地震反应分析分解成n 个独立等效的单自由度体系的最大地震反应,分别利用标准反应谱,求得结构j 振型下,质点i 的F ,再按一般力学方法,求j 振型水平地震作用产生的作用效应(弯矩、剪力、轴力和变形),最后,按一定法则将各振型的作用效应进行组合,(但应注意,这种振型间作用效应的组合,并非简单的求代数和。)便可确定多自由度体系在水平地震作用下产生的作用效应。由于各个振型在总的地震效应中的贡献总是以自振周期最长的基本振型(第一振型)为最大,高振型的贡献随振型阶数增高而迅速减小。实际上,即使体系的自由度再多,也只计算对结构反应起控制作用的前k 个振型就够了,一般需考虑的振型个数k=2—3,即取前2—3个振型的地震作用效应进行组合,就可以得到精度很高的近似值,从而大胆减少计算工作量。 1、振型的最大地震作用 第j 振型I 质点最大地震作用 i ji j j ji G X F γα= 式中: j α —— 相应于第j 振型自振周期T 的地震影响系数 j γ —— j 振型的振型参与系数 ∑∑===n i ji i n i ji i j X m X m 121γ ji X —— j 振型i 质点的水平相对位移——振型位移 i G —— 集中于i 质点的重力荷载代表值 上述方法繁琐,工作量大,计算不方便,因此工程中为了简化计算,在满足一定条件下,可采用近似的计算法,即底部剪力法。 2、振型组合 (1)SRSS (平方和开方法) ∑=2 j S S (2)CQC (完整二次项组合法) 二、底部剪力法 1、 适用条件: (1) 高度不超过40m ; (2) 以剪切变形为主(房屋高宽比小于4) (3) 质量和刚度沿高度分布比较均匀 (4) 近似于单质点体系

水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于 M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。

newmark法程序法计算多自由度体系的动力响应

用matlab 编程实现Newmark -β法计算多自由度体系的动力响应 用matlab 编程实现Newmark -β法 计算多自由度体系的动力响应 一、Newmark -β法的基本原理 Newmark-β法是一种逐步积分的方法,避免了任何叠加的应用,能很好的适应非线性的反应分析。 Newmark-β法假定: t u u u u t t t t t t ?ββ??]}{}){1[(}{}{+++-+= (1-1) 2]}{}){2 1 [(}{}{}{t u u t u u u t t t t t t ?γγ???+++-++= (1-2) 式中,β和γ是按积分的精度和稳定性要求进行调整的参数。当β=0.5,γ=0.25时,为常平均加速度法,即假定从t 到t +?t 时刻的速度不变,取为常数

)}{}({2 1 t t t u u ?++ 。研究表明,当β≥0.5, γ≥0.25(0.5+β)2时,Newmark-β法是一种无条件稳定的格式。 由式(2-141)和式(2-142)可得到用t t u ?+}{及t u }{,t u }{ ,t u }{ 表示的t t u ?+}{ ,t t u ?+}{ 表达式,即有 t t t t t t t u u t u u t u }){121 (}{1)}{}({1}{2 ----=++γ?γ?γ?? (1-3) t t t t t t t u t u u u t u }{)21(}1()}{}({}{ ?γ β γβ?γβ??-+-+-=++ (1-4) 考虑t +?t 时刻的振动微分方程为: t t t t t t t t R u K u C u M ????++++=++}{}]{[}]{[}]{[ (1-5) 将式(2-143)、式(2-144) 代入(2-145),得到关于u t +?t 的方程 t t t t R u K ??++=}{}]{[ (1-6) 式中 ][][1 ][][2 C t M t K K ?γβ?γ++ = )}{)12(}){1(}{]([)}){121 (}{1}{1]( [}{}{2 t t t t t t t t u t u u t C u u t u t M R R ?γ β γβ?γβγ?γ?γ?-+-++-+++=+ 求解式(2-146)可得t t u ?+}{,然后由式(2-143)和式(2-144)可解出t t u ?+}{ 和t t u ?+}{ 。 由此,Newmark-β法的计算步骤如下: 1.初始计算: (1)形成刚度矩阵[K ]、质量矩阵[M ]和阻尼矩阵[C ]; (2)给定初始值0}{u , 0}{u 和0}{u ; (3)选择积分步长?t 、参数β、γ,并计算积分常数 2 01t ?γα=,t ?γβ α=1,t ?γα12=,1213 -=γα, 14-= γβα,)2(25-=γ β ?αt ,)1(6β?α-=t ,t ?βα=7; (4)形成有效刚度矩阵][][][][10C M K K αα++=; 2.对每个时间步的计算:

5.6荷载效应和地震作用组合的效应

〈〈高层建筑混凝土结构技术规程》 5. 6荷载效应和地震作用组合的效应 5. 6荷载效应和地震作用组合的效应 5.6.1 持久设计状况和短暂设计状况下,当荷载与荷载效应按线形关系考虑时,荷载基本组合的效应设计值应按下式确定: S =Y G&k +Y L Q Y Q&k w Y w S wk ( 5.6.1 ) 式中:S――荷载组合的效应设计值;Y G永久荷载分项系数;Y Q――楼面活荷载分项系数; Y w――风荷载的分项系数;Y L――考虑结构设计使用年限的荷载调整系数,设计使用年限为50年时取1.0,设计使 用年限为100年时取1.1 ;S3k 永久荷载效应标准值;S Qk 楼面活荷载效应标准值; S-――风荷载效应标准值;》Q、》w――分别为楼面活荷载组合值系数和风荷载组合值系数,当永久荷载效应起控制作用时应分别取0.7和0.0 ;当可变荷载效应起控制作用时应分别取 1.0和0.6或0.7和1.0。 注:对书库、档案室、储藏室、通风机房和电梯机房,本条楼面活荷载组合值系数取0.7的场合应取为0.9。 5.6.2 持久设计状况和短暂设计状况下,荷载基本组合的分项系数应按下列规定采用: 1永久荷载的分项系数Y G当其效应对结构承载力不利时,对由可变荷载效应控制的组合应取 1.2,对由永久荷载控 制的组合应取1.35 ;当其效应对结构有利时,应取 1.0 ; 2楼面活荷载的分项系数Y Q:—般情况下应取1.4 ; 3风荷载的分项系数Y w应取1.4。 2位移计算时,本规程公式(5.6.1 )中个分项系数均应取1.0。 5.6.3 地震设计状况下,当作用与作用效应按线形关系考虑时,荷载和短暂作用基本组合的的效应设计值应按下式确定: S d S=Y °&E + Y Eh Shk + Y Ev Svk +书w Y Sk (5.6.3 ) 式中:S――荷载和地震作用组合的效应设计值;S GE――重力荷载代表值的效应; S Ehk――水平地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; S Evk ――竖向地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; Y G――重力荷载分项系数;Y w――风荷载分项系数;Y Eh――水平地震作用分项系数;Y E ------------- 竖向地震作用分项系数; 屮w――风荷载组合值系数,应取0.2。 5.6.4 地震设计状况下,荷载和地震作用基本组合的分项系数应按表 5.6.4 采用。当重力荷载效应对结构的承载力有利时, 表5.6.4 中Y G不应大于1.0。 2 "―"表示组合中不考虑该项荷载或作用效应。 5.6.5 非抗震设计时,应按本规程第5.6.1 条的规定进行荷载组合的效应计算。抗震设计时,应同时按本规程第 5.6.1条 和5.6.3 条的规定进行荷载和地震作用的效应计算;按本规程第 5.6.3 条计算的组合内力设计值,尚应按本规程的有关规定 进行调整。

单质点,多质点体系地震作用处理方法的异同

单质点,多质点体系地震作用处理方法的异同 刘十一050880,易坤涛050881,王超维050882,刘超050883 地壳板块在地幔热对流作用下发生缓慢漂移,由于板块之间的碰撞和积压,地壳内部的应力不断累积。当应力到达一定程度时,就会发生断裂,形成地震。我国处在环太平洋地震带和喜马拉雅地震带的交汇处,为地震多发国家。建筑抗震研究在我国有重要实际意义。 地震波分为体波和面波。体波在地球内部传播,分为横波(S )和纵波(P )两种。纵波为压缩波,传播速度与拉伸弹性模量有关,对地表建筑的作用主要是垂直方向。横波为剪切波,传播与剪切弹性模量有关,对地表建筑作用主要是水平方向。面波是在体表传播,由体波的折射、反射后形成的,对建筑影响既有水平方向,又有垂直方向。因此,建筑物受到的地震作用既有水平方向,又有竖直方向的。由于建筑在竖直方向刚度较大,而水平方向刚度较小,容易在水平方向发生震动的放大,所以主要考虑水平方向的震动响应。由于线弹性体震动可以叠加,只要考虑了一个方向的水平震动。 求地震作用时,通常将建筑物简化为单质点或多质点体系。 单质点体系,质点受到三个力的作用: 1. 惯性力:()I g f m x x ''''=-+ 2. 阻尼力:c f cx '=- 3. 恢复力:k f kx =- 4. 由质点受力平衡得:0I c k f f f ++= => g mx cx kx mx '''''++=- 其中m 、c 、k 、x g 、x 分别为质量,阻尼,体系刚度,地面位移和质点相对地面的位移。 令ω=2c m ωξ= 则上式子转化为 22g x x x x ωξω'''''++=- 加上初始条件(x(0)=0,x ’(0)=0)可得到 ()01()()sin[()]t t g D D x t x e t d ξωτττωτω--''=--?;ω=D 其中ω为无阻尼体系自由振动频率,ξ称为阻尼比,一般工程结构中ξ值较小,在0.101~0.1,ωd 为有阻尼时体系自由振动圆频率,一般ω≈ωd. 将位移反应对时间求一阶和二阶导数,并且ξ值很小,可得体系地震速度反应和地震加速度反应: ()0 ()()cos[()]t t g D x t x e t d ξωτττωτ--'''=--? ()0()()()sin[()]t t g D g D x t x t x e t d ξωττωτωτ--''''''+=-? 单自由度体系再地震作用下的振动是最简单的情况,但是由于实际工程中建筑物质量是非集中的,非集中倒一点,也不会只有一个自由度。为了计算,同时要满足一定的精度要求,

5.6荷载效应和地震作用组合的效应

《高层建筑混凝土结构技术规程》5.6荷载效应和地震作用组合的效应 5.6荷载效应和地震作用组合的效应 5.6.1持久设计状况和短暂设计状况下,当荷载与荷载效应按线形关系考虑时,荷载基本组合的效应设计值应按下式确定: S d=γG S Gk+γLψQγQ S Qk+ψwγw S wk(5.6.1) 式中:S d——荷载组合的效应设计值;γG——永久荷载分项系数;γQ——楼面活荷载分项系数; γw——风荷载的分项系数;γL——考虑结构设计使用年限的荷载调整系数,设计使用年限为 50 年时取 1.0,设计使用年限为 100 年时取 1.1;S Gk——永久荷载效应标准值;S Qk——楼面活荷载效应标准值; S wk——风荷载效应标准值;ψQ、ψw——分别为楼面活荷载组合值系数和风荷载组合值系数,当永久荷载效应起控制作用时应分别取 0.7 和 0.0;当可变荷载效应起控制作用时应分别取 1.0 和 0.6 或 0.7 和 1.0。 注:对书库、档案室、储藏室、通风机房和电梯机房,本条楼面活荷载组合值系数取 0.7 的场合应取为 0.9。 5.6.2持久设计状况和短暂设计状况下,荷载基本组合的分项系数应按下列规定采用: 1永久荷载的分项系数γG:当其效应对结构承载力不利时,对由可变荷载效应控制的组合应取 1.2,对由永久荷载控制的组合应取 1.35;当其效应对结构有利时,应取 1.0; 2楼面活荷载的分项系数γQ:一般情况下应取 1.4; 3风荷载的分项系数γw应取 1.4。 2位移计算时,本规程公式(5.6.1)中个分项系数均应取 1.0。 5.6.3地震设计状况下,当作用与作用效应按线形关系考虑时,荷载和短暂作用基本组合的的效应设计值应按下式确定: S d S=γG S GE+γEh S Ehk+γEv S Evk+ψwγw S wk(5.6.3) 式中:S d——荷载和地震作用组合的效应设计值;S GE——重力荷载代表值的效应; S Ehk——水平地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; S Evk——竖向地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; γG——重力荷载分项系数;γw——风荷载分项系数;γEh——水平地震作用分项系数;γEv——竖向地震作用分项系数;ψw——风荷载组合值系数,应取 0.2。 5.6.4地震设计状况下,荷载和地震作用基本组合的分项系数应按表 5.6.4 采用。当重力荷载效应对结构的承载力有利时,表 5.6.4 中γG不应大于 1.0。 表 5.6.4A级高度钢筋混凝土高层建筑的最大适用高度(m) 注:1g 为重力加速度; 2"—"表示组合中不考虑该项荷载或作用效应。 5.6.5非抗震设计时,应按本规程第 5.6.1 条的规定进行荷载组合的效应计算。抗震设计时,应同时按本规程第 5.6.1 条和 5.6.3 条的规定进行荷载和地震作用的效应计算;按本规程第 5.6.3 条计算的组合内力设计值,尚应按本规程的有关规定进行调整。 1 / 1

第4章 多自由度系统的振动题解

习 题 4-1 在题3-10中,设m 1=m 2=m ,l 1=l 2=l ,k 1=k 2=0,求系统的固有频率和主振型。 解:由题3-10的结果 22121111)(l g m l g m m k k +++ =,2 221l g m k -=,2212l g m k - =,2 2222l g m k k += 代入m m m ==21,021==k k ,l l l ==21 可求出刚度矩阵K 和质量矩阵M ??? ???=m m M 00;?? ?? ??????- - =l mg l mg l mg l mg K 3 由频率方程02=-M p K ,得 0322 =????? ??? ? ?-- - -=mp l mg l mg l mg mp l mg B 0242 2 2224 2 =+-∴l g m p l g m p m l g p ) 22(1-=∴ ,l g p )22(2+= 为求系统主振型,先求出adjB 的第一列 ???? ? ? ? ???-=l mg mp l mg adjB 2 分别将频率值21p p 和代入,得系统的主振型矩阵为 ??????-=112) 1(A ?? ????+=112)2(A 题4-1图

4-2 题4-2图所示的均匀刚性杆质量为m 1,求系统的频率方程。 解:设杆的转角θ和物块位移x 为广义坐标。利用刚度影响系数法求刚度矩阵k 。 设0,1==x θ,画出受力图,并施加物体力偶与力 2111,k k ,由平衡条件得到, 222111a k b k k +=, a k k 221-= 设1,0==x θ,画出受力图,并施加物体力偶与力2212,k k ,由平衡条件得到, 12k a k 2-=, a k k 222= 得作用力方程为 ?? ? ???=??????????? ?--++????????????? ?00003122222 2122 1x a k a k a k a k b k x m a m θθ 由频率方程02=-M K p ,得 031 2 22222 212221=----+p m a k a k a k p a m a k b k 4-3 题4-3图所示的系统中,两根长度为l 的均匀刚性杆的质量为m 1及m 2,求系统的刚度矩阵和柔度矩阵,并求出当m 1=m 2=m 和 k 1=k 2=k 时系统的固有频率。 解:如图取21,θθ为广义坐标,分别画受力图。由动量矩定理得到, l l k l l k I 4 34343432 11111θθθ+-= 2 2434343432 2211122l l k l l k l l k I θθθθ--= 整理得到, 016 91692 2112111=-+θθθl k l k I 题4-3图 题4-2图

荷载及荷载效应组合和地震作用

荷载及荷载效应组合和地震作用 乙、荷载及荷载效应组合和地震作用 2荷载及荷载效应组合和地震作用 2.1楼、屋面荷载取值 2.1.1高层建筑和公共建筑的走廊、门厅、楼梯楼面均布活荷载标准值取2.5kN/m2,不符合《荷载规范》第4.1.l条和表4.l.l项11(3)的要求。 改进措施:《荷载规范》GB 50009局部修订第4.1.l条表4.1.1项次11(3)中规定:其他民用建筑及当人流可能密集时,其走廊、楼梯,门厅楼面均布活荷载取3.5kN/m2。因此对高层建筑和公共建筑的走廊、门厅、楼梯的楼面均布活荷载标准值取 2.5kN/m2不正确,应取3.5kN/m2。 2.1.2在楼板设计时漏算固定隔墙自重产生的荷载效应。 改进措施:《荷载规范》GB 50009第4.1.1条表4.1.l的注5规定,对固定隔墙的自重应按恒荷载考虑。因此在楼板设计时必须考虑固定隔墙自重产生的荷载效应,否则该设计属不正确。 2.1.3设计框架结构的楼板时,未考虑可灵活自由布置的非固定隔墙荷载。 改进措施:框架结构的优点是便于根据房间的不同用途进行分隔,设置灵活自由非固定的隔墙,因而在设计楼板时,应考虑房屋在使用过程中设置这类隔墙的可能性。为此应按《荷载规范》GB 50009第4.1.1条表4.1.1的注5规定,对这类隔墙应取每延米墙重(kN/m)的1/3作为楼面活荷载标准值的附加值(kN/m2)计入楼面设计荷载内,并将此附加值在结构设计说明书中注明,以便今后使用。 未考虑这类隔墙荷载将降低该房屋适应变更房间分隔的能力。 2.1.4屋面板设计时对保温层或找坡层荷载取值偏小。 改进措施:对保温层或找坡层荷载取值偏小情况,经常发生在设计人员疏忽大意或校审人员校审不严时,因而应加强设计管理工作,增强设计人员和校审人员的工作责任心,防止此类问题发生。 2.1.5高层建筑、裙房以外的首层地下室顶板的设计荷载取值偏小;例如: (1)位于汽车通道下方的板未考虑消防车荷载; (2)未考虑施工过程中由于材料堆放等引起的施工荷载。 改进措施:汽车通道下方的首层地下室顶板应考虑消防车荷载,否则可能会造成不安全。顶板设计时应根据工程的实际情况确定顶板由于消防车产生的荷载。当消防车直接行驶于顶板上时,可直接按《荷载规范》GB 50009表4.1.1第8项的规定取值;当顶板上填有覆土或其他充填物时,应按消防车轮压处于最不利位置并考虑其在土中或充填物内的扩散分布,进行分析计算后确定消防车荷载。 地下室顶板设计时应考虑在施工过程中由于材料堆放等原因引起的施工荷载,此施工荷载应在结构设计说明中注明,以便施工单位控制此荷载,避免发生超载。 2.1.6现浇钢筋混凝土楼板为双向板,其上置放有局部活荷载(非中心位置处),在设计时其活荷载未按等效均布活荷载确定方法进行计算。 改进措施:一般情况(采用有限元方法分析者除外),在设计现浇钢筋混凝土双向板时,作用在板上的楼面局部荷载应进行等效均布荷载的换算。换算时,可按单跨四边简支双向板,使局部荷载产生的板的绝对最大弯矩与满布均布荷载产生的板中心处最大弯矩相等的条件而求得,此满布的均布荷载值即为所换算的等效均布荷载值。由于双向板可求得两个等效均布荷载值,设计时应取其中的较大值。 注:当局部均布荷载位于板中心时(即当a=b,c=d时),即可求得该双向板局部均布荷载最不利布置(板中心处)时换算的等效均布荷载值。其可根据建筑结构静力计算手册查表计算确定。

3多自由度体系主振型的正交性和主振型矩阵

10-6 多自由度体系主振型的正交性和主振型矩阵1. 主振型的正交性 正交的概念:两个向量,其中, ,称为正交;矢量的概念。 正交关系有许多用途,详见线性代数的有关部分。 这里我们讨论主振型的正交性: 以两个自由度体系为例: 功的互等定理(Betti’s law) 即: 故有

上式可推广到一般情况 第一个正交关系为: 或 证明: 由特征方程有 将上式两边分别乘以得

对其中任一式转置并相减得 如果 同理也可推得 (也可直接利用关于质量矩阵得正交性得到。) 对k=L 时,我们定义 M k , K k分别叫做第k个主振型相应得广义质量和广义刚度。 由特征方程有: 即: 由此得: 这就是根据广义刚度Kk和广义质量Mk来求频率Wk的公式。这个公式是单自由度体系频率公式的推广。 正交关系的利用:

判断主振型的形状是否正确; 在振型分解法中的应用。 例17-8讲解重点正交性的验算 2*. 主振型矩阵 如果将n个彼此正交的主振型向量组成一个方阵,即 这个方阵称为主振型矩阵,它的转置矩阵为 根据主振型向量的两个正交关系,可以导出主振型矩阵[Y]的两个性质,即[Y]T[M][Y] 和[Y]T[K][Y] 都应是对角矩阵。下面证明: [Y]T[M][Y]=

上式中的对角线元素就是广义质量M1,M2,……M n, 由正交关系知其余元素均为零,故[Y]T[M][Y]为对角矩阵。即 [Y]T[M][Y]= 对角矩阵[M*]称为广义质量矩阵。 同样可得 其中Ki为广义刚度,对角矩阵[K*]叫做广义刚度矩阵。在后续章节中,我们将利用这一性质将多自由度体系的振动方程变为简单的形式。

地震作用计算

地震作用计算 一、确定计算前提: 烈度:甲类建筑按安评报告且应高于本地设防烈度,乙、丙类按本地设防烈度。(高层适用)方向:两个主轴方向+斜交抗侧力构件方向(斜交角度大于15度) 双向地震:质量刚度明显不对称 (1)从平面形状上判别:平面为L 形,T形等属于平面不规则的结构为明显不对称的结构,位移比无论为何值,均应考虑双向地震作用 (2)位移比大于1.2(或1.3,尚无定论)的结构属平面不规则中的扭转不规则,无论平面形状对称与否,均应考虑双向地震作用。 (3)从竖向形状上判别:大地盘结构为明显的质量及刚度竖向不对称应考虑双向地震作用(4)竖向质量和刚度明显不对称的结构,如上下刚度差别较大,或上下的质量差别较大的结构应考虑双向地震作用。 竖向地震:7度半(高层)、8度、9度的大跨度和长悬臂结构,9度时的高层考虑。 8、9度时的隔震结构 偶然偏心:(高层、单向地震考虑,多层不考虑,双向地震不考虑)

二、选择计算方法: 底部剪力法、振型分解反应谱发、时程分析法。 三、计算重力荷载代表值: 采用半层集中法,屋面活荷载和软钩吊车荷载不计入,书库、档案馆等活载组合系数取0.8 楼顶计算: 楼板+下半层墙体重力+活荷载×0+雪荷载×0.5+积灰荷载×0.5 每层计算:楼板+上下半墙重量+等效均布活载×0.5(书库、档案活载×0.8)+实际情况的楼活载×1.0 四、计算水平地震作用效应: 地震效应Fi计算 楼层剪力计算 考虑扭转耦联作用边榀构件地震效应放大(采用扭转耦联振型分解法的除外)考虑地基与结构相互作用地震效应折减 薄弱层放大系数1.25 剪重比调整 0.2V0调整(框剪)筒体结构调整。 框支柱调整(部分框支剪力墙) 地震作用标准值 五、计算竖向地震作用效应:

第六章多自由度体系地微振动

第六章多自由度体系的微振动 教学目的和基本要求:正确理解线性振动的概念和力学体系平衡的分类;能运用拉格朗日方程初步分析两个自由度保守体系的自由振动问题;理解简正坐标的概念并了解利用简正坐标将复杂振动转化为简正振动的方法和意义。 教学重点:掌握运用拉格朗日方程分析两个自由度保守体系的自由振动问题的方法和简正坐标的物理意义。 教学难点:简正坐标的物理意义。 §6.1 振动的分类和线形振动的概念 振动不仅在宏观领域大量存在(如单摆、弹性振子和地震等),在微观领域也是一种普遍现象(如晶体中晶格的振动、光学中分子的振动等)。振动的种类根据所依据的标准不同可有几种分类方法,下面将简单介绍。 一:振动的分类 1.按能量的转换来划分. 自由振动——系统的能量E为常数,即能量守恒。 阻尼振动——系统的能量E逐渐转化为热能Q。 强迫振动——系统不断从外界吸收能量并将其转化为热能Q。 2.按体系的自由度划分. 单自由度振动——体系的自由度S=1。 有限多自由度振动和无限多自由度振动——体系的自由度为大于1的有限值或无限大值。 3.按体系的动力学微分方程的种类划分. 线性振动——体系的运动微分方程为线性方程。 非线性振动——体系的运动微分方程为非线性方程。 4.本章研究的主要问题. 以上我们按不同的标准将振动进行了归类,实际上这几种标准是相互交叉的,也就是说振动还可以按照以上两个或三个标准进行进一步的归类。如线性振动还可以进一步分为单自由度线性振动、有限多自由度线性振动和无限多自由度线性振动。 表6.1给出了同时按自由度和微分方程的种类对振动进行的分类。我们在本章研究的主

要问题是有限多自由度的线性振动,所以有必要对线性和非线性振动做进一步讨论。 表6.1 二:有限多自由度线性振动 1.定义:体系的自由度为有限多个且体系的运动微分方程为线性方程。 例如:单摆的运动微分方程为0=+θθsin l g ,方程为非线性的。但当θ很小时有θθ≈sin , 方程变为线性方程0=+θθl g 。如果同时还存在有阻尼θβ -及强迫力)t (f ,则方程可写成 )t (f l g =++θθβθ ,仍为线性方程。 2.应用:一般情况下当力学体系在其平衡位置做微振动时,只要考虑它的最低级近似即可。这样的振动无论是自由振动、阻尼振动还是强迫振动,也无论自由度的个数是多少,其振动的运动微分方程均可看成是线性的,也就是属于线性振动。 三:平衡位置及其分类. 1.平衡位置的定义及判定方法。 (1)定义:如果力学体系在t=0时静止地处于某一确定位置,当∞?→? t 时该体系仍能保持在此位置,那么该位置即为体系的平衡位置,我们说体系处于平衡态。 (2)判定方法:在§2.4节中我们已指出保守力学体系处于平衡位置时,其势能应取极值(见第二章4.2式),即 s ...,i ,q V i i 210==??,这可以做为保守体系平衡位置的判据。 2.平衡位置的分类及其判定方法. (1)平衡位置的分类:平衡位置按其性质不同可分为三类: ○1稳定平衡:力学体系受到扰动偏离平衡位置后将回到平衡位置或者在平衡位置的附近做微振动。

偶然偏心和双向地震作用的正确选用

偶然偏心和双向地震作用的正确选用 考虑偶然偏心:[是]或[否] 偶然偏心的含义指的是:有偶然因素引起的结构质量分布的变化,会导致结构固有振动特性的变化,因而结构在相同地震作用下的反应也将发生变化。考虑偶然偏心,也就是考虑由偶然偏心引起的可能最不利的地震作用。详见《SATWE用户手册》125页10条。 根据《高规》12页第3.3.3条“计算单向地震作用时应考虑偶然偏心的影响”,故单向地震力计算时选[是],双向地震力计算时选[否],多层规则结构可不考虑。 考虑偶然偏心计算时,对结构的荷载(总重、风荷载)、周期、竖向位移、风荷载作用下的位移及结构的剪重比没有影响;而对结构的地震力和地震下的位移(最大位移、层间位移、位移角等)有较大区别,平均增大18.47%;对结构构件(梁、柱)的配筋平均增大2%~3%。 考虑双向地震作用:[是]或[否] 根据《抗规》第26页第5.1.1条3款(强条):“质量和刚度分布明显不对称的结构,应计入双向地震作用下的扭转影响”。一般情况下,均可在建筑结构的两个主轴方向分别计算水平地震作用,此时可不考虑上一条的[偶然偏心]用户可根据实际工程情况选择是否需要考虑。 实际,对于多层结构而言,如果比较规则,那么可通过《抗规》第5.2.5条(剪重比的要求)来考虑结构的扭转和偶然偏心;对于高层而言,如果结构比较规则,则应选用“考虑偶然偏心”项,而不必再选“考虑双向地震作用”。对于不规则结构,不论多层还是高层均应选用“考虑双向地震作用”。 ——摘自《框架结构(结构专业)施工图设计实例》梁峰张叙主编2007年版 10 偶然质量偏心 《高层建筑混凝土结构技术规程JGJ3-2002》3.3.3条规定,计算地震作用时,应考虑偶然偏心的影响,附加偏心距可取与地震作用方向垂直的建筑物边长的5%。 偶然偏心的含义指的是:由偶然因素引起的结构质量分布的变化,会导致结构固有振动特性的变化,因而结构在相同地震作用下的反应也将发生变化。考虑偶然偏心,也就是考虑由偶然偏心引起的可能最不利的地震作用。 从理论上,各个楼层的质心都可以在各自不同的方向出现偶然偏心,从最不利的角度出发,我们在程序中只考虑下列四种偏心方式: A)、X向地震,所有楼层的质心沿Y轴正向偏移5%,该工况记作EXP; B)、X向地震,所有楼层的质心沿Y轴负向偏移5%,该工况记作EXM; C)、Y向地震,所有楼层的质心沿X轴正向偏移5%,该工况记作EYP; D)、Y向地震,所有楼层的质心沿X轴负向偏移5%,该工况记作EYM; 要实现偶然偏心,首要任务是确定各个偏心方式下的结构振动特性。最准确的办法是当然是针对不同的偏心方式重新计算结构固有振动特性,求解广义特征值问题,但是这样做效率较低。对于完全采用刚性楼板假定的结构倒没有问题,对于存在“独立弹性节点”的结构则要花费较多的时间。考虑到这一点,我们采用一种稍为简单的方式来确定振动特性:将未偏心的初始结构的各振型的地震力作用点,按照指定方式偏移5%后,重新作用于结构上,此时结构产生的位移,就是一个近似的偏心振型。知道了解偏心振型,偏心地震作用的计算就可以进行了。这个办法有一定的近似性,但提高了效率。通过试算,我们认为其结果还是比较合理的,可以在工程计算中采用。 考虑了偶然偏心地震后,就在原有的未偏心X,Y地震EX,EY的基础上,新增加了四个地震工

第3章 地震作用计算-1

主要内容 第三章地震作用计算 概述 二、结构地震反应 三、结构动力计算简图及体系自由度

集中化描述举例 a、水塔建筑 d、多、高层建筑 e、烟囱 静力法始于意大利,发展于日本。结构抗静力法 大森房吉(Omori Fusakichi) 1868-1923 gh x &&一、运动方程 C ——阻尼系数 单自由度体系的地震反应 力的平衡条件:

二、运动方程的解 初始条件 D 当= ξ例题3-1

2.方程的特解II——冲击强迫振动图地面冲击运动 地面冲击运动: ???>≤≤=dt dt x x g g τττ0 0)(&& &&对质点冲击力: ?? ?>≤≤?=dt dt x m P g ττ0 0&& x (图体系自由振动 将地面运动分解为很多个脉冲运动 3.方程的特解III ——一般强迫振动地面运动加速度时程曲线 引起的体系反应为: ? D 叠加:体系在t 时刻的地震反应为:

一、水平地震作用的定义 单自由度体系的水平地震作用-反应谱法 二、地震反应谱 地震(加速度)反应谱可理解为一个确定的地面运动,通过一组阻尼比 两个影响因素:1.体系阻尼比地震动 频谱:地面运动各种频率(周期)成分与加速度幅值的对应关系 不同场地条件下的平均反应谱 不同震中距条件下的平均反应谱 地震反应谱峰值对应的周期也越长 场地越软 震中距越大 地震动主要频率成份越小 (或主要周期成份越长) 地震动频谱对地震反应谱的形状有影响

设计反应谱:*地震系数 铁路工程抗震设计规范GB50111-2006在地震工程研究中,习惯采用归一化反应谱S mS F= 公路桥梁抗震设计细则JTG/T B02-01-2008

相关主题
相关文档 最新文档