当前位置:文档之家› leap阵列感应试题

leap阵列感应试题

leap阵列感应试题

阵列感应仪器AFIT-A培训试题

一、名词解释

1.有用信号、无用信号、实部信号、虚部信号、反相信号、正交信号;

2.仪器常数;

3.几何因子,积分几何因子,微分几何因子;

4.探测深度、分辨率;

5.视电导率;

二、简答题

1.请简述双线圈系不实用的原因。

2.LEAP800-A阵列感应仪器AFIT-A有几个发射线圈,几个接受线圈,几个发射频率?7个聚焦探测深度为别为多少?3个分辨率匹配曲线的分

辨率是多少?

3.请简述线圈距、测量频率、地层电阻率和趋附效应的关系。

4.简单写出井眼校正公式。

5.简单介绍阵列感应仪器AFIT-A的刻度过程。

6.AFIT仪器的结构2节3部分指的是什么,哪里可以拆开。

7.AFIT仪器发射信号共几个频率,分别是多少

8.AFIT仪器共有几个接收线圈

9.三段稳压器下的绝缘垫片的作用

10.为什么sonde要进行3次180度循环试验

11.仪器的刻度分哪两大步

12.为什么AFIT仪器调塞规要到漷县试验场进行

13.仪器正常工作时候,发生电流检测值是多少,发射检测电压值是多少。

14.发射信号是那块电路板上产生的,如何测量。

15.图中同轴电缆测量值正常情况下应是多少,如何检测仪器探头线圈系是否有短路或短路情况,发射线圈的测量阻值是多少。

阵列感应测井原理及应用

阵列感应测井原理及应用 摘要:本文探讨了阵列感应测井原理,论述了在判断地层水矿化度方面的应用效果,阵列感应在使用中也存在一些缺陷,阵列感应在处理中,人为因素较大,不同的参数处理结果差异较大,这就造成了阵列感应在使用过程中对解释有一定的误导,引起对阵列感应可靠性的怀疑,这在以后的处理方法中有待改进。 关键词:阵列感应测井矿化度应用效果 一、阵列感应测井原理简介 阵列感应测井的最基本原理与普通感应测井原理类似,但它在硬件上采用简单的三线圈系结构,这种线圈系没有硬件聚焦功能,它采用数学方法对呈不对称形状的纵向响应曲线进行软件聚焦处理。它由7组接收线圈对和1个共用的发射线圈组成,实际上相当于具有7种线圈距的三线圈系。在接收线圈系的设计上充分考虑了以下几个问题:(1)、消除直藕信号;(2)、三线圈子阵列纵向特性的频率响应没有盲频;(3)、要有若干子阵列分别反映浅部和深部地层信息;(4)、各接收子阵列之间的间距应按一定规律变化和分布;(5)、离发射线圈较远的接收子阵列应考虑发射功率和接收信号的强度。 高分辨率阵列感应测井仪在硬件设计时充分考虑了上述因素,它的每个接收线圈系都由两个相互对称的线圈组成,即一个主接收线圈和一个辅助接收线圈,它利用了两个线圈电磁场叠加原理,来实现消除直藕信号影响的目的。在线圈系的排列上设计了最小线圈距为6in,最大线圈距为94in,在这两个线圈距之间采用了近似于指数形式的线圈系分布,即全部子阵列间距为6in、10in、15.7in、24.5in、38.5in、60in、94in。这种排列方式不仅有利于采集浅部地层和深部地层信号,而且有利于径向有效信息的均匀采样。发射信号是加到一个单独的发射线圈上的,这种方法能使发射器的有效功率变为最大,由发射线圈发射出的是一个形状为方形的电压波形(即方波),发射波采用方波是由于其具有较高的发射频率,对于给定的电压能使发射线圈的功率变为最大。而且它具有宽的频谱,它包括了方波频率(约等于10KHZ)及所有的奇次谐波的能量,因此每个线圈可以在10、30、50、70、90、110、130、150KHZ共8个频率下同时进行工作。 在阵列感应测井中,接收线圈子阵列接收到测量信号为复信号,即R信号和X信号,R信号也称为实部信号,与发射电流相位相同或相反;X信号又叫虚部信号,与发射电流相位垂直。该阵列感应测井仪器在测井数据采集方面使用了先进的多道全数字化采集技术,能够同时采集7组子阵列在8个工作频率上的R信号和X信号,共112个测量信号。再对这些原始测量信号进行“软件聚焦”,就可得出三种纵向分辨率和六种探测深度的阵列感应合成曲线。 二、在判断地层水矿化度方面的应用效果 根据前期理论和实际经验可知:在渗透性地层中,当井筒内泥浆柱的压力大

西工大《阵列信号处理》考点整理

西工大《阵列信号处理》复习考点整理 考试形式: 一、8道问答题,每道题5分; 二、六道大题,包括PPT 上老师给出的那一道。 一 1. 均匀线列阵在波束扫描时,波束图怎么变化? 当波束指向法线方向时,波束图具有最窄的主瓣宽度;随着阵元指向逐渐远离法线方向,主瓣一直指向所调方向并且展宽;除了指向法线方向外,主瓣都关于波束倾角轴不对称;当达到某一临界角时不能形成波束,但是在端射方向又可以形成波束。且在端射方向形成一个较宽的主瓣。 2.DI 是什么? DI 表示指向性指数,其表达式为 D 为方向性,是阵列和孔径的一个常用性能度量。 ???=ππ φθθφθπφθ200 ),(sin 41) ,(P d d P D T T 3. DC 加权的特点 (1)旁瓣级给定时,主瓣宽度最小; (2)主瓣宽度给定时,旁瓣级最低; (3)等旁瓣级。 4. 频域快拍模型是什么,步骤是什么,常用的频域快拍取的时间有什么关系? (1)记住《最优阵列处理技术》245页图 5.1 (2)步骤: ①把总的观测时间T 分为K 个不重叠的时间区域,区域长度为△T ; ②对时域快拍进行FT ; ③对频域向量(频域快拍)进行窄带波束形成; ④对上述频域信号进行IFT 。 (3)△T 的选择准则 ①△T 必须远大于平面波通过阵列的传播时间; ②△T 依赖于输入信号的带宽和信号的时域谱,16≥??T B (B*△T 足够大,选用频域快拍模型)。 5. 什么是均匀阵的瑞利限? 常规波束形成分辨率的极限。表达式为 6. 空间白噪声的阵增益的相关计算。 阵列增益ωA 的定义为阵列的输出SNR 和一个阵元上的输入SNR 的比值。下标“ω”表示空域不相关的噪声输入。表达式如下:

阵列信号处理知识点

信号子空间: 设N 元阵接收p 个信源,则其信号模型为:()()()()1 p i i i i x t s t a N t θ== +∑ 在无噪声条件下,()()()()()12,, ,P x t span a a a θθθ∈ 称()()()()12 ,, ,P span a a a θθθ为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。P N S 的正交补空间称为噪声子空间,记为N P N N -。 正交投影 设子空间m S R ∈,如果线性变换P 满足, 则称线性变换 P 为正交投影。 导向矢量、阵列流形 设N 元阵接收p 个信源,则其信号模型为:()()()()1 p i i i i x t s t a N t θ== +∑,其中矢量()i i a θ称为 导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号 A 表示,即 (){|(0,2)}a A θθπ=∈ 波束形成 波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即 ()()()()H H y t W X t s t W a θ==,通过加权系数W 实现对θ的选择。 最大似然 已知一组服从某概率模型 ()f X θ的样本集12,, ,N X X X ,其中θ为参数集合,使条件概率 ()12,,,N f X X X θ最大的参数θ估计称为最大似然估计。 不同几何形态的阵列的阵列流形矢量计算问题 假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1 [1]i a θ= 然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差 n ?,则确定其导向矢量 ()2j n i a e πλ θ? =

阵列信号处理方面10个经典程序

1.均匀线阵方向图 %8阵元均匀线阵方向图,来波方向为0度 clc; clear all; close all; imag=sqrt(-1); element_num=8;%阵元数为8 d_lamda=1/2;%阵元间距d与波长lamda的关系 theta=linspace(-pi/2,pi/2,200); theta0=0;%来波方向 w=exp(imag*2*pi*d_lamda*sin(theta0)*[0:element_num-1]'); for j=1:length(theta) a=exp(imag*2*pi*d_lamda*sin(theta(j))*[0:element_num-1]'); p(j)=w'*a; end figure; plot(theta,abs(p)),grid on xlabel('theta/radian') ylabel('amplitude') title('8阵元均匀线阵方向图') 当来波方向为45度时,仿真图如下:

8阵元均匀线阵方向图如下,来波方向为0度,20log(dB)

随着阵元数的增加,波束宽度变窄,分辨力提高:仿真图如下:

2.波束宽度与波达方向及阵元数的关系 clc clear all close all ima=sqrt(-1); element_num1=16; %阵元数 element_num2=128; element_num3=1024; lamda=0.03; %波长为0.03米 d=1/2*lamda; %阵元间距与波长的关系 theta=0:0.5:90; for j=1:length(theta); fai(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num1*d)); psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num2*d)); beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num3*d)); end figure; plot(theta,fai,'r',theta,psi,'b',theta,beta,'g'),grid on xlabel('theta'); ylabel('Width in radians') title('波束宽度与波达方向及阵元数的关系') 仿真图如下:

国外阵列感应测井仪器的最新发展

国外阵列感应测井仪器的最新发展 阵列感应仪器在电缆测井作业中已经受了时间的考验,用于商业化服务快接近20年了。Schlumberger公司在1991年推出了AIT仪器(Barber和Rosthal等),之后Baker Atlas公司在1996年(Beard等)、Halliburton公司在2000年(Beste 等)也分别推出了各自的阵列感应仪器。利用阵列感应仪器可以测得聚焦探测深度为10至120英寸、相应的垂直分辨率为1、2、4英尺的径向电阻率曲线。这些测井曲线从横向和纵向上对井眼及其周围地层给予了清晰的描述。近年来,感应仪器的设计者们一直都在不断努力创新,改进仪器的硬件设计和软件处理,最终提高仪器的测量精度和重复性,发挥阵列感应测井的优势,为油、气层识别奠定基础。 一、斯伦贝谢公司的阵列感应成像测井仪AIT家族 AIT阵列感应成像测井仪能在不同井眼条件和环境下精确测量裸眼井地层的电导率,该电导率既是井眼深度的函数,也是径向深度的函数。阵列感应仪器的线圈阵列有多种工作频率。对接收到的信号进行软聚焦处理可以得到不同探测深度的电阻率测井曲线。多道信号处理给出了丰富而稳定的仪器响应,其径向探测深度和纵向分辨率都明显改进和提高,而且对环境影响进行了校正。利用仪器的测量结果还可实现二维(2D)电阻率成像,成像图形清晰定量地显示了层理和侵入特征。利用多种侵入特征描述参数可以表明过渡带和环空带的地层特征。可以把定量的侵入信息现场彩绘为2D含水饱和度Sw图像。继开发出用于测量井眼条件适中的地层电阻率的标准的AIT-B和AIT-C型仪器外,斯伦贝谢公司也开发出用于小井眼和恶劣环境(高温高压)条件下测井等多种类型的阵列感应仪器,组成了AIT家族。多种类型的AIT仪器可适用于不同的特殊工作环境,包括小井眼、恶劣环境下高温高压环境(HPHT)。 Platform Express Array Induction Imager Tool(AIT-H) AIT-H 仪器特别用于Platform Express 测井平台。此种仪器的长度大约只有AIT-B和AIT-C的一半,但仍可提供同样高质量的测量结果。此仪器主要用于标准的测井条件即:压力高达15,000psi(103Mpa),温度高达257℉(125℃)。最新型号的AIT-M仪器可以用于额定温度高达302℉环境下的同样的参数测量。Slim Array Induction Tool(SAIT)

阵列信号处理

宽带信号中的三种二维平面阵DOA估计

宽带信号中的三种二维平面阵DOA 估计 一. 背景 目前关于阵列窄带信号的高分辨算法已比较成熟,但是随着信号处理技术的发展,信号环境日趋复杂,信号形式多样,信号密度日渐增大,窄带阵列探测系统的确定逐渐显示出来。 由于宽带信号具有目标回波携带的信息量大,有利于目标探测、参量估计和目标特征提取等特点,在有源探测系统中越来越多地得到应用。而在无源探测系统中,利用目标辐射的宽带连续谱进行目标检测是有效发现目标的一种重要手段。 ISM 方法把宽带信号在频域分解为J 个窄带分量,然后在每一个子带上直接进行窄带处理。因为信号为调频信号,所以信号在时域的分段实际上就是频域的分段。将信号分解为窄带信号后,我们就可以利用窄带算法进行处理,最后将各个结果进行加权综合,即可得到最终的结果。 二维DOA 估计是阵列信号处理中的重要内容,通过二维DOA 估计可以得到信号源在平面中的角度信息。一般采用L 型、面阵和平行阵或矢量传感器实现二维参数的估计,多数有效的二维DOA 估计算法是在一维DOA 估计的基础上,直接针对空间二维谱提出的,如二维MUSIC 算法以及二维CAPON 算法等。这两种算法可以产生渐进无偏估计,但要在二维参数空间搜索谱峰,计算量相当大。而采用二维ROOT MUSIC 算法可以减小计算量,但是需要付出精度下降的代价。 本次报告将结合宽带信号和二维DOA 估计算法,进行相关的算法介绍和仿真。 二. 算法介绍 1. 接收信号模型: 图 1 平面阵列示意图 如图1所示,设平面阵元数为M ×N ,信源数为K 。信源的波达方向为11(,),,(,)k k θφθφ , 第i 个阵元与参考阵元之间的波程差为: 2(cos sin sin sin cos )/i i i x y z βπφθφθθλ=++ 设子阵1沿x 轴的方向矩阵为x A ,而子阵2的每个阵元相对于参考阵元的波程差就等于子阵1的阵元的波程差加上2sin sin /d πφθλ,所以接收信号为

5700测井技术介绍—阵列感应测井原理及应用

5700测井技术介绍— 阵列感应 测井原理及地质应用

目录 一、前言 (1) 二、阵列感应测井原理及应用 (1) 1.阵列感应测井原理简介 (1) 2阵列感应资料处理 (2) 3.阵列感应测井的地质应用 (10) 三、阵列感应测井实例分析 (14) 1、低矿化度泥浆侵入含高矿化度地层水的储层 (14) 2、高矿化度泥浆侵入含低矿化度地层水的储层 (17) 3、在稠油井中的应用效果 (20) 4、水淹层解释应用效果 (21) 5、在判断地层水矿化度方面的应用效果 (23) 四、总结和建议 (24)

一、前言 阵列感应测井是测井发展史上的一个飞跃,自从测井公司引进了阿特拉斯的阵列感应测井仪HDIL后,经过多年的使用,已经成为测井中一项不可缺少的项目,特别是在沙泥岩地层和低电阻率地层中,发挥了其它测井项目不可替代的作用。 二、阵列感应测井原理及应用 1.阵列感应测井原理简介 阵列感应测井的最基本原理与普通感应测井原理类似,但它在硬件上采用简单的三线圈系结构,这种线圈系没有硬件聚焦功能,它采用数学方法对呈不对称形状的纵向响应曲线进行软件聚焦处理。它由7组接收线圈对和1个共用的发射线圈组成,实际上相当于具有7种线圈距的三线圈系。在接收线圈系的设计上充分考虑了以下几个问题:(1)、消除直藕信号;(2)、三线圈子阵列纵向特性的频率响应没有盲频;(3)、要有若干子阵列分别反映浅部和深部地层信息;(4)、各接收子阵列之间的间距应按一定规律变化和分布;(5)、离发射线圈较远的接收子阵列应考虑发射功率和接收信号的强度。 高分辨率阵列感应测井仪在硬件设计时充分考虑了上述因素,它的每个接收线圈系都由两个相互对称的线圈组成,即一个主接收线圈和一个辅助接收线圈,它利用了两个线圈电磁场叠加原理,来实现消除直藕信号影响的目的。在线圈系的排列上设计了最小线圈距为6in,最大线圈距为94in,在这两个线圈距之间采用了近似于指数形式的线圈系分布,即全部子阵列间距为6in、10in、15.7in、24.5in、38.5in、60in、94in。这种排列方式不仅有利于采集浅部地层和深部地层信号,而且有利于径向有效信息的均匀采样。发射信号是加到一个单独的发射线圈上的,这种方法能使发射器的有效功率变为最大,由发射线圈发射出的是一个形状为方形的电压波形(即方波),发射波采用方波是由于其具有较高的发射频率,对于给定的电压能使发射线圈的功率变为最大。而且它具有宽的频谱,它 )及所有的奇次谐波的能量,因此每个线圈可以包括了方波频率(约等于10KH Z 共8个频率下同时进行工作。 在10、30、50、70、90、110、130、150KH Z

阵列信号处理对角加载算法matlab程序

%----------对角加载(LSMI 和SMI)方向图----------------------- %总结:这种算法主要给出了一种对角加载值的计算方法,对误差具有一定的稳健性,研究发现 %当数据协方差矩阵中含有信号分量会影响算法的性能。 clearall;clearall;clc; ratio_d_and_w=0.5; N_array=20;%阵列数 N_signal=60;% 样本数 ang1=0*pi/180;%所需信号的方向 SNR=5;%信噪比 ASd=sqrt(10.^(SNR/10)); ang2=40*pi/180;%干扰信号的方向 INR=45;%干噪比 ASi=sqrt(10.^(INR/10)); Sd=ASd*(randn(1,N_signal)+i*randn(1,N_signal));%Sd为所需信号 Si=ASi*(randn(1,N_signal)+i*randn(1,N_signal));%Si为干扰信号 Ni=randn(N_array,N_signal)+i*randn(N_array,N_signal);%Ni内噪声 Desired_Array=zeros(N_array,N_signal); Interferential_Array=zeros(N_array,N_signal); for LL=1:N_signal Interferential_Array(:,LL)=Si(LL)*test(ang2,N_array,ratio_d_and_w).'; Desired_Array(:,LL)=Sd(LL)*test(ang1,N_array,ratio_d_and_w).'; end X=zeros(N_array,N_signal); X= Interferential_Array +Ni; Rx=X*X'/N_signal; mm=std(diag(Rx));%对角加载值的确定下限 %mm=trace(Rx)/N_array;%对角加载值的确定上限 R1=Rx+mm*eye(size(Rx)); R=inv(R1); A_est=test(ang1,N_array,ratio_d_and_w); C= A_est; w_SMI=R*C/(C'*R*C);%对角加载 w_LSMI=inv(Rx)*C/(C'*inv(Rx)*C);%普通的Capon算法

阵列信号处理作业

阵列信号处理课程2011年作业 第1题 假定半波长间隔均匀分布线列阵的阵元数N =16,若入射平面波为62.5Hz 的正弦信号,信号持续时间为0.4s ,系统采样频率为1kHz ,阵列加权方式为均匀加权。分别给出 1. 当平面波信号分别从0,10, 20, 30, 40, 50, 60, 70, 80, 90, 100度方向入射时,指向90度的波束形成器的输出序列。 2. 当平面波信号分别从0:1:180度方向入射时,指向90度的波束形成器的输出序列经过平方求和后的分贝数输出。(把所有181个输出绘制在同一幅图中) 1)仿真图 图一:所求角度入射信号输出序列三维表示 注: 1. θ为信号入射角度,取值从0度到100度,每10°为一个间隔; 2. T 为整个阵元采样时间,对于不同的入射角度,t 的取值范围不同; 3. 输出信号幅度表示所有阵元的求和输出幅度,为有噪声情况。 结论: 0.8 t 输出信号幅度

从图一可以看出:①从90°入射的信号输出序列没有得到衰减,而其它角度入射的都得到了衰减;②从100°入射的信号和从80°入射的信号输出序列关于90°方向是对称的;③整个阵列对噪声有很好的抑制作用。 图二:入射信号0°到50°的输出序列 图三:入射信号60°到100°的输出序列 结论: 从图二和图三可以看出:①图一的所有结论;②90°方向入射信号没 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 0。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 10。 0.10.20.30.40.5 -0.2 -0.100.1 0.2 t A m p l i t u d e 20。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 30。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 40。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 50。 0.10.2 0.30.40.5 t A m p l i t u d e 60。 0.1 0.20.30.4 t A m p l i t u d e 70。 0.1 0.20.30.4 t A m p l i t u d e 80。 0.1 0.20.30.4 t A m p l i t u d e 90。 0.1 0.20.30.4 t A m p l i t u d e 100。

阵列信号处理仿真作业

阵列信号处理仿真作业 需要解决的问题: 使用优化算法(可以使用遗传算法)挑选旁瓣相消的阵元 要求:(只需要选择一个突破点即可) ①可以针对不同类型的干扰、连片杂波、地杂波或密集型干扰等进行优化 ②也可以考虑存在阵列误差 下面我们针对第一个突破点进行仿真: 一、基本原理 图1给出了一般阵元级部分自适应处理的框图,通常称为多旁瓣相消器。 1 N H x 图1. 多旁瓣相消器结构部分自适应处理框图 如图1所示,整个天线阵的阵元加导向矢量权及用于压低旁瓣的锥削,可得到主通道输出0()m t ,0()m t 的方向图就指向目标方向,而从天线阵中选出M 个阵元作自适应单元,自适应单元加权为H x W ,于是得到主通道输出 00()()H m t t =W X ,辅助通道输出为()H x t W Y 。所以整个自适应信号处理器的输出为 0()()()H x e t m t t =-W Y (1) 其中0()m t 表示为主通道的输出;12[,,,]T M y y y =Y L 为选取的辅助单元接收的信 号;12[,,,]H T x M w w w ***=W L 为自适应权值;()H x t W Y 为形成辅助通道的输出。 在最小均方误差的准则下,求出的自适应权值就演变成为一个优化问题 220min ()min ()()H x E e t E m t t ?????-?????? W Y (2) 得

1 0()()()()H H x E t t E t m t -* ????=????W Y Y Y (3) 为了保证目标信号不损失,应对自适应权作约束,约束条件是在目标信号的 方向上,阵列自适应处理的增益为一常数。即在权值调整过程中,无论权x W 怎 样变化,对有用信号的增益不变。这样在使自适应阵输出()e t 的均方值2 ()E e t ?? ?? 最小时,能最大限度地抑制干扰且不损失有用信号能量。图1中应用式( 2) 的无 约束优化方程显然不合理,它不能保证有用信号增益不变。即由于辅助通道中包含有用信号的能量,就会导致辅助阵元中目标信号分量与主通道中目标信号相减,引起目标信号对消,导致目标增益下降。对此,应设法阻塞目标信号进入辅助支路,避免信号对消现象。一种方法是在优化方程中加入单位增益约束,强制目标方向增益不变,这样的优化方程求解比较麻烦,而且不适合自适应单元自动选取的算法。 这里,采用信号阻塞矩阵来抑制目标信号,使目标信号能量不能进入辅助通道。 0=X JX (4) 其中12[,,,]T N x x x =X L 为阵列信号;01020(1)0[,,,]T N x x x -=X L ;J 为信号阻塞矩阵(N -1)×N 。 在一般情况下,信号到达角为0θ,则信号阻塞矩阵J 可表示为 00001exp(())001exp(())01exp(())0 001exp(())j j j j ?θ?θ?θ?θ??--??--=??--??--??J L L L L 其中002()sin()d π?θθλ =,当00θ=?时,阻塞矩阵变为 11000110 0000 11-??-????=? ?????-?? J L L L L L L L L 这样就得到整个自适应系统框图(图2)。 图2中上支路为主通道, 保证信号完全通过,其加权为导向矢量权和压低旁瓣的锥削。下支路为辅助支路,信号阻塞矩阵阻止信号能量通过,将N 个阵元信号变成N -1个信号(降维),然后由辅助单元选择通路并选择参与自适应的单元,加自适应权后与上支路信号相减,得到自适应输出。

阵列信号处理—music、Capon

宽带信号中的三种二维平面阵DOA估计宽带信号中的三种二维平面阵DOA估计

一. 背景 目前关于阵列窄带信号的高分辨算法已比较成熟,但是随着信号处理技术的发展,信号环境日趋复杂,信号形式多样,信号密度日渐增大,窄带阵列探测系统的确定逐渐显示出来。 由于宽带信号具有目标回波携带的信息量大,有利于目标探测、参量估计和目标特征提取等特点,在有源探测系统中越来越多地得到应用。而在无源探测系统中,利用目标辐射的宽带连续谱进行目标检测是有效发现目标的一种重要手段。 ISM 方法把宽带信号在频域分解为J 个窄带分量,然后在每一个子带上直接进行窄带处理。因为信号为调频信号,所以信号在时域的分段实际上就是频域的分段。将信号分解为窄带信号后,我们就可以利用窄带算法进行处理,最后将各个结果进行加权综合,即可得到最终的结果。 二维DOA 估计是阵列信号处理中的重要内容,通过二维DOA 估计可以得到信号源在平面中的角度信息。一般采用L 型、面阵和平行阵或矢量传感器实现二维参数的估计,多数有效的二维DOA 估计算法是在一维DOA 估计的基础上,直接针对空间二维谱提出的,如二维MUSIC 算法以及二维CAPON 算法等。这两种算法可以产生渐进无偏估计,但要在二维参数空间搜索谱峰,计算量相当大。而采用二维ROOT MUSIC 算法可以减小计算量,但是需要付出精度下降的代价。 本次报告将结合宽带信号和二维DOA 估计算法,进行相关的算法介绍和仿真。 二. 算法介绍 1. 接收信号模型: 图 1 平面阵列示意图 如图1所示,设平面阵元数为M ×N ,信源数为K 。信源的波达方向为11(,),,(,)k k θφθφ , 第i 个阵元与参考阵元之间的波程差为: 2(cos sin sin sin cos )/i i i x y z βπφθφθθλ=++ 设子阵1沿x 轴的方向矩阵为x A ,而子阵2的每个阵元相对于参考阵元的波程差就等于子阵1的阵元的波程差加上2sin sin /d πφθλ,所以接收信号为

阵列感应测井方法和技术进展

阵列感应测井方法和技术进展 前言:就目前而言,测井的方法种类繁多,并且趋于系列化。其基本的方法有电、声、放射性测井三种。此外还有特殊方法,如电缆地层测试、地层倾角、成像、核磁共振测井。当然还存在其他形式的测井方法,如随钻测井。然而每种方法都只能反映岩层地质特性的某一侧面。在实际运用中应当综合地应用多种测井方法。[1] 阵列感应测井技术始于20世纪90年代初。阵列感应测井技术的原理是利用阵列在接受线圈集中在一侧的好处可大大缩短仪器长度。目前广泛应用的阵列感应测井有斯仑贝谢的AIT-A和AIT-H、Baker Altas的HDIL以及哈里伯顿的HRIA等。与传统的双感应和双侧向相比,具有测量信息多、分辨率高、探测深度大、反映侵入直观等优点。 一、国内外研究及应用现状 感应测井仪器经历了双感应测井、聚焦感应测井、阵列感应测井仪器等几个发展阶段[2]。感应测井解决了淡水和油基泥浆井中的电阻率测量问题,由于早期的普通电阻率测井、侧向测井,只能在导电的泥浆中进行测量,有时为了获取地层原始含油饱和度信息,需要用油基泥浆或空气钻井,针对这个问题,1949年Doll提出了感应测井及其在油基泥浆井中的应用理论,该理论的根据是电磁感应原理。如果忽略趋肤效应的影响,则依据电磁场Maxwell方程就可以推导出Doll几何因子表达式。1962年研制出具有商用价值的双感应测井仪器,但是该测井仪器在实际应用中出现了很多问题,例如不能进行薄层分析,分辨率低,受井眼、侵入、围岩以及趋肤效应环境影响严重等,这些不足导致测井曲线不能反映实际的地层信息。 作为一维的测量和处理方法,传统的聚焦感应测井方法不能有效地消除二维的井眼、围岩,侵入等环境影响以及趋肤效应的影响。为了解决测井方面遇到的问题,二十世纪九十年代出现了新的测井方法和测井仪器——阵列感应测井方法和阵列感应测井器。该测井方法在测井过程中易于获取丰富的井下地层信息。这种测井方法不仅能有效地消除二维的环境影响,获取地层的真电导率[3],而且使感应测井的应用范围更广泛,进行薄层分析和复杂的侵入解释,对油气储藏的准确评价具有重要的作用。 1984年,BPB公司率先推出了商用的阵列感应测井仪器(Array Induction Sonde,AIS),该仪器采用一个发射线圈和四个接收线圈的结构。主接收线圈的间距是根据传统感应测井线圈系间距设计的,采用了单频率的工作方式,所有的接收信号经数字化后再传送到地面,由地面计算机进行处理。由于径向和纵向特性不可能分别达到最优,因此它的二维特性不是最优的。1990年斯伦贝谢(Schlumberger)公司推出了阵列感应成像测井仪器(Array Induction Tool,AIT)。最初其推出的

阵列信号处理课件西电

如对您有帮助,请购买打赏,谢谢您! 信号子空间: 设N 元阵接收p 个信源,则其信号模型为:()()()()1 p i i i i x t s t a N t θ==+∑ 在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈ 称()()()()12,, ,P span a a a θθθ为信号子空间,是N 维线性空间中的P 维子空间,记为 P N S 。 P N S 的正交补空间称为噪声子空间,记为N P N N -。 正交投影 设子空间m S R ∈,如果线性变换P 满足, 则称线性变换P 为正交投影。 导向矢量、阵列流形 设N 元阵接收p 个信源,则其信号模型为:()()()()1 p i i i i x t s t a N t θ== +∑, 其中矢量()i i a θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈ 波束形成 波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()H H y t W X t s t W a θ==,通过加权系数W 实现对θ的 选择。 最大似然 已知一组服从某概率模型() f X θ的样本集12,,,N X X X ,其中θ为参数集合,使条件概 率()12,, ,N f X X X θ最大的参数θ估计称为最大似然估计。 不同几何形态的阵列的阵列流形矢量计算问题 假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ= 然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ?,则确定其导向矢量

阵列信号处理中基于MUSIC算法的空间谱估计

万方数据

软件时空量,各阵元噪声满足空时白噪声的假设条件,即: E[n(t)nH(f—f)】_盯28(r)x E[n(t)n7(卜f)】-0(6) 阵列输出向量的二阶统计量用其外积的统计平 均表示,称之为阵列相关矩阵(将观测向量零均值化 则得到协方差矩阵)。定义为: R=E[x(t)xH(f)】-ARsAH+仃2,(7) 式中R=E[s(t)s爿(f)】为信号的相关矩阵。 相关矩阵是阵列处理的基础,对R进行特征分图2单目标MUSIC法的空间谱 解,根据信号子空间和噪声子空间的正交性可以实现仿真参数:(1)单目标情况:目标为200H:的单频高分辨的目标方位估计。易证,R=RH,这说明阵列协方正弦信号,目标方位角为60。,噪声为零均值的高斯白差矩阵属于Hermitian矩阵,其特征值为正值。令特征噪声,仿真分析的快拍数为128。 值为hi(i=l…2一M),对应的特征向量为斗i(i=1…2一M),协(2)两目标情况:目标1和目标2均为200H:的方差矩阵的特征分解可写成:单频正弦信号,目标方位角分别为30。和45。,噪声为R=UAUH=y.缸∥,(8)零均值的高斯白噪声,仿真分析的快拍数为128。 式中u:【u。,ui=:1,--.,HM]为由特征向量组成的酉矩。。仿妻竺果:单目标情况如图2所示,两目标情况阵;A=diag[&,五,...,知]为特征值构成的对角矩阵。如图啬霎磊染说明:空间谱中的峰值的高度并不表明将R的特征值按降序排列,根据特征值的大小可相应方位上的信号强度。增加阵元个数可以提高目标以将特征向量分成两部分,Us=[U。,u:,...,ud为前P个最分辨力。 大特征值对应的特征向量构成的酉矩阵,其张成的空 间称为信号子空间,U。=[u吣u嵋…,u嗣为后M—P个最小 特征值对应的特征向量构成的酉矩阵,其张成的空间 称为噪声子空间。假设信号相关矩阵R。=E【S(t)SH(t)】 非奇异,即各信号非相干,可以证明阵列方向矩阵A 和信号子空间张成的子空间相同。又因为u=[u。,Ud为 酉矩阵,所以有usHU#O。 由此可以定义MUSIC算法的空间谱为: 删2蔬丽1(9)对以上空间谱进行峰值搜索可以得到波达方向的估计6;,i=l…2..,P。 实际中,R是未知的,可以由观测的数据向量估计,估计式为 食=专善z(力xH(力‘1。’对食进行特征分解得到噪声子空间的估计,进而得到MUSIC空间谱和波达方向的估计。 2Matlab计算机仿真 下面对上面讨论的MUSIC算法用Matlab做计算机仿真。假设阵列为9阵元的等距均匀线列阵,阵元间距为信号中心频率对应的半波长,用该线阵来分别处理单个目标和两个目标信号源同时出现的情况。 图3两目标MUSIC法的空间谱 3结论 通过对MUSIC算法的分析,从理论和系统仿真两方面证明将此法用于确定目标方位角的实用价值。是一种有效的测量目标方位角的方法。MUSIC法对所有的特征向量重新加了权.噪声特征向量的权值为1.而信号特征向量的权值为0。对到达阵列的当前中的许多重要参数,如入射信号的个数,信号的入射方位、强度、入射波前的相关性以及噪声或干扰的强度等等,MUSIC法都可以给出渐近无偏的估计。对于本文所讨论的空间谱估计的问题。MUSIC法给出的谱要平滑得多,而且在信号方向上峰值又非常尖锐。除去不能分辨强相关或相干信号以外,MUSIC法的主要缺点在于在搜索过程中使用了所有的噪声特征向量.从而导致较大的计算量。 参考文献: [1】R.0.Schmidt:Multipleemitterlocationandsignalparameter(转292页1 @㈨同邮局订阮82?946 360,,L/_303—    万方数据

阵列信号处理中DOA算法分类总结(大全)

阵列信号处理中的DOA(窄带) 空域滤波 波束形成:主要研究信号发射/接收过程中的信号增强。 空间谱估计 空域参数估计:从而对目标进行定位/给空域滤波提供空域参数。 测向波达方向估计(DOA) 空间谱:输出功率P关于波达角θ的函数,P(θ). 延迟——相加法/经典波束形成器注,延迟相加法和CBF法本质相同,仅仅是CBF法的最优权向量是归一化了的。

1、传统法常规波束形成CBF/Bartlett波束形成器 常规波束形成(CBF:Conventional Beam Former) Capon最小方差法/Capon 波束形成器/MVDR波束形成器 最小方差无畸变响应(MVDR:minimum variance distortionless response)Root-MUSIC算法

多重信号分类法解相干的MUSIC算法(MUSIC) 基于波束空间的MUSIC算法 2、[object Object]

TAM 旋转不变子空间法 LS-ESPRIT (ESPRIT) TLS-ESPRIT 确定性最大似然法(DML:deterministic ML) 3、最大似然法 随机性最大似然法(SML:stochastic ML)

4、综合法:特性恢复与子空间法相结合的综合法,首先利用特征恢复方案区分多个信号,估计空间特征,进而采用子空间法确定波达方向 最大似然估计法是最优的方法,即便是在信噪比很低的环境下仍然具有良好的性能,但是通常计算量很大。同子空间方法不同的是,最大似然法在原信号为相关信号的情况下也能保持良好的性能。 阵列流形矩阵(导向矢量矩阵)只要确定了阵列各阵元之间的延迟τ,就可以很容易地得出一个特定阵列天线的阵列流形矩阵A。 传统的波达方向估计方法是基于波束形成和零波导引概念的,并没有利用接收信号向量的模型(或信号和噪声的统计特性)。知道阵列流形 A 以后,可以对阵列进行电子导引,利用电子导引可以把波束调整到任意方向上,从而寻找输出功率的峰值。 ①常规波束形成(CBF)法 CBF法,也称延迟—相加法/经典波束形成器法/傅里叶法/Bartlett波束形成法,是最简单的DOA 估计方法之一。这种算法是使波束形成器的输出功率相对于某个信号为最大。 (参考自:阵列信号处理中DOA估计及DBF技术研究_赵娜)注意:理解信号模型

阵列信号处理答案

1.(1)关于接收天线阵列的假设。接收阵列由位于空间已知坐标处的无源阵元按一定的形式排列而成。假设阵元的接收特性仅与其位置有关而与其尺寸无关(认为其是一个点),并且阵元都是全向阵元,增益均相等,相互之间的互耦忽略不计。阵元接收信号时将产生噪声,假设其为加性高斯白噪声,各阵元上的噪声相互统计独立,且噪声与信号是统计独立的。 (2)关于空间源信号的假设。假设空间信号的传播介质是均匀且各向同性的,这时空间信号在介质中按直线传播,同时又假设阵列处在空间信号辐射的远场中,所以空间源信号到达阵列时可以看做是一束平行的平面波,空间源信号到达阵列各阵元在时间上的不同延时,可由阵列的几何结构和空间波的来向所决定。空间波的来向在三维空间中常用仰角和方位角来表征。其次,在建立阵列信号模型时,还常常要区分空间源信号是窄带信号还是宽带信号。所谓窄带信号是指相对于信号(复信号)的载频而言,信号包络的带宽很窄(包络是慢变的),因此在同一时刻,该类信号对阵列各阵元的不同影响仅在于因其到达各阵元的波程不同而导致的相位差异。 2.自适应波束形成亦称空域滤波,是阵列处理的一个主要方面,逐步成为阵列信号处理的标志之一,其实质是通过对各阵元加权进行空域滤波,来达到增强期望信号、抑制干扰的目的;而且可以根据信号环境的变化自适应嘚改变各阵元的加权因子。虽然阵列天线的方向图是全方向的,但阵列的输出经过加权求和后,可以被调整到阵列接收的方向增益聚集在一个方向,相当于形成了一个波束,这就是波束形成的物理意义所在。波束形成技术的基本思想是:通过将各阵元输出进行加权求和,将天线阵列波束导向到一个方向上,对期望信号得到最大输出功率的导向位置即给出波达方向估计。 3. ULA :()1exp(2sin ) exp(2(1)sin )T k k k d d j j M θπθπθλλ?? =---???? α L 阵:(,)[(,),(,)]T x y a a a θφθφθφ=,其中 2sin cos 2(1)sin cos (,)[1,...],,T j d j M x a e e πθφπθφθφ---= 2s i n s i n 22s i n s i n 2(1 ...(,)[,,,] j d j d j M T y a e e e πθφπθφπθφθφ----= 面阵: 12()()()M D D D ?? ?? ??=??????? ?x y x y x y A A A A A A A ,其中1 1 2 2 1 1 2 2 2cos sin /2cos sin /2cos sin /2(1)cos sin /2(1)cos sin /2(1)cos sin /111 K K K K j d j d j d x j d M j d M j d M e e e e e e πθφλπθφλπθφλ πθφλ πθφλπθφλ---------?? ????=? ? ???? A

哈工大阵列信号处理作业答案1

阵列信号处理第二次理论作业 1.设一个辐射源距接收阵列的距离为r 0(该距离远大于天线的孔径),天线阵由M 个感应器构成,辐射源辐射的功率为P s ,噪声的平均功率为P n 。设阵列的时延可以使阵列的主瓣与信号的传播方向匹配,且阵列的加权系数为1。 1)在信号源处,信噪比是多少? 2)在感应器处,信噪比是多少? 3)当阵列的主瓣方向与传播方向匹配时,阵列输出的信噪比是多少? 4)如信号源在接收阵列附近,发射的平均功率为P t ,信号以球面波的方式传播,到物体后备物体反射,且仍以球面波的方式传播,被物体反射的信号P s 为入射功率的ρ倍,物体到阵列中心位置的距离为r 0,计算阵列输出信号的信噪比(阵列的最大方向与目标反射信号的传播方向相同)? 答: 1) 在信号源处,信噪比为0s n P SNR P = 2) 在感应器处,因信号功率被均匀分配到各个方向上,2 4s s P P R π'= 故:0 2 4s n P SNR SNR P R π''== 3) 当阵列主瓣方向匹配时,感应器处信噪比被加强,加强倍数为阵列增益。其值参考题4. 2 4s n P SNR SNR SNR G G M P R π''=?=?=? 4) 近场时,位于阵列中心的感应器处接收到的信号功率为 2244s t P P P R R ρ ππ?'= =,噪声功率仍为n P 。因此,该出的信噪比为: () 224t n n P P SNR P P R ρπ?= =? 计算得到阵列的输出信噪比为,中心点处信噪比乘以阵列增益G '。 () 2 24t n P G SNR SNR G P R ρπ'??'=?= ?阵列 2.阵列的增益在频域可以表示为:

阵列信号处理中的DOA估计算法

阵列信号处理中的DOA估计算法 摘要:本文简要介绍了阵列信号处理的基本知识和其数学模型,并且对阵列信号处理中很重要的来波方向(DOA)估计方法进行了比较,主要包括古典谱估计方法、Capon最小方差法、多重信号分类(MUSIC)算法以及旋转不变因子空间(ESPRIT)算法。通过这些算法的介绍和比较,我们可以很方便地在不同的情况下选择不同的算法去对信号的来波方向进行估计。 关键词:阵列信号处理;来波方向(DOA);MUSIC;自相关矩阵;特征分解;ESPRIT DOA Estimation Algorithms in Array Signal Processing Abstract:In this paper, we have introduced the basic knowledge and data model of array signal processing and have compared many DOA estimation methods in array signal processing,which included classical spectrum estimation method、Capon minimum variance method、MUSIC method and ESPRIT method。Through the introduction and comparison of these algorithms,we can choose different algorithm to estimate the DOA of signal in different situation,conveniently。Key word s:array signal processing;DOA;MUSIC;self-correction matrix;eigendecomposition; ESPRIT 1.引言 近几十年来,阵列信号处理作为信号处理的一个重要分支,在声纳、雷达、通信以及医学诊断等领域得到了相当广泛的应用和发展。阵列信号处理是指在一定大小空间的不同位置去设置传感器,组成传感器阵列,利用传感器阵列去接收空间中的信号并且通过一定的方法对接收的信号进行处理。阵列信号处理的目的是为了增强有用的信号,抑制无用的干扰和噪声,并且从接收的信号中提取出有用信号的特征以及信号所包含的信息。与传统的单个定向传感相比,传感器阵列具有比较高的信号增益、灵活的波束控制、很高的空间分辨率以及极强的干扰抑制能力。阵列信号处理研究的主要问题包括[5]:空间谱估计——对空间信号波达方向进行超分辨估计;零点形成技术——使天线的零点对准干扰方向;波束形成技术——使阵列方向图的主瓣指向所需的方向。其研究的三个主要方向分别在不同的时期进行了不同的主要研究,这三个阶段分别是: 1、20世纪60年代主要集中在波束形成技术方面[1],如自适应相控天线、自适应波束操控天线和自适应聚束天线等,主要目的是使阵列方向图的主瓣指向所需要的方向。 2、20世纪70年代主要集中在零点形成技术方面[2],如自适应置零技术、自适应调零技术、自适应杂波抑制和自适应旁瓣相消等,可以提高信号输出的信噪比(SNR)。 3、20世纪80年代主要集中在空间谱估计方面[3],如最大似然谱估计、最大熵谱估计、子空间谱估计等,它是现代谱估计理论与自适应阵列技术结合的产物,主要是研究在阵列处理带宽内空间信号的波达方向的估计问题,这标志着阵列信号处理研究的重大变化。 信号的波达方向(DOA)估计是阵列信号处理领域的一个非常重要的研究内容。信号的DOA估计算法大多是一种极值搜索法,即首先形成一个包含待估计参数的函数(一般是一个伪谱函数),然后通过对该函数进行峰值搜索,得到的极值就是信号的波达方向。这些算法主要包括:1965年Bartlett基于波束形成的思想提出的DOA估计算法,但是该算法不能分辨出两个空间距离小于波束宽度的信号源。1968年Schweppe首先研究了虽大似然估计算法(ML),但是比较重要的还是后来Capon提出的高进度的ML,该算法对于服从高斯分布的信源估计可以达到克劳—拉美界,但是需要对接收阵列数据的自相关矩阵进行求了逆运算,运算量相当大。1979年Schmidt提出了多重信号分类法[4](Multiple Signal Classification,MUSIC)以及各种改进的MUSIC算法等,它们都需要进行特征值分解运算,可以得到比较高精度的参数估计,但是计算量太大。1985年Roy和Kailath提出了一种借助旋转不变技术的参数估计算法[6](Estimating Signal Via Rotational Invariance Techniques,ESPRIT),它是利用阵列流行的某些特性形成一个可以直接求解的函数,能够比较方便的得到所需要的估计参数。在此之后,人们以MUSIC和ESPRIT为基础,提出了各种各样的算法,例如最小范数法[7]、ROOT-MUSIC[8]、TLS-ESPRIT[9]等。这些不同的算法是基于不同的理论提出的,并且建立在不同的约束条件之下,所以其特性和适用对象也会不同。 2.数据模型 2.1平面波与阵列

相关主题
文本预览
相关文档 最新文档