当前位置:文档之家› 计算方法 课内实验 插值法与函数逼近

计算方法 课内实验 插值法与函数逼近

计算方法 课内实验 插值法与函数逼近
计算方法 课内实验 插值法与函数逼近

《计算方法》课内实验报告

学生姓名:张学阳1009300132

及学号:

学院: 理学院

班级: 数学101

课程名称:计算方法

实验题目:插值法与函数逼近

指导教师

宋云飞讲师

姓名及职称:

朱秀丽讲师

尚宝欣讲师

2012年10月15日

目录

一、实验题目.......................................................... 错误!未定义书签。

二、实验目的.......................................................... 错误!未定义书签。

三、实验内容.......................................................... 错误!未定义书签。

四、实现结果.......................................................... 错误!未定义书签。

五、实验体会或遇到问题 (6)

插值法与函数逼近

二、实验目的

1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解插值法及函数逼近方法的理论基础。

3.进一步掌握给定数据后应用插值法及函数逼近方法进行数据处理并给出图示结果的实际操作过程。

三、实验内容

1.已知函数在下列各点的值为

试用4次牛顿插值多项式)(4x P 及三次样条函数)(x S (自然边界条件)对数据进行插值。给出求解过程,并用图给出

(){},10,1,0),()(,08.02.0,,4 ===+=i x S y x P y i x y x i i i i i 及。

2.下列数据点的插值

可以得到平方根函数的近似。

(1)用这9个点作8次多项式插值)(8x L 。

(2)用三次样条(第一类边界条件)插值给出)(x S 。

给出求解过程,在区间[0,64]上作图,从得到的结果看,在区间[0,64]上哪种插值结果更精确?在区间[0,1]上两种插值哪个更精确? 3.由实验给出数据表

试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线。给出求解过程,用图表示实验数据曲线及三种拟合曲线。

1.1

4次牛顿插值多项式:

x = [0.2 0.4 0.6 0.8 1];

y = [0.98 0.92 0.81 0.64 0.38];

plot(x,y,'b')

hold on

z=0.2:0.05:1;

n=length(x);

for j=2:n

for i=n:-1:j

y(i)=(y(i)-y(i-1))/(x(i)-x(i-j+1));

end

end

u=y(n);

m=length(z);

for j=1:m

for i=n-1:-1:1

u=y(i)+u*(z(j)-x(i));

v(j)=u;

end

u=y(n);

end

plot(z,v,'r')

hold off

0.20.30.40.50.60.70.80.91

0.4

0.5

0.6

0.7

0.8

0.9

1

其中蓝色为原曲线。

1.2

三次样条插值

x = [0.2 0.4 0.6 0.8 1];

y = [0.98 0.92 0.81 0.64 0.38]; xi = 0.2:0.05:1;

yi = interp1(x,y,xi); plot(x,y,'o',xi,yi)

0.20.30.40.50.60.70.80.91

2

x = [0 1 4 9 16 25 36 49 64];

y = [0 1 2 3 4 5 6 7 8];

plot(x,y,'b')

hold on

z=0:0.05:64;

n=length(x);

for j=2:n

for i=n:-1:j

y(i)=(y(i)-y(i-1))/(x(i)-x(i-j+1));

end

end

u=y(n);

m=length(z);

for j=1:m

for i=n-1:-1:1

u=y(i)+u*(z(j)-x(i));

v(j)=u;

end

u=y(n);

end

plot(z,v,'r')

hold on

yi = interp1(x,y,z);

plot(x,y,'o',z,yi)

hold off

010203040506070

其中蓝色为原曲线,红色为多项式插值,绿色为三次样条插值,在区间[0,64]时3次样条插值更精确,在区间[0,1] 多项式插值更精确。

3.

x=[0.0 0.1 0.2 0.3 0.5 0.8 1.0];

y=[1.0 0.41 0.50 0.61 0.91 2.02 2.46];

plot(x,y,'k')

hold on

p1=polyfit(x,y,3);

f1 = polyval(p1,x);

plot(x,y,'o',x,f1)

hold on

p2=polyfit(x,y,4);

f2= polyval(p2,x);

plot(x,f2,'b')

hold on

p3=polyfit(x,y,5);

f3=polyval(p3,x);

plot(x,f3,'r')

hold off

00.10.20.30.40.50.60.70.80.91

其中黑色为原曲线,绿色为3次多项式的曲线拟合,蓝色为4次多项式的曲线拟合,红色为5次多项式的曲线拟合。

五、实验体会或遇到问题

通过这次课内试验,学会了通过matlab进行插值函数的求解,进一步理解了插值法及函数逼近方法的理论基础,进一步掌握给定数据后应用插值法及函数逼近方法进行数据处理并给出图示结果的实际操作过程,感觉收获很大。

数值计算方法比较

有限差分方法(FDM:Finite Difference Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限差分法主要集中在依赖于时间的问题(双曲型和抛物型方程)。有限差分法方面的经典文献有Richtmeyer & Morton的《Difference Methods for Initial-Value Problems》;R. LeVeque《Finite Difference Method for Differential Equations》;《Numerical Methods for C onservation Laws》。 注:差分格式: (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法: 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限差分法的不足:由于采用的是直交网格,因此较难适应区域形状的任意性,而且区分不出场函数在区域中的轻重缓急之差异,缺乏统一有效的处理自然边值条件和内边值条件的方法,难以构造高精度(指收敛阶)差分格式,除非允许差分方程联系更多的节点(这又进一步增加处理边值条件韵困难)。另外它还有编制不出通用程序的困难。 有限差分法的优点:该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念 直观,表达简单,精度可选而且在一个时间步内,对于一个给定点来说其相关的空间点只是 与该相邻的几点,而不是全部的空间点。是发展较早且比较成熟的数值方法 广义差分法(有限体积法)(GDM:Generalized Difference Method):1953年,Mac—Neal 利用积分插值法(也称积分均衡法)建立了三角网格上的差分格 式,这就是以后通称的不规划网格上的差分法.这种方法的几何误差小,特别是给出了处理自然边值条件(及内边值条件)的有效方法,堪称差分法的一大进步。1978年,李荣华利用有限元空间和对偶单元上特征函数的推广——局部Taylor展式的公项,将积分插值法改写成广义Galerkin法形式,从而将不规则网格差分法推广为广义差分法.其基本思路是,将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

计算方法 课内实验 插值法与函数逼近

《计算方法》课内实验报告 学生姓名:张学阳1009300132 及学号: 学院: 理学院 班级: 数学101 课程名称:计算方法 实验题目:插值法与函数逼近 指导教师 宋云飞讲师 姓名及职称: 朱秀丽讲师 尚宝欣讲师 2012年10月15日

目录 一、实验题目.......................................................... 错误!未定义书签。 二、实验目的.......................................................... 错误!未定义书签。 三、实验内容.......................................................... 错误!未定义书签。 四、实现结果.......................................................... 错误!未定义书签。 五、实验体会或遇到问题 (6)

插值法与函数逼近 二、实验目的 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解插值法及函数逼近方法的理论基础。 3.进一步掌握给定数据后应用插值法及函数逼近方法进行数据处理并给出图示结果的实际操作过程。 三、实验内容 1.已知函数在下列各点的值为 试用4次牛顿插值多项式)(4x P 及三次样条函数)(x S (自然边界条件)对数据进行插值。给出求解过程,并用图给出 (){},10,1,0),()(,08.02.0,,4 ===+=i x S y x P y i x y x i i i i i 及。 2.下列数据点的插值 可以得到平方根函数的近似。 (1)用这9个点作8次多项式插值)(8x L 。 (2)用三次样条(第一类边界条件)插值给出)(x S 。 给出求解过程,在区间[0,64]上作图,从得到的结果看,在区间[0,64]上哪种插值结果更精确?在区间[0,1]上两种插值哪个更精确? 3.由实验给出数据表 试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线。给出求解过程,用图表示实验数据曲线及三种拟合曲线。

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

实验四插值法

实验四、插值法 插值法是函数逼近的一种重要方法,它是数值积分、微分方程数值解等数值计算的基础与工具,其中多项式插值是最常用和最基本的方法。拉格朗日插值多项式的优点是表达式简单明确,形式对称,便于记忆,它的缺点是如果想要增加插值节点,公式必须整个改变,这就增加了计算工作量。而牛顿插值多项式对此做了改进,当增加一个节点时只需在原牛顿插值多项式基础上增加一项,此时原有的项无需改变,从而达到节省计算次数、节约存储单元、应用较少节点达到应有精度的目的。 一、实验目的 1、理解插值的基本概念,掌握各种插值方法,包括拉格朗日插值和牛顿插值等,注意其不同特点; 2、通过实验进一步理解并掌握各种插值的基本算法。 二、Matlab命令和程序 命令poly:创建一个向量,其分量为一个多项式的系数,该多项式具有给定的根。 命令polyval:求多项式的值, 命令 conv: 创建一个向量,其分量为一个多项式的系数,该多项式是另外两个多项式的积 polyval(C,2> >> P=poly(2> P=1 -2

Q=poly(3> Q=1 -3 >> conv(P,Q> ans= 1 -5 6 >> polyval(P,2> ans= 1、拉格朗日插值( 基于N+1个点,计算拉格朗日多项式> function [C,L]=lagran(X,Y> %input --X is a vector that contains a list of abscissasb5E2RGbCAP % Y is a vector that contains a list of ordinatesp1EanqFDPw %output--C is a matrix that contains the coefficient of the lagraneDXDiTa9E3d % interplatory polynomial % -- L is a matrix that contains the Lagrange coefficent polynomialsRTCrpUDGiT w=length(X>。 n=w-1。

MATLAB数值实验一(数据的插值运算及其应用完整版)

佛山科学技术学院 实 验 报 告 课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日 一、实验目的 1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法; 2、讨论插值的Runge 现象 3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。 二、实验原理 1、拉格朗日插值多项式 2、牛顿插值多项式 3、三次样条插值 三、实验步骤 1、用MATLAB 编写独立的拉格朗日插值多项式函数 2、用MATLAB 编写独立的牛顿插值多项式函数 3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形) 4、已知函数在下列各点的值为: 根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2, ,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。 5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数 2 1 (),(11)125f x x x = -≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。 6、下列数据点的插值

可以得到平方根函数的近似,在区间[0,64]上作图。 (1)用这9个点作8次多项式插值8()L x 。 (2)用三次样条(第一边界条件)程序求()S x 。 7、对于给函数2 1 ()125f x x = +在区间[-1,1]上取10.2(0,1, ,10)i x i i =-+=,试求3次 曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。 四、实验过程与结果: 1、Lagrange 插值多项式源代码: function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化 %循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= j mu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end end ya = ya + y(i) * mu ; mu = 1; end 2、Newton 源代码: function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:

数值分析插值算法源程序

#include #include float f(float x) //计算ex的值 { return (exp(x)); } float g(float x) //计算根号x的值 { return (pow(x,0.5)); } void linerity () //线性插值 { float px,x; float x0,x1; printf("请输入x0,x1的值\n"); scanf("%f,%f",&x0,&x1); printf("请输入x的值: "); scanf("%f",&x); px=(x-x1)/(x0-x1)*f(x0)+(x-x0)/(x1-x0)*f(x1); printf("f(%f)=%f \n",x,px); } void second () //二次插值 { float x0,x1,x2,x,px; x0=0; x1=0.5; x2=2; printf("请输入x的值:"); scanf("%f",&x); px=((x-x1)*(x-x2))/((x0-x1)*(x0-x2))*f(x0)+((x-x0)*(x-x2))/((x1-x0)*(x1-x2))*f(x1)+((x-x0)* (x-x1))/((x2-x0)*(x2-x1))*f(x2);

printf("f(%f)=%f\n",x,px); } void Hermite () //Hermite插值 { int i,k,n=2; int flag1=0; printf("Hermite插值多项式H5(x)="); for(i=0;i<=n;i++) { int flag=0; flag1++; if(flag1==1) { printf("y%d[1-2(x-x%d)*(",i,i); } else { printf("+y%d[1-2(x-x%d)*(",i,i); } for(k=0;k<=n;k++) { if(k!=i) { flag++; if(flag==1) { printf("(1/x%d-x%d)",i,k); } else { printf("+(1/x%d-x%d)",i,k);

实验3 插值方法

0实验3 Matlab编程实现Lagrange插值算法 复习: 1、输出一个正整数,求该正整数的阶乘。 函数参考: 2、编写函数实现对任意输入一个向量的排序(向量里的元素从小到大)函数参考:

Lagrange 插值算法 一、理论知识: 1、线性插值 101001011)(y x x x x y x x x x x L ???? ??--+???? ??--= 2、二次插值 2211002)()()()(y x l y x l y x l x L ++= ))(() )(()(2010210x x x x x x x x x l ----= ,) )(())(()(2101201x x x x x x x x x l ----=, ))(())(()(1202102x x x x x x x x x l ----= 3、n 次Lagrange 插值 ∑==+++=n k k k n n n y x l y x l y x l y x l x L 01100)()()()()( ) ())(())(() ())(())(()(111111n k k k k k k o k n k k o k x x x x x x x x x x x x x x x x x x x x x l ----------= +-+- ∑∏=≠=???? ? ?????--=n k k n k j j j k j n y x x x x x L 00)()()( 二、实验题目: 1、 已知11=,24=,39=,用线性和二次插值求5的近似值。 线性插值 你选择的节点是: 你的程序: 插值结果:

计算方法-插值方法实验

实验一插值方法 一. 实验目的 (1)熟悉数值插值方法的基本思想,解决某些实际插值问题,加深对数值插值方法 的理解。 (2)熟悉Matlab 编程环境,利用Matlab 实现具体的插值算法,并进行可视化显示。 二. 实验要求 用Matlab 软件实现Lagrange 插值、分段线性插值、三次Hermite 插值、Aitken 逐步插值算法,并用实例在计算机上计算和作图。 三. 实验内容 1. 实验题目 (1 ) 已 知概 率积 分dx e y x x ?-= 2 2 π 的数据表 构造适合该数据表的一次、二次和三次Lagrange 插值公式,输出公式及其图形,并计算x =0.472时的积分值。 答: ①一次插值公式: 输入下面内容就可以得到一次插值结果 >> X=[0.47,0.48];Y=[0.4937452,0.5027498]; >> x=0.472; >> (x-X(2))/(X(1)-X(2))*Y(1)+(x-X(1))/(X(2)-X(1))*Y(2) ans =0.495546120000000 >> ②两次插值公式为: 输入下面内容就可以得到两次插值结果 >> X=[0.46,0.47,0.48];Y=[0.4846555,0.4937452,0.5027498]; >> x=0.472; >>(x-X(2))*(x-X(3))/((X(1)-X(2))*(X(1)-X(3)))*Y(1)+(x-X(1))*(x-X(3))/((X(2)-X(1))*(X(2)-X(3)))*Y(2)+(x-X(2))*(x-X(1))/((X(3)-X(2))*(X(3)-X(1)))*Y(3) i 0 1 2 3 x 0.46 047 0.48 0.49 y 0.4846555 0.4937452 0.5027498 0.5116683

数值分析(计算方法)实验一

《数值分析》 课程实验指导书 实验一 函数插值方法 一、问题提出 对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n == 。试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。 数据如下: (1) j x 0.4 0.55 0.65 0.80 0.95 1.05 j y 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange 多项式5L ()x ,和分段三次插值多项式,计算(0.596)f ,(0.99)f 的值。(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈ ) (2) j x 1 2 3 4 5 6 7 j y 0.368 0.135 0.050 0.018 0.007 0.002 0.001 试构造Lagrange 多项式6L ()x ,计算的(1.8)f ,(6.15)f 值。(提示:结果为(1.8)0.164762f ≈, (6.15)0.001266f ≈ ) 二、要求 1、 利用Lagrange 插值公式 00,()n n i n k k i i k k i x x L x y x x ==≠??-= ?-??∑∏编写出插值多项式程序; 2、 给出插值多项式或分段三次插值多项式的表达式; 3、 根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何; 4、 对此插值问题用Newton 插值多项式其结果如何。

四、实验分析: Lagrange 插值多项式的表达式: 1,,2,1,)()()(, )()(1111+=--==∏∑+≠=+=n i x x x x x l x l y x L n i j j j i j i n i i i 。 其中)(x l i 被称为插值基函数,实际上是一个n 次多项式。)(x l i 的这种表示具有较好的对称性。公式具有两大优点:(1)求插值多项式,不需要求解线性方程组,当已知数据点较多时,此公式更能显示出优越性。(2)函数值可以用符号形式表示,数据点未确定的纵坐标可用多项式表示。 Newton 插值多项式如下: 10010,()()[,,]()k n n j k k j j k N x f x f x x x x -==≠=+?-∑∏ 其中: 00,0()()[,,]k i k i i j j j i k f x x x f x x ==≠-=∑∏ Newton 插值多项式的优点是:当每增加一个节点时,只增加一项多项式。 三、实验程序及注释 1、m 程序: function [c,l]=lagran(x,y) % x 为n 个节点的横坐标组成的向量,y 为纵坐标所组成的向量 % c 为所得插值函数的系数所组成的向量 w=length(x); n=w-1; l=zeros(w,w); for k=1:n+1 v=1; for j=1:n+1 if k~=j v=conv(v,poly(x(j)))/(x(k)-x(j)); end end l(k,:)=v; end c=y*l; function fi=Lagran_(x,f,xi) fi=zeros(size(xi)); n=length(f); for i=1:n

实验5 插值方法

实验5 插值方法 一、实验目的及意义 [1] 了解插值的基本原理 [2] 了解拉格朗日插值、线性插值、样条插值的基本思想; [3] 了解三种网格节点数据的插值方法的基本思想; [4] 掌握用MATLAB 计算三种一维插值和两种二维插值的方法; [5] 通过范例展现求解实际问题的初步建模过程; 通过自己动手作实验学习如何用插值方法解决实际问题,提高探索和解决问题的能力。通过撰写实验报告,促使自己提炼思想,按逻辑顺序进行整理,并以他人能领会的方式表达自己思想形成的过程和理由。提高写作、文字处理、排版等方面的能力。二、实验内 容 1.编写拉格朗日插值方法的函数M 文件;2.用三种插值方法对已知函数进行插值计算,通过数值和图形输出,比较它们的效果;3.针对实际问题,试建立数学模型,并求解。 三、实验步骤 1.开启软件平台——MATLAB ,开启MATLAB 编辑窗口; 2.根据各种数值解法步骤编写M 文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.写出实验报告,并浅谈学习心得体会。 四、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会) 基础实验 1. 一维插值 利用以下一些具体函数,考察分段线性插值、三次样条插值和拉格朗日多项式插值等三种插值方法的差异。 1) 2 11 x +,x ∈[-5,5]; 2)sin x , x ∈[0,2π]; 3)cos 10 x , x ∈[0,2π]. 注意:适当选取节点及插值点的个数;比较时可以采用插值点的函数值与真实函数值的 差异,或采用两个函数之间的某种距离。 2.高维插值 对于二维插值的几种方法:最邻近插值、分片线性插值、双线性插值、三次插值等,利用如下函数进行插值计算,观察其插值效果变化,得出什么结论? 1) ())(sin ),(px t t x f -=ω,参数p =1/2000~1/200;采样步长为:t =4ms~4s ;

数值分析常用的插值方法

数值分析报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……x n处的值是f(x0),……f(x n),要求估算f(x)在[a,b〕中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0, C1,……C n的函数类Φ(C0,C1,……C n)中求出满足条件P(x i)=f(x i)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……C n)称为插值函数类,上面等式称为插值条件,Φ(C0,……C n)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,,,n x x x L 上的函数值01,,,n y y y L ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =++++L ,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a L 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 20112111 2012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ? ?++++=?L L L L L 其系数矩阵的行列式D 为范德萌行列式: ()20 0021110 2111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏L L M M M M L

计算方法--插值法与拟合实验

实验三 插值法与拟合实验 一、实验目的 1. 通过本实验学会利用程序画出插值函数,并和原图形相比较 2. 通过本实验学会拟合函数图形的画法,并会求平方误差 二、实验题目 1. 插值效果的比较 实验题目:区间[]5,5-10等分,对下列函数分别计算插值节点k x 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较: 2 11)(x x f +=; x x f arctan )(=; 4 41)(x x x f += (1) 做拉格朗日插值; (2) 做三次样条插值. 2. 拟合多项式实验 实验题目:给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形. 三、实验原理 本实验应用了拉格朗日插值程序、三次样条插值程序、多项式拟合程序等实验原理. 四、实验内容 1(1) figure x=-5:0.2:5; y=1./(1+x.^2); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=1./(1+x1.^2); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25);

m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 1(2) x=-5:0.2:5; y=atan(x); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=atan(x1); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25); m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 1(3) x=-5:0.2:5; y=x.^2./(1+x.^4); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=x1.^2./(1+x1.^4); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25); m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 2. x=[-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5]'; y=[-4.45 -0.45 0.55 0.05 -0.44 0.54 4.55]'; plot(x,y,'or'); hold on %三次多项式拟合 p1=mafit(x,y,3);

数值计算方法实验报告

差值法实验日志 实验题目:插值法 实验目的: 1.掌握拉格朗日插值、牛顿插值、分段低次插值和样条插值的方法。 2.对四种插值结果进行初步分析。 实验要求: (1)写出算法设计思想; (2)程序清单; (3)运行的结果; (4)所得图形; (5)四种插值的比较; (6)对运行情况所作的分析以及本次调试程序所取的经验。如果程序未通过,应分析其原因。 实验主要步骤: 1.已知函数) f满足: (x x0.0 0.1 0.195 0.3 0.401 0.5 f(0.39894 0.39695 0.39142 0.38138 0.36812 x ) 0.35206 (1)用分段线性插值; 打开MATLAB,按以下程序输入: x0=-5:5; y0=1./(1+x0.^2); x=-5:0.1:5; y=1./(1+x.^2); y1=lagr(x0,y0,x); y2=interp1(x0,y0,x); y3=spline(x0,y0,x);

for k=1:11 xx(k)=x(46+5*k); yy(k)=y(46+5*k); yy1(k)=y1(46+5*k); yy2(k)=y2(46+5*k); yy3(k)=y3(46+5*k); end [xx;yy;yy2;yy3]' z=0*x; plot(x,z,x,y,'k--',x,y2,'r') plot(x,z,x,y,'k--',x,y1,'r') pause plot(x,z,x,y,'k--',x,y3,'r') 回车得以下图形:

(2) 拉格朗日插值。 创建M 文件,建立lagr 函数: function y=lagr1(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end 新建一个M 文件,输入: x0=[0.0 0.1 0.195 0.3 0.401 0.5]; y0=[0.39894 0.39695 0.39142 0.38138 0.36812 0.35206]; x=0.0:0.01:0.5; y1=lagr1(x0,y0,x); 00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

实验四 Lagrange函数插值方法(新)

实验四 Lagrange函数插值方法 一、问题提出 对于给定的一元函数的n+1个节点值 。试用Lagrange公式求其插值多项式或分段二次Lagrange 插值多项式。 数据如下: 试构造Lagrange多项式L,计算和的值。 二、要求 1、利用Lagrange插值公式 编写出插值多项式程序; 2、给出插值多项式或分段三次插值多项式的表达式; 3、根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何; 4、对此插值问题用Newton插值多项式其结果如何。 三、目的和意义 1、学会常用的插值方法,求函数的近似表达式,以解决其它实际问题; 2、明确插值多项式和分段插值多项式各自的优缺点; 3、熟悉插值方法的程序编制; 4、如果绘出插值函数的曲线,观察其光滑性。 四、实验源代码 #include #define N 7 float x[] = {1,2,3,4,5,6,7}; float y[] = {0.368,0.135,0.050,0.018,0.007,0.002,0.001}; float p(float xx)

{ int i,k; _______________ for( i=0; i

计算方法实验一

江苏科技大学 电子信息学院 实验报告 实验名称:插值方法 学号:姓名:班级: 完成日期:2014年10月20日

实验一 插值方法 一、实验目的及意义 [1] 了解插值的基本原理 [2] 了解拉格朗日插值、线性插值、样条插值的基本思想; [3] 了解三种网格节点数据的插值方法的基本思想; [4] 掌握用MATLAB 计算三种一维插值和两种二维插值的方法; [5] 通过范例展现求解实际问题的初步建模过程; 通过自己动手作实验学习如何用插值方法解决实际问题,提高探索和解决问题的能力。通过撰写实验报告,促使自己提炼思想,按逻辑顺序进行整理,并以他人能领会的方式表达自己思想形成的过程和理由。提高写作、文字处理、排版等方面的能力。 二、实验内容 1.用MATLAB 或Visual C++实现拉格朗日插值方法;2.用三种插值方法对已知函数进行插值计算,通过数值和图形输出,比较它们的效果;3.针对实际问题,试建立数学模型, 并求解。 三、实验步骤 1.开启软件平台——MATLAB 或Visual C++,开启其编辑窗口; 2.根据各种数值解法步骤编写成代码文件; 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.写出实验报告,并浅谈学习心得体会。 四、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会) 基础实验 1. 一维插值 利用以下一些具体函数,考察分段线性插值、三次样条插值和拉格朗日多项式插值等三种插值方法的差异。 1) 2 11 x +,x ∈[-5,5]; 2)sin x , x ∈[0,2π]; 3)cos 10 x , x ∈[0,2π]. 注意:适当选取节点及插值点的个数;比较时可以采用插值点的函数值与真实函数值的 差异,或采用两个函数之间的某种距离。 附上你的源代码和比较结果。

计算方法实验报告 插值

实验名称:插值计算 1引言 在生产和科研中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。 设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn. 插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。 通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。 2实验目的和要求 用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函 数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。

3算法描述 1.分段线性插值流程图

2.分段二次插值流程图

3.拉格朗日插值流程图

4程序代码及注释 1.分段线性插值

数值分析常用的插值方法

数值分析 报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上 n+1 个互不相同点x 0,x 1 (x) n 处的值是f(x ),……f(x n ),要求估算f(x)在[a,b〕 中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C , C 1,……C n 的函数类Φ(C ,C 1 ,……C n )中求出满足条件P(x i )=f(x i )(i=0,1,…… n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x 0,x 1 ,……xn 称为插值结(节)点,Φ(C 0,C 1 ,……C n )称为插值函数类,上面等式称为插值条件, Φ(C 0,……C n )中满足上式的函数称为插值函数,R(x)= f(x)-P(x)称为 插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,, ,n x x x 上的函数值01,, ,n y y y ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =+++ +,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 201121112012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?+++ +=?++++=??? ?+++ +=? 其系数矩阵的行列式D 为范德萌行列式: () 200021110 2 111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏

相关主题
文本预览
相关文档 最新文档