当前位置:文档之家› (完整版)微生物学第六章微生物的代谢

(完整版)微生物学第六章微生物的代谢

(完整版)微生物学第六章微生物的代谢
(完整版)微生物学第六章微生物的代谢

第十四授课单元

一、教学目的

使学生了解呼吸与发酵作用,重点讲解微生物代谢的特殊性,联系在食品和发酵生产上的应用,注意体现微生物不同发酵类型及代谢的特点。

二、教学内容(第六章微生物的新陈代谢

第一节微生物的产能代谢)

1. 代谢概论简单介绍新陈代谢的概念,同化作用和异化作用。

2. 微生物的产能代谢:重点介绍化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸,

3. 介绍乙醇发酵(酵母菌的乙醇发酵途径和运动发酵单胞菌的乙醇发酵途径)、乳酸发酵(同型乳酸发酵和异型乳酸发酵)、甘油发酵、丙酮丁醇发酵、混合酸发酵及丁二醇发酵;

三、教学重点、难点及处理方法

重点:化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸,介绍乙醇发酵(酵母菌的乙醇发酵途径和运动发酵单胞菌的乙醇发酵途径)、乳酸发酵(同型乳酸发酵和异型乳酸发酵)、甘油发酵、丙酮丁醇发酵、混合酸发酵及丁二醇发酵;由于学生在生物化学课程中已经学过各种代谢途径,因此在微生物学中不再作为重点讲解。本章内容主要使学生了解呼吸与发酵作用,重点讲解微生物代谢的特殊性,联系在食品和发酵生产上的应用,注意体现微生物不同发酵类型及代谢的特点。

难点: 化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸的区别。尤其是发酵的概念, 学生只是在现实生活中知道这个名词, 但是不清楚其确切的生物学含义, 指在能量代谢或生物氧化中,在无氧条件下,底物(有机物)氧化释放的氢(或电子)不经呼吸链传递,而直接交给某种未完全氧化的中间产物的一类低效产能过程。实质: 底物水平磷酸化产生ATP. 另外, 联系食品和发酵生产上应用的发酵类型及代谢特点更有助于学生理解发酵的概念实质及发酵的特点.

有氧呼吸与无氧呼吸的概念, 并介绍无氧呼吸中硝酸根(反硝化作用)、硫酸根作为最终电子受体的呼吸特点,介绍不同呼吸类型的微生物。介绍化能自养微生物的生物氧化特点,光能自养微生物的光合磷酸化途径(循环光合磷酸化、非循环光合磷酸化和嗜盐菌紫膜的光合作用)。

四、板书设计

第六章微生物的新陈代谢

第一节代谢概论

能量代谢的中心任务,是生物体如何把外界环境中的多种形式的

最初能源转换成对一切生命活动都能使用的通用能源------ATP。

这就是产能代谢。

有机物化能异养微生物

最初

能源还原态无机物化能自养微生物通用能源ATP

日光: 光能营养微生物

第二节糖的代谢

一.生物氧化(biological

生物氧化就是发生在活细胞内的一切产能性氧化反应的总称

生物氧化的三种形式:与氧结合、脱氢或脱电子

生物氧化的功能:产能(A TP)、产还原力[H]和产小分子中间代谢物

二、化能异养微生物的生物氧化

根据氧化还原反应中最终电子受体或氢受体的不同,可把生物氧化分为3种类型:

发酵没有外源电子受体参与,通常以分解代谢产生的中间产物如丙酮酸

作为电子受体。

化能异养微生物

的产能方式有氧呼吸:

呼吸

无氧呼吸:

1. 发酵(fermentation)

广义的“发酵”,

指利用微生物生产有用代谢产物的一种生产方式。

狭义的“发酵”,

指在能量代谢或生物氧化中,在无氧条件下,底物(有机物)氧化释放的氢(或电子)不经呼吸链传递,而直接交给某种未完全氧化的中间产物的一类低效产能过程。

实质: 底物水平磷酸化产生A TP

特点:底物氧化不彻底,产能水平低;积累各种中间代谢产物不可缺少的途径。

(1)乙醇发酵

多种微生物(如酵母菌,根霉,曲霉,某些细菌)能通过称为乙醇发酵的过程,将糖转变成乙醇和CO2

1)酵母菌进行的乙醇发酵

2)细菌进行的酒精发酵(运动发酵单胞菌)ED途径

3)甘油发酵(酵母菌)

4)丙酮、丁醇发酵

5)乳酸发酵

由于菌体内酶系不同,乳酸菌的代谢途径分三种类型:

?同型乳酸发酵途径:产物只有乳酸(德氏乳杆菌,植物乳杆菌)

?异型乳酸发酵途径:产物除了乳酸,还有乙醇(或乙酸)等产物

?双歧途径:双歧杆菌

6)混合酸发酵(大肠杆菌)甲基红反应(M.R)阳性

7)丁二醇发酵丁二醇发酵的中间产物3-羟基丁酮是V.P试验的物质基础

8)氨基酸的发酵产能——Stickland反应

2. 呼吸作用与发酵作用的根本区别:

电子载体不是将电子直接传递给底物降解的中间产物,而是交给电子传递系统,逐步释放出能量后再交给最终电子受体

呼吸作用的实质:

?最终电子受体是外源物质(氧气或氧化型化合物);

?产能方式是氧化磷酸化;

A. 电子传递链:

由一系列按氧化还原电位由低到高顺序排列起来的氢(电子)传递体组成。

两个功能:

1)传递氢或电子;

2)储存氢或电子传递过程释放的能量,用于合成ATP;

B. 氧化磷酸化:

指呼吸链在传递氢(电子)过程中释放的能量与ADP磷酸化偶联产生ATP的过程。

化学渗透假说(生化中学过, 此处复习)

3. 呼吸作用

(1) 有氧呼吸

由于葡萄糖在有氧呼吸中产生的能量要高于发酵中产生的能量,即微生物在有氧呼吸过程中,利用较少的糖而能获得厌氧条件下相同量的ATP。

酿酒酵母等既可利用发酵产能,又可利用呼吸产能的兼性厌氧微生物,在有氧条件下终止厌氧发酵而转向有氧呼吸,这种呼吸抑制发酵(或氧抑制糖酵解)的现象称为巴斯德效应(Pasteur effect)。由此降低了葡萄糖的消耗,并抑制了乙醇的产生。

1)定义

呼吸链末端的电子受体是O2的一种生物氧化

2)微生物:

大多数细菌,几乎所有的放线菌和真菌

3)特点:

–好氧和兼性厌氧微生物在有氧条件下进行的产能代谢;

–通过电子传递链传递电子,通过氧化磷酸化产能;

–底物(氧化基质)是有机物,最终电子受体是O2 ;

–底物氧化彻底,产能效率高。

(2)无氧呼吸

1)定义:

呼吸链末端的氢或电子受体是外源无机氧化物(少数为有机氧化物)的生物氧化。

?无机物:NO3-、NO2-、SO42-、S2O32-、S、CO2

?有机物:延胡索酸(fumarate),罕见

2)类型

根据末端氢(电子)受体的不同,无氧呼吸分为多种类型:

?硝酸盐呼吸

?硫酸盐呼吸

?硫呼吸

?铁呼吸

?碳酸盐呼吸

?延胡索酸呼吸等

反硝化作用:

指NO3-被还原成NO2-,再逐步还原成NO、N2O和N2的过程,

能进行硝酸盐呼吸的细菌被称为硝酸盐还原细菌(又称反硝化细菌),主要生活在土壤和水环境中,如地衣芽孢杆菌、铜绿假单胞菌、依氏螺菌、脱氮副球菌、脱氮硫杆菌和生丝微菌属中的一些成员等。

大肠杆菌也是一种反硝化细菌,但它只能将NO3-还原成NO2- 。

三.自养微生物的生物氧化( 自学)

1. 化能自养型

从对无机物的生物氧化过程中获得生长所需要能量的微生物一般都是化能自养型微生物。

(1)氨的氧化

亚硝化细菌(亚硝化假单胞菌属,硝化螺菌属):

硝化细菌(硝化杆菌属,硝化球菌属)

(2)硫的氧化

(3)铁的氧化

(4)氢的氧化

2.光能自养微生物

(1)环式光合磷酸化

(2)非环式光合磷酸化

(3)嗜盐菌紫膜的光合作用

思考题:

1.“M”是一种硝酸盐还原菌(反硝化细菌),在无氧、有NO3-的环境中生长,试回答:(1)何为碳源物质?(2)何为能源物质?

(3)以何种方式产生ATP?(4)NO3-的生理功能是什么?

2.试述不同条件下各营养类型微生物产ATP和NAD (P)H 的方式。

第十五授课单元

一、教学目的

1.理解微生物调节代谢流的两种主要方式及其特点

2.掌握反馈抑制的类型及特点

3.理解酶合成调节的两种方式

4.了解乳糖操纵子的结构及其调节方式

5.理解代谢调控在发酵工业中的一些应用

二、教学内容

二、糖的合成代谢

第三节氨基酸和蛋白质代谢

一、蛋白质的分解

二、氨基酸的分解

三、氨基酸的合成

第四节脂类代谢

第五节微生物代谢调控与发酵

生产

一、酶活力的调节

二、酶合成的调节

三、代谢调控在发酵工业中应用

三、教学重点、难点及处理

重点:

1.微生物调节代谢流的两种主要方式:

微生物细胞的代谢调节方式很多,其中酶的调节是代谢最本质的调节。在酶的调节中又以调节代谢流的方式最为重要,它包括两个方面,一是“粗调”,即调节酶分子的合成或降解以改变酶分子的含量,二是“细调”,即通过激活或抑制以改变细胞内已有酶分子的催化活力,两者往往密切配合和协调,以达到最佳的调节效果。

酶活性的调节:非常迅速的调节机制

酶化学水平上发生变构调节(分子构象改变)

修饰调节(分子结构改变)

包括酶的激活

酶的抑制

酶量的调节:比较慢的调节机制

遗传水平上发生(原核生物的基因调控主要发生在转录水平)

包括酶合成的诱导

酶合成的阻遏机制

2. 反馈抑制的类型

每个代谢途径都至少有一个定步酶,催化代谢途径中的限速反应,一般是代谢途径中第一步反应的催化酶。代谢途径的终产物常抑制第一步反应的可调控酶的活性,此调控称为反馈抑制。反馈抑制这种调节方式可以分为直线式代谢途径中的反馈抑制和分支代谢途径中的反馈抑制两大类。

2.1 直线式代谢途径中的反馈抑制

这是一种最简单的反馈抑制类型。例如E.coli在合成异亮氨酸时。因合成产物过多可抑制途径中的第一个酶——苏氨酸脱氨酶的活性,从而使α-酮丁酸及其后一系列中间代谢物都无法合成,最终导致异亮氨酸合成的停止。

2.2.分支代谢途径的反馈抑制:

(1)同功酶调节

分支途径中的第一个酶有几种同工酶,每一种代谢终产物只对一种同工酶具有反馈抑制作用,只有当几种终产物同时过量时,才能完全阻止反应的进行。

例:大肠杆菌天冬氨酸族氨基酸的合成(有3个天冬氨酸激酶催化途径的第一个反应,

分别受赖氨酸、苏氨酸及甲硫氨酸的调节)

(2)协同反馈抑制,或称“多价反馈抑制”

只有当几个末端产物同时过量,才对途径中的第一个酶具有抑制作用。

例:谷氨酸棒杆菌、黄色短杆菌、多粘芽孢杆菌合成赖氨酸、苏氨酸及甲硫氨酸途径中,关键酶天冬氨酸激酶不是同工酶,而是单一的。该酶在赖氨酸、苏氨酸、甲硫氨酸或异亮氨酸等任何一种单独存在时,不受抑制,只是赖氨酸和苏氨酸同时过量时才对天冬氨酸激酶发生协同反馈抑制。

(3)合作反馈抑制,又称“增效反馈抑制”

当任何一个末端产物单独过剩时,只部分反馈抑制第一个酶的活性,而当二个末端产物同时过剩时,对第一个酶产生强烈抑制,其抑制程度大于各自单独抑制效果之和。

(4)累积反馈抑制

在分支代谢途径中,任何一种末端产物过量时都对共同途径的第一个酶起部分的抑制作用,且各末端产物的抑制作用互不干扰。当末端产物同时过量时,它们的抑制作用是累积的。

例:大肠杆菌的谷氨酰胺合成酶受8个最终产物的积累反馈抑制。

(5)顺序反馈抑制

例:枯草芽孢杆菌合成芳香族氨基酸的代谢途径

3. 酶合成的调节

酶合成的调节是一种通过调节酶的合成量进而调节代谢速率的调节机制,这是一种基因水平上的代谢调节。由代谢终产物抑制酶合成的负反馈作用称为反馈阻遏(repression)。反之,代谢终产物促进酶生物合成的现象,称为诱导作用(induction)。与上述调节酶活性的反馈抑制等相比,调节酶的合成(即产酶量)而实现代谢调节的方式是一类较间接而缓慢的调节方式。其优点是通过阻止酶的过量合成,节约生物合成的原料和能量。在正常代谢途径中,酶活性调节和酶合成调节两者是同时存在且密切配合、协调进行的。

3.1 酶合成调节的机制

微生物不仅能够通过酶活性对代谢进行控制,而且还能够通过控制基因组的表达来控制酶的合成,从而实现对细胞代谢的控制。酶合成调节主要通过酶合成的诱导和阻遏来调节的。操纵子模型能较好地解释酶合成的诱导和阻遏现象。

操纵子由三部分组成:启动子,操作子,结构基因(功能相关的一组基因)

细菌操纵子的调控是在调节基因编码的调节蛋白作用下进行的。

酶合成的诱导:

调节基因产生的阻遏蛋白可以与操纵子结合,因此关闭了转录。当培养基中加入诱导物时,诱导物与阻遏蛋白结合,阻止了阻遏蛋白与操纵基因的结合,操纵子开放,结构基因转录。

大肠杆菌乳糖操纵子:

lac Z,lac Y,lac A分别编码β–半乳糖苷酶, β–半乳糖苷透性酶,乙酰基转移酶

在缺乏乳糖等诱导物时,阻遏蛋白结合在操纵基因上,抑制结构基因的转录;

当乳糖存在时,乳糖与阻遏蛋白结合,使其发生构象变化而不能与操纵基因结合,结构基因就能转录和转译。

酶合成的阻遏

调节基因编码的阻遏蛋白不能结合在操纵子部位上,当辅阻遏物与阻遏蛋白结合后,改变了阻遏蛋白的构象,使之能与启动子附近的操纵基因结合,终止结构基因的转录。

色氨酸操纵子的阻遏是对合成代谢酶类进行正调节的例子。

大肠杆菌的色氨酸操纵子:含5个结构基因,编码色氨酸生物合成途径的各种酶

当色氨酸(辅阻遏物)丰富时,结合到游离的阻遏物上诱发变构转换,使阻遏物结合在

操纵区;

当色氨酸不足时,阻遏物失去了所结合的色氨酸,从操纵区解离下来,trp操纵子开始转录。

4. 代谢调控在发酵工业的应用

代谢控制发酵的基本思想就是要打破微生物自身的代谢调节控制机制,使其能够大量积累某种代谢产物,具体的措施主要从以下几方面入手。

4.1 解除菌体自身的反馈调节:

4.1.1 选育代谢拮抗物抗性突变株

选育代谢拮抗物抗性突变菌株是代谢控制发酵的主要方法。

例如,当把钝齿棒杆菌(Corymebacterium crenaturn)培养在含苏氨酸和异亮氨酸的结构类似物α-氨基-β-羟基戊酸(AHV)的培养基上时,由于AHV可干扰该菌的高丝氨酸脱氢酶、苏氨酸脱氢酶以及二羧酸脱水酶,所以抑制了该菌的正常生长。如果采用诱变后所获得的抗AHV突变株进行发酵,就能分泌较多的苏氨酸和异亮氨酸。这是因为,该突变株的高丝氨酸脱氢酶或苏氨酸脱氢酶和二羧酸脱水酶的结构基因发生了突变,故不再受苏氨酸或异亮氨酸的反馈抑制,于是就有大量的苏氯酸和异亮氨酸的累积。

4.1.2 选育营养缺陷型菌株(切断支路代谢)

(1)赖氨酸发酵

工业上选育高丝氨酸营养缺陷型(Hom-)的谷氨酸棒杆菌作为赖氨酸的发酵菌株。由于它不能合成高丝氨酸脱氢酶(HSDH),故不能合成高丝氨酸,①阻断了合成Met和Thr 的支路代谢,节省了原料,使天冬氨酸半醛这个中间产物全部转入Lys的合成;②在补给适量高丝氨酸(或苏氨酸和甲硫氨酸)的条件下,使Met和Thr的生成有限,从而解除了Thr 和Lys对天冬氨酸激酶(AK)的协同反馈抑制,使Lys得以积累;能产生大量赖氨酸。(2)肌苷酸发酵

该菌的一个腺苷酸琥珀酸合成酶(酶12)缺失的腺嘌呤缺陷型,如在培养基中补充少量AMP就可正常生长并累积IMP。

①腺嘌呤营养缺陷型菌株(Ade-):

即丧失SAMP合成酶的突变株,切断IMP SAMP的支路代谢,可通过限量添加腺嘌呤,解除腺嘌呤对关键酶PRPP转酰胺酶的反馈抑制和阻遏,有利于IMP(肌苷的直接前体物)的积累。

②选育黄嘌呤缺陷型(Xan- )或鸟嘌呤缺陷型(Gu-)

4.1.3选育营养缺陷型回复突变株

4.1.4选育渗漏缺陷型突变株

4.2 增加前体物

增加目标产物的前体物的合成,可以为目标代谢物合成途径供给更多的“原料”,使目标代谢物大量积累。

去除代谢终产物

其他措施

难点及处理:

1. 酶合成的调节

酶合成的调节是一种通过调节酶的合成量进而调节代谢速率的调节机制,这是一种基因水平上的代谢调节。这种调节涉及到基因组的结构、转录、翻译和基因的表达调控,因此需

要同学们具备完整的分子生物学知识。而同学们此时只是从生物化学了解了一点这方面的知识。因此,讲解这种调节方式时,不可能讲解太多,否则学生不能接受。所以,选择从两个典型的操纵子:大肠杆菌乳糖操纵子和色氨酸操纵子来讲解酶合成的诱导机制和酶合成的阻遏机制,从而改变酶量。

首先讲解操纵子的结构和调节方式,然后通过大肠杆菌乳糖操纵子和色氨酸操纵子来具体说明。

操纵子的结构:启动子,操作子,结构基因(功能相关的一组基因)

细菌操纵子的调控是在调节基因编码的调节蛋白作用下进行的,分为诱导和阻遏两种。

大肠杆菌乳糖操纵子对酶合成的诱导:

lac Z,lac Y,lac A分别编码β–半乳糖苷酶, β–半乳糖苷透性酶,乙酰基转移酶

在缺乏乳糖等诱导物时,阻遏蛋白结合在操纵基因上,抑制结构基因的转录;

当乳糖存在时,乳糖与阻遏蛋白结合,使其发生构象变化而不能与操纵基因结合,结构基因就能转录和转译。

色氨酸操纵子的阻遏是对酶合成的阻遏的例子。

大肠杆菌的色氨酸操纵子:含5个结构基因,编码色氨酸生物合成途径的各种酶

当色氨酸(辅阻遏物)丰富时,结合到游离的阻遏物上诱发变构转换,使阻遏物结合在操纵区;

当色氨酸不足时,阻遏物失去了所结合的色氨酸,从操纵区解离下来,trp操纵子开始转录。

四、教学方法与手段

本节知识是与实践联系很紧密的。工业中的许多产品的生产,都以发酵产物的代谢调控为基础。因此,可以通过生产中的具体例子,生动地讲解调控的类型。

五、板书设计

二、糖的合成代谢

第三节氨基酸和蛋白质代谢

一、蛋白质的分解

二、氨基酸的分解

三、氨基酸

第四节脂类代谢

第五节微生物代谢调控与发酵生产

1.微生物调节代谢流的两种主要方式:

酶活性的调节:非常迅速的调节机制

酶化学水平上发生变构调节(分子构象改变)

修饰调节(分子结构改变)

包括酶的激活

酶的抑制

酶量的调节:比较慢的调节机制

遗传水平上发生(原核生物的基因调控主要发生在转录水平)

包括酶合成的诱导

酶合成的阻遏机制

2. 反馈抑制的类型

2.1 直线式代谢途径中的反馈抑制

2.2.分支代谢途径的反馈抑制:

(1)同功酶调节:大肠杆菌天冬氨酸族氨基酸的合成

(2)协同反馈抑制,或称“多价反馈抑制”:谷氨酸棒杆菌、黄色短杆菌、多粘芽孢杆菌合成赖氨酸

(3)合作反馈抑制,又称“增效反馈抑制”:

(4)累积反馈抑制

例:大肠杆菌的谷氨酰胺合成酶受8个最终产物的积累反馈抑制。

(5)顺序反馈抑制

例:枯草芽孢杆菌合成芳香族氨基酸的代谢途径

3. 酶合成的调节

3.1 酶合成调节的机制

操纵子:启动子,操作子,结构基因(功能相关的一组基因)

3.2酶合成的诱导:

大肠杆菌乳糖操纵子:

lac Z,lac Y,lac A分别编码β–半乳糖苷酶, β–半乳糖苷透性酶,乙酰基转移酶

在缺乏乳糖等诱导物时,阻遏蛋白结合在操纵基因上,抑制结构基因的转录;

当乳糖存在时,乳糖与阻遏蛋白结合,使其发生构象变化而不能与操纵基因结合,结构基因就能转录和转译。

酶合成的阻遏

大肠杆菌的色氨酸操纵子:含5个结构基因,编码色氨酸生物合成途径的各种酶

当色氨酸(辅阻遏物)丰富时,结合到游离的阻遏物上诱发变构转换,使阻遏物结合在操纵区;

当色氨酸不足时,阻遏物失去了所结合的色氨酸,从操纵区解离下来,trp操纵子开始转录。

4. 代谢调控在发酵工业的应用

4.1 解除菌体自身的反馈调节:

4.1.1 选育代谢拮抗物抗性突变株

例如,选育抗AHV钝齿棒杆菌的突变株生产苏氨酸和异亮氨酸

4.1.2 选育营养缺陷型菌株(切断支路代谢)

(1)赖氨酸发酵

(2)肌苷酸发酵

①腺嘌呤营养缺陷型菌株(Ade-):

②选育黄嘌呤缺陷型(Xan- )或鸟嘌呤缺陷型(Gu-)

4.1.3选育营养缺陷型回复突变株

4.1.4选育渗漏缺陷型突变株

4.2 增加前体物

3.3去除代谢终产物

3.4其他措施

六思考题

1.微生物调节代谢流的类型

2.反馈抑制的类型

3.操纵子的结构与调节方式

4.根据代谢调节理论,如何获得一株生产赖氨酸(或苏氨酸)的高产菌株?

第十五授课单元

一、教学目的

1.理解微生物调节代谢流的两种主要方式及其特点

2.掌握反馈抑制的类型及特点

3.理解酶合成调节的两种方式

4.了解乳糖操纵子的结构及其调节方式

5.理解代谢调控在发酵工业中的一些应用

二、教学内容

二、糖的合成代谢

第三节氨基酸和蛋白质代谢

一、蛋白质的分解

二、氨基酸的分解

三、氨基酸的合成

第四节脂类代谢

第五节微生物代谢调控与发酵

生产

一、酶活力的调节

二、酶合成的调节

三、代谢调控在发酵工业中应用

三、教学重点、难点及处理

重点:

1.微生物调节代谢流的两种主要方式:

微生物细胞的代谢调节方式很多,其中酶的调节是代谢最本质的调节。在酶的调节中又以调节代谢流的方式最为重要,它包括两个方面,一是“粗调”,即调节酶分子的合成或降解以改变酶分子的含量,二是“细调”,即通过激活或抑制以改变细胞内已有酶分子的催化活力,两者往往密切配合和协调,以达到最佳的调节效果。

酶活性的调节:非常迅速的调节机制

酶化学水平上发生变构调节(分子构象改变)

修饰调节(分子结构改变)

包括酶的激活

酶的抑制

酶量的调节:比较慢的调节机制

遗传水平上发生(原核生物的基因调控主要发生在转录水平)

包括酶合成的诱导

酶合成的阻遏机制

2. 反馈抑制的类型

每个代谢途径都至少有一个定步酶,催化代谢途径中的限速反应,一般是代谢途径中第一步反应的催化酶。代谢途径的终产物常抑制第一步反应的可调控酶的活性,此调控称为反馈抑制。反馈抑制这种调节方式可以分为直线式代谢途径中的反馈抑制和分支代谢途径中的反馈抑制两大类。

2.1 直线式代谢途径中的反馈抑制

这是一种最简单的反馈抑制类型。例如E.coli在合成异亮氨酸时。因合成产物过多可抑制途径中的第一个酶——苏氨酸脱氨酶的活性,从而使α-酮丁酸及其后一系列中间代谢物都无法合成,最终导致异亮氨酸合成的停止。

2.2.分支代谢途径的反馈抑制:

(1)同功酶调节

分支途径中的第一个酶有几种同工酶,每一种代谢终产物只对一种同工酶具有反馈抑制作用,只有当几种终产物同时过量时,才能完全阻止反应的进行。

例:大肠杆菌天冬氨酸族氨基酸的合成(有3个天冬氨酸激酶催化途径的第一个反应,分别受赖氨酸、苏氨酸及甲硫氨酸的调节)

(2)协同反馈抑制,或称“多价反馈抑制”

只有当几个末端产物同时过量,才对途径中的第一个酶具有抑制作用。

例:谷氨酸棒杆菌、黄色短杆菌、多粘芽孢杆菌合成赖氨酸、苏氨酸及甲硫氨酸途径中,关键酶天冬氨酸激酶不是同工酶,而是单一的。该酶在赖氨酸、苏氨酸、甲硫氨酸或异亮氨酸等任何一种单独存在时,不受抑制,只是赖氨酸和苏氨酸同时过量时才对天冬氨酸激酶发生协同反馈抑制。

(3)合作反馈抑制,又称“增效反馈抑制”

当任何一个末端产物单独过剩时,只部分反馈抑制第一个酶的活性,而当二个末端产物同时过剩时,对第一个酶产生强烈抑制,其抑制程度大于各自单独抑制效果之和。

(4)累积反馈抑制

在分支代谢途径中,任何一种末端产物过量时都对共同途径的第一个酶起部分的抑制作用,且各末端产物的抑制作用互不干扰。当末端产物同时过量时,它们的抑制作用是累积的。

例:大肠杆菌的谷氨酰胺合成酶受8个最终产物的积累反馈抑制。

(5)顺序反馈抑制

例:枯草芽孢杆菌合成芳香族氨基酸的代谢途径

3. 酶合成的调节

酶合成的调节是一种通过调节酶的合成量进而调节代谢速率的调节机制,这是一种基因水平上的代谢调节。由代谢终产物抑制酶合成的负反馈作用称为反馈阻遏(repression)。反之,代谢终产物促进酶生物合成的现象,称为诱导作用(induction)。与上述调节酶活性的反馈抑制等相比,调节酶的合成(即产酶量)而实现代谢调节的方式是一类较间接而缓慢的调节方式。其优点是通过阻止酶的过量合成,节约生物合成的原料和能量。在正常代谢途径中,酶活性调节和酶合成调节两者是同时存在且密切配合、协调进行的。

3.1 酶合成调节的机制

微生物不仅能够通过酶活性对代谢进行控制,而且还能够通过控制基因组的表达来控制酶的合成,从而实现对细胞代谢的控制。酶合成调节主要通过酶合成的诱导和阻遏来调节的。操纵子模型能较好地解释酶合成的诱导和阻遏现象。

操纵子由三部分组成:启动子,操作子,结构基因(功能相关的一组基因)

细菌操纵子的调控是在调节基因编码的调节蛋白作用下进行的。

酶合成的诱导:

调节基因产生的阻遏蛋白可以与操纵子结合,因此关闭了转录。当培养基中加入诱导物时,诱导物与阻遏蛋白结合,阻止了阻遏蛋白与操纵基因的结合,操纵子开放,结构基因转录。

大肠杆菌乳糖操纵子:

lac Z,lac Y,lac A分别编码β–半乳糖苷酶, β–半乳糖苷透性酶,乙酰基转移酶

在缺乏乳糖等诱导物时,阻遏蛋白结合在操纵基因上,抑制结构基因的转录;

当乳糖存在时,乳糖与阻遏蛋白结合,使其发生构象变化而不能与操纵基因结合,结构基因就能转录和转译。

酶合成的阻遏

调节基因编码的阻遏蛋白不能结合在操纵子部位上,当辅阻遏物与阻遏蛋白结合后,改

变了阻遏蛋白的构象,使之能与启动子附近的操纵基因结合,终止结构基因的转录。

色氨酸操纵子的阻遏是对合成代谢酶类进行正调节的例子。

大肠杆菌的色氨酸操纵子:含5个结构基因,编码色氨酸生物合成途径的各种酶

当色氨酸(辅阻遏物)丰富时,结合到游离的阻遏物上诱发变构转换,使阻遏物结合在操纵区;

当色氨酸不足时,阻遏物失去了所结合的色氨酸,从操纵区解离下来,trp操纵子开始转录。

2. 反馈抑制的类型

每个代谢途径都至少有一个定步酶,催化代谢途径中的限速反应,一般是代谢途径中第一步反应的催化酶。代谢途径的终产物常抑制第一步反应的可调控酶的活性,此调控称为反馈抑制。反馈抑制这种调节方式可以分为直线式代谢途径中的反馈抑制和分支代谢途径中的反馈抑制两大类。

2.1 直线式代谢途径中的反馈抑制

这是一种最简单的反馈抑制类型。例如E.coli在合成异亮氨酸时。因合成产物过多可抑制途径中的第一个酶——苏氨酸脱氨酶的活性,从而使α-酮丁酸及其后一系列中间代谢物都无法合成,最终导致异亮氨酸合成的停止(图6-50)。

2.2.分支代谢途径的反馈抑制:

(1)同功酶调节

分支途径中的第一个酶有几种同工酶,每一种代谢终产物只对一种同工酶具有反馈抑制作用,只有当几种终产物同时过量时,才能完全阻止反应的进行。

例:大肠杆菌天冬氨酸族氨基酸的合成(有3个天冬氨酸激酶催化途径的第一个反应,分别受赖氨酸、苏氨酸及甲硫氨酸的调节)

(2)协同反馈抑制,或称“多价反馈抑制”

只有当几个末端产物同时过量,才对途径中的第一个酶具有抑制作用。

例:谷氨酸棒杆菌、黄色短杆菌、多粘芽孢杆菌合成赖氨酸、苏氨酸及甲硫氨酸途径中,关键酶天冬氨酸激酶不是同工酶,而是单一的。该酶在赖氨酸、苏氨酸、甲硫氨酸或异亮氨酸等任何一种单独存在时,不受抑制,只是赖氨酸和苏氨酸同时过量时才对天冬氨酸激酶发生协同反馈抑制。

(3)合作反馈抑制,又称“增效反馈抑制”

当任何一个末端产物单独过剩时,只部分反馈抑制第一个酶的活性,而当二个末端产物同时过剩时,对第一个酶产生强烈抑制,其抑制程度大于各自单独抑制效果之和。

(4)累积反馈抑制

在分支代谢途径中,任何一种末端产物过量时都对共同途径的第一个酶起部分的抑制作用,且各末端产物的抑制作用互不干扰。当末端产物同时过量时,它们的抑制作用是累积的。

例:大肠杆菌的谷氨酰胺合成酶受8个最终产物的积累反馈抑制。

(5)顺序反馈抑制

例:枯草芽孢杆菌合成芳香族氨基酸的代谢途径

(3)合作反馈抑制,又称“增效反馈抑制”

当任何一个末端产物单独过剩时,只部分反馈抑制第一个酶的活性,而当二个末端产物同时过剩时,对第一个酶产生强烈抑制,其抑制程度大于各自单独抑制效果之和。

(4)累积反馈抑制

在分支代谢途径中,任何一种末端产物过量时都对共同途径的第一个酶起部分的抑制作用,且各末端产物的抑制作用互不干扰。当末端产物同时过量时,它们的抑制作用是累积的。

例:大肠杆菌的谷氨酰胺合成酶受8个最终产物的积累反馈抑制。

(5)顺序反馈抑制

例:枯草芽孢杆菌合成芳香族氨基酸的代谢途径

3. 酶合成的调节

酶合成的调节是一种通过调节酶的合成量进而调节代谢速率的调节机制,这是一种基因水平上的代谢调节。由代谢终产物抑制酶合成的负反馈作用称为反馈阻遏(repression)。反之,代谢终产物促进酶生物合成的现象,称为诱导作用(induction)。与上述调节酶活性的反馈抑制等相比,调节酶的合成(即产酶量)而实现代谢调节的方式是一类较间接而缓慢的调节方式。其优点是通过阻止酶的过量合成,节约生物合成的原料和能量。在正常代谢途径中,酶活性调节和酶合成调节两者是同时存在且密切配合、协调进行的。

3.1 酶合成调节的机制

微生物不仅能够通过酶活性对代谢进行控制,而且还能够通过控制基因组的表达来控制酶的合成,从而实现对细胞代谢的控制。酶合成调节主要通过酶合成的诱导和阻遏来调节的。操纵子模型能较好地解释酶合成的诱导和阻遏现象。

操纵子由三部分组成:启动子,操作子,结构基因(功能相关的一组基因)

细菌操纵子的调控是在调节基因编码的调节蛋白作用下进行的。

酶合成的诱导:

调节基因产生的阻遏蛋白可以与操纵子结合,因此关闭了转录。当培养基中加入诱导物时,诱导物与阻遏蛋白结合,阻止了阻遏蛋白与操纵基因的结合,操纵子开放,结构基因转录。

大肠杆菌乳糖操纵子:

lac Z,lac Y,lac A分别编码β–半乳糖苷酶, β–半乳糖苷透性酶,乙酰基转移酶

在缺乏乳糖等诱导物时,阻遏蛋白结合在操纵基因上,抑制结构基因的转录;

当乳糖存在时,乳糖与阻遏蛋白结合,使其发生构象变化而不能与操纵基因结合,结构基因就能转录和转译。

酶合成的阻遏

调节基因编码的阻遏蛋白不能结合在操纵子部位上,当辅阻遏物与阻遏蛋白结合后,改变了阻遏蛋白的构象,使之能与启动子附近的操纵基因结合,终止结构基因的转录。

色氨酸操纵子的阻遏是对合成代谢酶类进行正调节的例子。

大肠杆菌的色氨酸操纵子:含5个结构基因,编码色氨酸生物合成途径的各种酶

当色氨酸(辅阻遏物)丰富时,结合到游离的阻遏物上诱发变构转换,使阻遏物结合在操纵区;

当色氨酸不足时,阻遏物失去了所结合的色氨酸,从操纵区解离下来,trp操纵子开始转录。

4. 代谢调控在发酵工业的应用

代谢控制发酵的基本思想就是要打破微生物自身的代谢调节控制机制,使其能够大量积累某种代谢产物,具体的措施主要从以下几方面入手。

4.1 解除菌体自身的反馈调节:

4.1.1 选育代谢拮抗物抗性突变株

选育代谢拮抗物抗性突变菌株是代谢控制发酵的主要方法。

例如,当把钝齿棒杆菌(Corymebacterium crenaturn)培养在含苏氨酸和异亮氨酸的结构类似物α-氨基-β-羟基戊酸(AHV)的培养基上时,由于AHV可干扰该菌的高丝氨酸脱氢酶、苏氨酸脱氢酶以及二羧酸脱水酶,所以抑制了该菌的正常生长。如果采用诱变后所获

得的抗AHV突变株进行发酵,就能分泌较多的苏氨酸和异亮氨酸。这是因为,该突变株的高丝氨酸脱氢酶或苏氨酸脱氢酶和二羧酸脱水酶的结构基因发生了突变,故不再受苏氨酸或异亮氨酸的反馈抑制,于是就有大量的苏氯酸和异亮氨酸的累积。

4.1.2 选育营养缺陷型菌株(切断支路代谢)

(1)赖氨酸发酵

工业上选育高丝氨酸营养缺陷型(Hom-)的谷氨酸棒杆菌作为赖氨酸的发酵菌株。由于它不能合成高丝氨酸脱氢酶(HSDH),故不能合成高丝氨酸,①阻断了合成Met和Thr 的支路代谢,节省了原料,使天冬氨酸半醛这个中间产物全部转入Lys的合成;②在补给适量高丝氨酸(或苏氨酸和甲硫氨酸)的条件下,使Met和Thr的生成有限,从而解除了Thr 和Lys对天冬氨酸激酶(AK)的协同反馈抑制,使Lys得以积累;能产生大量赖氨酸。(2)肌苷酸发酵

该菌的一个腺苷酸琥珀酸合成酶(酶12)缺失的腺嘌呤缺陷型,如在培养基中补充少量AMP就可正常生长并累积IMP。

①腺嘌呤营养缺陷型菌株(Ade-):

即丧失SAMP合成酶的突变株,切断IMP SAMP的支路代谢,可通过限量添加腺嘌呤,解除腺嘌呤对关键酶PRPP转酰胺酶的反馈抑制和阻遏,有利于IMP(肌苷的直接前体物)的积累。

②选育黄嘌呤缺陷型(Xan- )或鸟嘌呤缺陷型(Gu-)

4.1.3选育营养缺陷型回复突变株

4.1.4选育渗漏缺陷型突变株

4.2 增加前体物

增加目标产物的前体物的合成,可以为目标代谢物合成途径供给更多的“原料”,使目标代谢物大量积累。

去除代谢终产物

其他措施

难点及处理:

1. 酶合成的调节

酶合成的调节是一种通过调节酶的合成量进而调节代谢速率的调节机制,这是一种基因水平上的代谢调节。这种调节涉及到基因组的结构、转录、翻译和基因的表达调控,因此需要同学们具备完整的分子生物学知识。而同学们此时只是从生物化学了解了一点这方面的知识。因此,讲解这种调节方式时,不可能讲解太多,否则学生不能接受。所以,选择从两个典型的操纵子:大肠杆菌乳糖操纵子和色氨酸操纵子来讲解酶合成的诱导机制和酶合成的阻遏机制,从而改变酶量。

首先讲解操纵子的结构和调节方式,然后通过大肠杆菌乳糖操纵子和色氨酸操纵子来具体说明。

操纵子的结构:启动子,操作子,结构基因(功能相关的一组基因)

细菌操纵子的调控是在调节基因编码的调节蛋白作用下进行的,分为诱导和阻遏两种。

大肠杆菌乳糖操纵子对酶合成的诱导:

lac Z,lac Y,lac A分别编码β–半乳糖苷酶, β–半乳糖苷透性酶,乙酰基转移酶

在缺乏乳糖等诱导物时,阻遏蛋白结合在操纵基因上,抑制结构基因的转录;

当乳糖存在时,乳糖与阻遏蛋白结合,使其发生构象变化而不能与操纵基因结合,结构基因就能转录和转译。

色氨酸操纵子的阻遏是对酶合成的阻遏的例子。

大肠杆菌的色氨酸操纵子:含5个结构基因,编码色氨酸生物合成途径的各种酶

当色氨酸(辅阻遏物)丰富时,结合到游离的阻遏物上诱发变构转换,使阻遏物结合在操纵区;

当色氨酸不足时,阻遏物失去了所结合的色氨酸,从操纵区解离下来,trp操纵子开始转录。

四、教学方法与手段

本节知识是与实践联系很紧密的。工业中的许多产品的生产,都以发酵产物的代谢调控为基础。因此,可以通过生产中的具体例子,生动地讲解调控的类型。

五、板书设计

二、糖的合成代谢

第三节氨基酸和蛋白质代谢

一、蛋白质的分解

二、氨基酸的分解

三、氨基酸

第四节脂类代谢

第五节微生物代谢调控与发酵生产

1.微生物调节代谢流的两种主要方式:

酶活性的调节:非常迅速的调节机制

酶化学水平上发生变构调节(分子构象改变)

修饰调节(分子结构改变)

包括酶的激活

酶的抑制

酶量的调节:比较慢的调节机制

遗传水平上发生(原核生物的基因调控主要发生在转录水平)

包括酶合成的诱导

酶合成的阻遏机制

2. 反馈抑制的类型

2.1 直线式代谢途径中的反馈抑制

2.2.分支代谢途径的反馈抑制:

(1)同功酶调节:大肠杆菌天冬氨酸族氨基酸的合成

(2)协同反馈抑制,或称“多价反馈抑制”:谷氨酸棒杆菌、黄色短杆菌、多粘芽孢杆菌合成赖氨酸

(3)合作反馈抑制,又称“增效反馈抑制”:

(4)累积反馈抑制

例:大肠杆菌的谷氨酰胺合成酶受8个最终产物的积累反馈抑制。

(5)顺序反馈抑制

例:枯草芽孢杆菌合成芳香族氨基酸的代谢途径

3. 酶合成的调节

3.1 酶合成调节的机制

操纵子:启动子,操作子,结构基因(功能相关的一组基因)

3.5酶合成的诱导:

大肠杆菌乳糖操纵子:

lac Z,lac Y,lac A分别编码β–半乳糖苷酶, β–半乳糖苷透性酶,乙酰基转移酶

在缺乏乳糖等诱导物时,阻遏蛋白结合在操纵基因上,抑制结构基因的转录;

当乳糖存在时,乳糖与阻遏蛋白结合,使其发生构象变化而不能与操纵基因结合,结构基因就能转录和转译。

酶合成的阻遏

大肠杆菌的色氨酸操纵子:含5个结构基因,编码色氨酸生物合成途径的各种酶

当色氨酸(辅阻遏物)丰富时,结合到游离的阻遏物上诱发变构转换,使阻遏物结合在操纵区;

当色氨酸不足时,阻遏物失去了所结合的色氨酸,从操纵区解离下来,trp操纵子开始转录。

4. 代谢调控在发酵工业的应用

4.1 解除菌体自身的反馈调节:

4.1.1 选育代谢拮抗物抗性突变株

例如,选育抗AHV钝齿棒杆菌的突变株生产苏氨酸和异亮氨酸

4.1.2 选育营养缺陷型菌株(切断支路代谢)

(1)赖氨酸发酵

(2)肌苷酸发酵

①腺嘌呤营养缺陷型菌株(Ade-):

②选育黄嘌呤缺陷型(Xan- )或鸟嘌呤缺陷型(Gu-)

4.1.3选育营养缺陷型回复突变株

4.1.4选育渗漏缺陷型突变株

4.2 增加前体物

3.6去除代谢终产物

3.7其他措施

六思考题

1.微生物调节代谢流的类型

2.反馈抑制的类型

3.操纵子的结构与调节方式

4.根据代谢调节理论,如何获得一株生产赖氨酸(或苏氨酸)的高产菌株?

(完整版)微生物学第六章微生物的代谢

第十四授课单元 一、教学目的 使学生了解呼吸与发酵作用,重点讲解微生物代谢的特殊性,联系在食品和发酵生产上的应用,注意体现微生物不同发酵类型及代谢的特点。 二、教学内容(第六章微生物的新陈代谢 第一节微生物的产能代谢) 1. 代谢概论简单介绍新陈代谢的概念,同化作用和异化作用。 2. 微生物的产能代谢:重点介绍化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸, 3. 介绍乙醇发酵(酵母菌的乙醇发酵途径和运动发酵单胞菌的乙醇发酵途径)、乳酸发酵(同型乳酸发酵和异型乳酸发酵)、甘油发酵、丙酮丁醇发酵、混合酸发酵及丁二醇发酵; 三、教学重点、难点及处理方法 重点:化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸,介绍乙醇发酵(酵母菌的乙醇发酵途径和运动发酵单胞菌的乙醇发酵途径)、乳酸发酵(同型乳酸发酵和异型乳酸发酵)、甘油发酵、丙酮丁醇发酵、混合酸发酵及丁二醇发酵;由于学生在生物化学课程中已经学过各种代谢途径,因此在微生物学中不再作为重点讲解。本章内容主要使学生了解呼吸与发酵作用,重点讲解微生物代谢的特殊性,联系在食品和发酵生产上的应用,注意体现微生物不同发酵类型及代谢的特点。 难点: 化能异养微生物生物氧化的三种产能方式,即发酵、有氧呼吸和无氧呼吸的区别。尤其是发酵的概念, 学生只是在现实生活中知道这个名词, 但是不清楚其确切的生物学含义, 指在能量代谢或生物氧化中,在无氧条件下,底物(有机物)氧化释放的氢(或电子)不经呼吸链传递,而直接交给某种未完全氧化的中间产物的一类低效产能过程。实质: 底物水平磷酸化产生ATP. 另外, 联系食品和发酵生产上应用的发酵类型及代谢特点更有助于学生理解发酵的概念实质及发酵的特点. 有氧呼吸与无氧呼吸的概念, 并介绍无氧呼吸中硝酸根(反硝化作用)、硫酸根作为最终电子受体的呼吸特点,介绍不同呼吸类型的微生物。介绍化能自养微生物的生物氧化特点,光能自养微生物的光合磷酸化途径(循环光合磷酸化、非循环光合磷酸化和嗜盐菌紫膜的光合作用)。 四、板书设计 第六章微生物的新陈代谢 第一节代谢概论 能量代谢的中心任务,是生物体如何把外界环境中的多种形式的 最初能源转换成对一切生命活动都能使用的通用能源------ATP。 这就是产能代谢。 有机物化能异养微生物 最初 能源还原态无机物化能自养微生物通用能源ATP 日光: 光能营养微生物 第二节糖的代谢

第五章-微生物代谢试题

第五章微生物代谢试题 一.选择题: https://www.doczj.com/doc/0114474711.html,ctobacillus是靠__________ 产能 A. 发酵 B. 呼吸 C. 光合作用 答:( ) 50781.50781.Anabaena是靠__________ 产能. A. 光合作用 B. 发酵 C. 呼吸 答:( ) 50782.50782.________是合成核酸的主体物。 A. 5----D 核糖 B. 5----D 木酮糖 C. 5----D 甘油醛 答:( ) 50783.50783.ATP 含有: A. 一个高能磷酸键 B. 二个高能磷酸键 C. 三个高能磷酸键 答:( ) 50784.50784.自然界中的大多数微生物是靠_________ 产能。 A. 发酵 B. 呼吸 C. 光合磷酸化 答:( ) 50785.50785.酶是一种__________ 的蛋白质 A. 多功能 B. 有催化活性 C. 结构复杂 答:( ) 50786.50786.在原核微生物细胞中单糖主要靠__________ 途径降解生成丙酮酸。 A. EMP B. HMP C. ED 答:( ) 50787.50787.参与脂肪酸生物合成的高能化合物是__________。 A.乙酰CoA B. GTP C. UTP 答:( ) 50788.50788.Pseudomonas是靠__________ 产能。 A. 光合磷酸化 B. 发酵 C. 呼吸 答:( ) 50789.50789.在下列微生物中__________ 能进行产氧的光合作用。 A. 链霉菌 B. 蓝细菌 C. 紫硫细菌 答: ( ) 50790.50790.合成环式氨基酸所需的赤藓糖来自__________。

微生物第五章34页word

高中生物竞赛 辅导讲义 第五章微生物的营养和培养基 营养(或营养作用,nutrition)是指生物体从外部环境摄取其生命活动所必需的能量和物质,以满足其生长和繁殖需要的一种生理功能。所以,营养为一切生命活动提供了必需的物质基础,它是一切生命活动的起点。有了营养,才可以进一步进行代谢、生长和繁殖,并可能为人们提供种种有益的代谢产物。 营养物(或营养,nutrient)则指具有营养功能的物质,在微生物学中,常常还包括光能这种非物质形式的能源在内。微生物的营养物可为它们正常生命活动提供结构物质、能量、代谢调节物质和良好的生理环境。 熟悉微生物的营养知识,是研究和利用微生物的必要基础,有了营养理论,就能更自觉和有目的地选用或设计符合微生物生理要求或有利于生产实践应用的培养基。 第一节微生物的六种营养要素 微生物的培养基配方犹如人们的菜谱,新的种类是层出不穷的。仅据1930年M.Levine等人在《培养基汇编》(ACompilationofCultureMedia)一书中收集的资料,就已达2500种。直至今天,其数目至少也有数万种。作为一个微生物学工作者,一定要在这浩如烟海的培养基配方中去寻找其中的要素亦即内在的本质,才能掌握微生物的营养规律。这正像人们努力探索宇宙的要素、物质的要素和色彩的要素等那样重要。

现在知道,不论从元素水平还是从营养要素的水平来看,微生物的营养与摄食型的动物(包括人类)和光合自养型的植物非常相似,它们之间存在着“营养上的统一性”(表5-1)。具体地说,微生物有六种营养要素,即碳源、氮源、能源、生长因子、无机盐和水。 一、碳源 凡能提供微生物营养所需的碳元素(碳架)的营养源,称为碳源(carbonsource)。如把微生物作为一个整体来看,其可利用的碳源范围即碳源谱是极广的,这可从表5-2中看到。 从碳源谱的大类来看,有有机碳源与无机碳源两大类,凡必须利用有机碳源的微生物,就是为数众多的异养微生物,凡能利用无机碳源的微生物,则是自养微生物(见本章第二节)。表5-2中已把碳源在元素水平上归为七种类型,其中第五类的“C”是假设的,至少目前还未发现单纯的碳元素也可作为微生物的碳源。从另外六类来看,说明微生物能利用的碳源类型大大超过了动物界或植物界所能利用的碳化合物。因而有人认为,任何高明的有机化学家,只要他将其新合成的产品投放到自然界,在那里早就有相应的能破坏、利用它的微生物在等待着了。据报道,至今人类已发现的有机物已超过700万种,由此可见,微生物的碳源谱该是多么广! 微生物的碳源谱虽然很广,但对异养微生物来说,其最适碳源则是“C ?H?D”型。其中,糖类是最广泛利用的碳源,其次是醇类、有机酸类和脂类等。在糖类中,单糖胜于双糖和多糖,已糖胜于戊糖,葡萄糖、果糖胜于甘露糖、半乳糖;在多糖中,淀粉明显地优于纤维素或几丁质等纯多糖,纯多糖则优于琼脂等杂多糖和其他聚合物(如木质素)。

微生物的代谢及其调控

微生物的代谢及其调控

1微生物的代谢 微生物代谢包括微生物物质代谢和能量代谢。 1.1微生物物质代谢 微生物物质代谢是指发生在微生物活细胞中的各种分解代谢与合成代谢的总和。 1.1.1分解代谢 分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。—般可将分解代谢分为TP。三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更为简单的乙酰辅酶A、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH及FADH2;第三阶段是通过三羧酸循环将第二阶段产物完全降解生成CO2,并产生ATP、NADH 及FADH2。第二和第三阶段产生的ATP、NADH及FADH2通过电子传递链被氧化,可产生大量的ATP。 1.1.1.1大分子有机物的分解 (1)淀粉的分解 淀粉是许多种微生物用作碳源的原料。它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。直链淀粉为α一l、4糖苷键组成的直链分子;支链淀粉只是在支点处由α—1、6糖苷键连接而成。 微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。淀粉酶是一类水解淀粉糖苷键酶的总称。它的种类很多,作用方式及产物也不尽相同,主要有液化型淀粉酶、糖化型淀粉酶(包括β—淀粉酶、糖化酶、异淀粉酶)。 以液化型淀粉酶为例,这种酶可以任意分解淀粉的。α-l、4糖苷键,而不能分解α-1、6糖苷键。淀粉经该酶作用以后,黏度很快下降,液化后变为糊精,最终产物为糊精、麦芽糖和少量葡萄糖。由于这种酶能使淀粉表现为液化,淀

2020年(生物科技行业)第五章微生物的代谢

(生物科技行业)第五章微 生物的代谢

第五章微生物的代谢 一、代谢的概念 1、代谢是细胞内发生的所有化学反应的总称,包括分解代谢和合成代谢,分解代谢产生能量,合成代谢消耗能量。 2、生物氧化:生物体内发生的壹切氧化仍原反应。在生物氧化过程中释放的能量可被微生物直接利用,也可通过能量转换储存在高能化合物(如ATP)中,以便逐步被利用,仍有部分能量以热的形式被释放到环境中。生物氧化的功能为:产能(ATP)、产仍原力[H]和产小分子中间代谢物。 3、异养微生物利用有机物,自养微生物则利用无机物,通过生物氧化来进行产能代谢。 二、异养微生物产能代谢 发酵 生物氧化有氧呼吸 呼吸无氧呼吸 1、发酵:有机物氧化释放的电子直接交给本身未完全氧化的某种中间产物,同时释放能量且产生各种不同的代谢产物。 发酵过程中有机化合物只是部分地被氧化,因此,只释放出壹小部分的能量。发酵过程的氧化是和有机物的仍原相偶联。被仍原的有机物来自于初始发酵的分解代谢,即不需要外界提供电子受体。 发酵的种类有很多,可发酵的底物有碳水化合物、有机酸、氨基酸等,其中以微生物发酵葡萄糖最为重要。生物体内葡萄糖被降解成丙酮酸的过程称为糖酵解(glycolysis)。糖酵解是发酵的基础,主要有四种途径:EMP途径、HMP途径、ED途径、磷酸解酮酶途径。主要发酵类型

(1)酵母菌乙醇发酵的三种类型 壹型发酵: GlucosePyrAlcohol 二型发酵:当环境中存在NaHSO4,和乙醛结合,而不能受氢,不能形成乙醇。 磷酸二羟丙酮a-磷酸甘油甘油 三型发酵:在碱性条件下,乙醛发生歧化反应 产物:乙醇、乙酸和甘油。 (2)乳酸发酵 同型乳酸发酵(EMP途径): 葡萄糖丙酮酸乳酸 异型乳酸发酵(PK或HK途径,肠膜状明串珠菌) 葡萄糖乳酸+乙酸或乙醇(HK途径) 戊糖乳酸+乙酸(PK途径) 俩歧双歧途径(PK+HK途径,俩歧双歧途杆菌) 葡萄糖乳酸+乙酸(Hk和PK途径) (3)氨基酸发酵产能(Stickland反应) 在少数厌氧梭菌如Clostridiumsporogenes,能利用壹些氨基酸同时当作碳源、氮源和能源,其机制是通过部分氨基酸的氧化和另壹些氨基酸的仍原向偶联,这种以壹种氨基酸做氢供体和以另壹种氨基酸做氢受体而发生的产能的独特发酵类型,称为Stickland反应。作为氢供体的氨基酸:Ala;Leu,Ile,Val,Phe,Ser,His,trp 作为氢受体的氨基酸:Gly,Pro,Ori,OH-Pro,Arg,trp.

第七章微生物的生长及其控制

第七章微生物的生长及其控制 习题 一、填空题 1、一条典型的生长曲线至少可分为、、和4个生长时期。 2、测定微生物的生长量常用的方法有、、和。而测定微生物数量变化常用的方法有、、和;以生物量为指标来测定微生物生长的方法有、和。 3、获得细菌同步生长的方法主要有(1)和(2),其中(1)中常用的有、和。 4、控制连续培养的方法有和。 5、影响微生物生长的主要因素有、、、和等。 6、对玻璃器皿、金属用具等物品可用或进行灭菌;而对牛奶或其他液态食品一般采用灭菌,其温度为,时间为。 7、通常,细菌最适pH的范围为,酵母菌的最适pH范围为,霉菌的最适pH范围是。 8、杀灭或抑制微生物的物理因素有、、、、和 等。 9、抗生素的作用机制有、、和。 10、抗代谢药物中的磺胺类是由于与相似,从而竞争性地与二氢叶酸合成酶结合,使其不能合成。 二、选择题 1、以下哪个特征表示二分裂?() (1)产生子细胞大小不规则(2)隔膜形成后染后体才复制(3)子细胞含有基本等量的细胞成分(4)新细胞的细胞壁都是新合成的。

2、代时为0.5h的细菌由103个增加到109个时需要多长时间?() (1)40h (2)20h (3)10h (4)3h 3、如果将处于对数期的细菌移至相同组分的新鲜培养基中,该批培养物将处于哪个生长期?() (1)死亡期(2)稳定期(3)延迟期(4)对数期 4、细菌细胞进入稳定期是由于:①细胞已为快速生长作好了准备;②代谢产生的毒性物质发生了积累;③能源已耗尽;④细胞已衰老且衰老细胞停止分裂;⑤在重新开始生长前需要合成新的蛋白质()。 (1)1,4 (2)2,3 (3)2,4 (4)1,5 5、对生活的微生物进行计数的最准确的方法是()。 (1)比浊法(2)显微镜直接计数 (3)干细胞重量测定(4)平板菌落记数 6、下列哪咱保存方法全降低食物的水活度?() (1)腌肉(2)巴斯德消毒法(3)冷藏(4)酸泡菜 7、连续培养时培养物的生物量是由()来决定的。 (1)培养基中限制性底物的浓度(2)培养罐中限制性底物的体积(3)温度(4)稀释率 8、常用的高压灭菌的温度是()。 (1)121℃(2)200℃(3)63℃(4)100℃ 9、巴斯德消毒法可用于()的消毒。 (1)啤酒(2)葡萄酒(3)牛奶(4)以上所有 10、()能通过抑制叶酸合成而抑制细菌生长。 (1)青霉素(2)磺胺类药物(3)四环素(4)以上所有 三、是非题 1、在群体生长的细菌数量增加一部所需时间为代时。 2、最初细菌数为4个,增殖为128个需经过5代。 3、一般显微镜直接计数法比稀释平板涂布法测定的菌数多。 4、一切好氧微生物都含有超氧化物歧化酶。 5、分批培养时,细菌首先经历一个适应期,所以细胞数目并不增加,或增加很少。

微生物学 第五章

第五章微生物代谢 选择题(每题1分,共25题,25分) 1.下列光合作用微生物中进行的是非环式光合磷酸化作用的是( C )正确 A.甲藻 B.绿硫细菌 C.蓝细菌 D.嗜盐细菌 2.化能自养微生物的能量来源于( B )正确 A.有机物 B.还原态无机化合物 C.氧化态无机化合物 D.日光 3.下列葡萄糖生成丙酮酸的糖酵解途径中,( A )是最普遍的、存在于大多数生物体内的一条主流代谢途径。正确 A. EMP途径 B. HEP途径 C. ED途径 D. WD途径 4.下列葡萄糖生成丙酮酸的糖酵解途径中,( C )是存在于某些缺乏完整EMP途径的微生物中的。正确 A. EMP途径 B. HEP途径 C. ED途径 D.WD途径 5.硝化细菌是( A )错误正确答案:B A.化能自养菌,氧化氨生成亚硝酸获得能量 B.化能自养菌,氧化亚硝酸生成硝酸获得能量 C.化能异养菌,以硝酸盐为最终的电子受体 D.化能异养菌,以亚硝酸盐为最终的电子受体 6.根瘤菌属于( A )正确 A.共生固氮菌 B.自生固氮菌 C.内生菌根 D.外生菌根 7.两歧双歧杆菌进行的是( C )正确 A.乙醇发酵 B.同型乳酸发酵 C.异型乳酸发酵

— D. 2,3丁二醇发酵 8.对于青霉菌,每摩尔葡萄糖通EMP和TCA循环彻底氧化共产生( B )摩尔ATP。正确 A.34 B.36 C.38 D.39 9.下列哪项不属于固氮生物( D )正确 A.根瘤菌 B.圆褐固氮菌 C.某些蓝藻 D.豆科植物 10.在生物固氮过程中,最终电子受体是( A )正确 A.N2和乙炔 B.NH3 C.乙烯 D.NADP+ 根瘤菌的新陈代谢类型属于(C) A.自养需氧型 B.自养厌氧型 C.异养需氧型 D.异养厌氧型 11.下列各项中与根瘤菌固氮过程无关的是( C )正确 A.还原力[H] B.ATP C.NO3- D.固氮酶 12.细菌群体生长的动态变化包括四个时期,其中细胞内大量积累代谢产物,特别是次级代谢产物的时期是( C )正确 A.迟缓期 B. 对数期 C. 稳定期 D.衰亡期 13.下列与微生物的代谢活动异常旺盛无关的原因是( D )错误正确答案:B A.表面积与体积比大 B.表面积大 C.对物质的转化利用快 D.数量多 14.下列关于初级代谢产物和次级代谢产物的比较中正确的是( A )正确

第五章微生物代谢 答案

第五章微生物能量代谢 一、选择题(只选一项,将选项的的字母填在括号内) 1.下列哪种微生物能分解纤维素?( B ) A金黄色葡萄球菌B青霉C大肠杆菌D枯草杆菌 2.下列哪种产能方式其氧化基质、最终电子受体及最终产物都是有机物?( A ) A发酵B有氧呼吸C无氧呼吸D光合磷酸化 3.硝化细菌的产能方式是( D ) A发酵B有氧呼吸C无氧呼吸D无机物氧化 4.微生物在发酵过程中电子的最终受体是(A) A有机物B有机氧化物C无机氧化物D.分子氧 5.乳酸发酵过程中电子最终受体是( B ) A乙醛B丙酮 C O2 D NO3ˉ 6.硝酸盐还原菌在厌氧条件下同时又有硝酸盐存在时,其产能的主要方式是( C ) A发酵B有氧呼吸C无氧呼吸D无机物氧化 7.下列哪些不是培养固氮菌所需要的条件?( A ) A培养基中含有丰富的氮源B厌氧条件C提供A TP D提供[H] 8.目前认为具有固氮作用的微生物都是( D ) A真菌B蓝细菌C厌氧菌D原核生物 9.代谢中如发生还原反应时,( C )。 A从底物分子丢失电子B通常获得大量的能量 C 电子加到底物分子上D底物分子被氧化 10.当进行糖酵解化学反应时,( D )。 (a)糖类转变为蛋白质 (b)酶不起作用 (c)从二氧化碳分子产生糖类分子 (d)从一个单个葡萄糖分子产生两个丙酮酸分子 11.微生物中从糖酵解途径获得( A )ATP分子。 (a)2个 (b)4个 (c)36个 (d)38个 12.下面的叙述( A )可应用于发酵。 (a)在无氧条件下发生发酵 (b)发酵过程发生时需要DNA (c)发酵的一个产物是淀粉分子 (d)发酵可在大多数微生物细胞中发生 13.进入三羧酸循环进一步代谢的化学底物是( C )。 (a)乙醇 (b)丙酮酸 (c)乙酰CoA (d)三磷酸腺苷 14.下面所有特征适合于三羧酸循环,除了( D )之外。 分子以废物释放 (b)循环时形成柠檬酸 (a)C0 2 (c)所有的反应都要酶催化 (d)反应导致葡苟糖合成 15.电子传递链中( A )。 (a)氧用作末端受体 (b)细胞色素分子不参加电子转移 (c)转移的一个可能结果是发酵 (d)电子转移的电子来源是NADH 16.化学渗透假说解释( C )。 (a)氨基酸转变为糖类分子 (b)糖酵解过程淀粉分子分解为葡萄糖分子 (c)捕获的能量在ATP分子中 (d)用光作为能源合成葡萄糖分子 17.当一个NADH分子被代谢和它的电子通过电子传递链传递时,( C )。 (a)形成六个氨基酸分子 (b)产生一个单个葡萄糖分子 (c)合成三个ATP分子 (d)形成一个甘油三酯和两个甘油二酯 18.己糖单磷酸支路和ED途径是进行( C )替换的一个机制。

第六章 微生物代谢习题及答案

第六章 微生物的代谢习题及参考答案 一、名词解释 1.发酵 2.呼吸作用 3.有氧呼吸 4.无氧呼吸 5.异型乳酸发酵 6.生物固氮 7.硝化细菌 8.光合细菌 9.生物氧化 10.初级代谢产物: 11.次级代谢产物: 12.巴斯德效应: 13.Stickland 反应: 14.氧化磷酸化 二、填空题 1.微生物的4种糖酵解途径中, 是存在于大多数生物体内的一条主流代谢途径; 是存在于某些缺乏完整EMP 途径的微生物中的一种替代途径,为微生物所特有; 是产生4碳、5碳等中间产物,为生物合成提供多种前体物质的途径。 2.同型乳酸发酵是指葡萄糖经 途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的作用下被NADH 还原为乳酸。异型乳酸发酵经 、 和 途径分解葡萄糖。代谢终产物除乳酸外,还有 。 3.微生物在糖酵解生成丙酮酸基础上进行的其他种类的发酵有丁二醇发酵、混合酸发酵、 发酵和 发酵等。丁二醇发酵的主要产物是 , 发酵的主要产物是乳酸、乙酸、甲酸、乙醇。 4.产能代谢中,微生物通过 磷酸化和 磷酸化将某种物质氧化而释放的能量储存在ATP 等高能分子中;光合微生物则通过 磷酸化将光能转变成为化学能储存在ATP 中。 磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。 5.呼吸作用与发酵作用的根本区别是呼吸作用中电子载体不是将电子直接传递给底物降解的中间产物,而是交给 系统,逐步释放出能量后再交给 。 6.巴斯德效应是发生在很多微生物中的现象,当微生物从 转换到 下,糖代谢速率 ,这是因为 比发酵作用更加有效地获得能量。 7.无氧呼吸的最终电子受体不是氧,而是外源电子受体,像22322423、CO O 、S 、SO 、NO NO ----等无机化合物,或 等有机化合物。

微生物代谢产物生产食品综述

微生物代谢产物生产食品综述 摘要:微生物代谢产物的种类很多,已知的有37个大类,其中16类属于药物,如氨基酸、核并酸、蛋白质、核酸、糖类、抗生素、生物碱、细菌毒素等。利用微生物的代谢产物可以生产十分丰富的食品。本文介绍了发酵生产食品的一般过程,并以谷氨酸为例详细说明。 关键词:微生物代谢产物食品谷氨酸发酵 正文: 微生物代谢产物的种类很多,已知的有37个大类,其中16类属于药物。在菌体对数生长期所产生的产物,如氨基酸、核并酸、蛋白质、核酸、糖类等,是菌体生长繁殖所必需的。这些产物叫做初级代谢产物,许多初级代谢产物在经济上具有相当的重要性,分别形成了各种不同的发酵工业。在菌体生长静止期,某些菌体能合成一些具有特定功能的产物,如抗生素、生物碱、细菌毒素等。这些产物与菌体生长繁殖无明显关系,叫做次级代谢产物。次级代谢产物多为低分子量化合物,但其化学结构类型多种多样,据不完全统计多达47类,其中抗生素的结构类型,按相似性来分,也有14类。由于抗生素不仅具有广泛的抗菌作用,而且还有抗病毒、抗癌和其他生理活性,因而得到了大力发展,已成为发酵工业的重要支柱。 利用微生物的代谢产物可以生产十分丰富的食品。以下举例说明: 1、食醋:食醋是人们日常生活所必需的调味品,也是最古老的利用微生物生产的食品之一。食醋生产是利用醋酸菌在充分供氧的条件下将乙醇氧化为醋酸。能用于食醋生产的醋酸菌有纹膜醋酸菌、许氏醋酸菌、恶臭醋酸菌和巴氏醋酸菌等。不同原料还需加入不同的微生物。以淀粉为原料时加入霉菌和酵母菌,糖类为原料时加入酵母菌。获得风味迥异的食醋品种。 2 .酒类:酒类的发酵生产主要是利用酵母菌在厌氧条件下将葡萄糖发酵为酒精的过程。不同酒类的发酵工艺不同:不同的酒类酿造所选用的酵母菌不同。所选用的原料、水质、甚至环境都会影响酒类的品质和风味。纯净的矿泉水往往较河水和自来水好。有人发现,贵州茅台酒之所以具有其独特的芬芳风味,与其酿酒厂环境中存在的微生物区系有关。 3 、发酵生产乳制品:利用乳酸细菌进行发酵,使成为具有独特风味的食品很多。如酸制奶油、干酪、酸牛乳、嗜酸菌乳(活性乳)、马奶酒、面包格瓦斯以及酸泡菜、乳黄瓜等等。这些乳制品不仅具有良好而独特的风味,而且由于易于吸收而提高了其营养价值。发酵乳制品的主要乳酸菌有干酪乳杆菌、保加利亚乳杆菌、嗜酸乳杆菌、植物乳杆菌、瑞士乳杆菌、乳酸乳杆菌、乳链球菌、乳脂链球菌、嗜热链球菌、噬柠檬酸链球菌、副柠檬酸链球菌等许多种。嗜柠檬酸链球菌还可以把柠檬酸代谢为具有香味的丁二酮等,使乳制品具有芳香味。 4 、发酵生产酱油:酱油是包括霉菌、酵母菌和细菌等多种微生物参与原料物质转化的混合作用的结果。对发酵速度、成品色泽、味道鲜美程度影响最大的是米曲霉和酱油曲霉,而影响其风味的是酵母菌和乳酸菌。米曲霉含有丰富的蛋白酶、淀粉酶、谷氨酸胺酶和果胶酶、半纤维素酶、酯酶等。涉及酱油发酵的酵母菌有 7 个属的 23 个种,其中影响最大的是鲁氏酵母,易变圆酵母等。 5 、腐乳的发酵生产:腐乳是大豆制品经多种微生物及其产生的酶,将蛋白质分解为胨、多肽和氨基酸类物质以及一些有机酸,有机醇和酯类而制成的具有特殊色香味的豆制品。涉及的微生物主要是毛霉中的腐乳毛霉、鲁氏毛霉、五通

第5章 微生物的代谢 习 题

第5章微生物代谢习题 填空题 1.代谢是细胞内发生的全部生化反应的总称,主要是由______和______两个过程组成。微生物的分解代谢是指______在细胞内降解成______,并______能量的过程;合成代谢是指利用______在细胞内合成______,并______能量的过程。2.生态系统中,______微生物通过______能直接吸收光能并同化C02,______微生物分解有机化合物,通过______产生CO2。 3. 微生物的4种糖酵解途径中,______是存在于大多数生物体内的一条主流代谢途径;______是存在于某些缺乏完整EMP途径的微生物中的一种替代途径,为微生物所特有;______是产生4碳、5碳等中间产物,为生物合成提供多种前体物质的途径。 4. ______和______的乙醇发酵是指葡萄糖经______途径分解为丙酮酸后,进一步形成乙醛,乙醛还原生成乙醇;______的乙醇发酵是利用ED途径分解葡萄糖为丙酮酸,量后生成乙醇。 5.同型乳酸发酵是指葡萄糖经______途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的作用下被NADH还原为乳酸。异型乳酸发酵经______、______和______途径分解葡萄糖,代谢终产物除乳酸外,还有______。 6.微生物在糖酵解生成丙酮酸基础上进行的其他种类的发酵有丁二醇发酵、混合酸发酵、______发酵和______发酵等。丁二醇发酵的主要产物是______,______发酵的主要产物是乳酸、乙酸、甲酸、乙醇。 7,产能代谢中,微生物通过______磷酸化和______磷酸化将某种物质氧化而释放的能量储存在ATP等高能分子中;光合微生物则通过______磷酸化将光能转变成为化学能储存在ATP中。______磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。 8.呼吸作用与发酵作用的根本区别是呼吸作用中电子载体不是将电子直接传递给底物降解的中间产物,而是交给 ______系统,逐步释放出能量后再交给______。 9.巴斯德效应是发生在很多微生物中的现象,当微生物从转换到下,糖代谢速率______,这是因为______比发酵作用更加有效地获得能量。 10.无氧呼吸的最终电子受体不是氧,而是外源电子受体,像N03-、NO2-;、SO42-、s2o3-、CO2:等无机化合物,或______等有机化合物。 11.化能自养微生物氧化______而获得能量和还原力。能量的产生是通过______磷酸化形式,电子受体通常是O2。电子供体是______、______、______和______还原力的获得是逆呼吸链的方向进行传递,______—能量。 12.光合作用是指将光能转变成化学能并固定C02的过程。光合作用的过程可分成两部分:在______中光能被捕获并被转变成化学能,然后在______中还原或固定C02合成细胞物质。 13微生物有两种同化C02的方式:______和______。自养微生物固定C02的途径主要有3条:卡尔文循环途径,可分为______、______和______3个阶段;还原性三羧酸途径,通过逆向的三羧酸循环途径进行,多数酵与正向三羧酸循环途径相同,只有依赖于ATP的______是个例外;乙酰辅酶A途径,存在于甲烷产生菌、硫酸还原苗和在发酵过程中将C02转变乙酸的细菌中,非循环式CO2固定的产物是______和______。 14.Staphylococcus aureus肽聚糖合成分为3个阶段:细胞质中合成的______,在细胞膜中进一步合成______,然后在细胞膜外壁引物存在下合成肽聚糖。青霉素在细胞膜外抑制______的活性从而抑制肽聚糖的合成。 15.微生物将空气中的N2:还原为NH3的过程称为______。该过程中根据微生物和其他生物之间相互的关系,固氮体系可以分为______、______和______3种。 16.固氮酶包括两种组分:组分I(P1)是______,是一种______,由4个亚基组成;组分Ⅱ(P2)是一种______,是一种______,由两个亚基组成。P1、P2单独存在时,都没有活性,只有形成复合体后才有固氮酶活性。 17.次级代谢是微生物生长至______或______,以______为前体,合成一些对微生物自身生命活动无明确生理功能的物质的过程。次级代谢产物大多是分子结构比较复杂的化合物如______’______、______、______、______及______等多种类别。 18.酶的代谢调节表现在两种方式:______是一种非常迅速的机制,发生在酶蛋白分子水平上;______是一种比较慢的机制,发生在基因水平上。 19.分支代谢途径中酶活性的反馈抑制可以有不同的方式,常见的方式是______、______、______、______等。______ 20. 细菌的二次生长现象是指当细苗在含有葡萄糖和乳糖的培养摹中生长时,优先利用 ______,当其耗尽后,细菌经过一段停滞期,不久在______的诱导下开始合成______,细菌开始利用______。该碳代谢阻遏机制包括______和______的相互作用。 选择题(4个答案选1) 1.化能自养微生物的能量来源于( )。 (1)有机物 (2)还原态无机化合物 (3)氧化态无机化合物 (4)日光 2.下列葡萄糖生成丙酮酸的糖酵解途径中,( )是最普遍的、存在于大多数生物体内的一条主流代谢途径。 (1)EMP途径 (2)HMP途径 (3)ED途径 (4)WD途径 3.下列葡萄糖生成丙酮酸的糖酵解途径中,( )是存在于某些缺乏完整EMP途径的微生物中的一种替代途径,产能效率低,为微生物所特有。 (1)EMP途径 (2)HMP途径 (3)ED途径 (4)WD途径 4.酵母菌和运动发酵单胞菌乙醇发酵的区别是( )。 (1)糖酵解途径不同 (2)发酵底物不同 (3)丙酮酸生成乙醛的机制不同 (4)乙醛生成乙醇的机制不同

常见微生物的代谢方式

常见微生物的代谢方式 马丽甘肃省临夏回民中学(731100) 微生物种类繁多,代谢方式多样,本文将一些常见微生物的代谢方式归纳如下。所涉及生物中,除特别标注外,其它均为原核生物。 1、光能自养需氧型 这类微生物以光为能源,以CO2为主要碳源,适合生存于有氧环境,如:蓝藻、衣藻(原生生物)。 2、化能自养需氧型 这类微生物以无机化学能为能源,以CO2为主要碳源,适合生存于有氧环境,如:铁细菌、无色硫细菌、硝化细菌。 3、光能自养厌氧型 这类微生物如:绿硫菌,以光为能源,以CO2为主要主要碳源;有光合色素,进行光合作用获取生长所需要的能量;以无机物如H2、H2S、S等作为供氢体或电子供体,使CO2还原为细胞物质。适合生存于无氧环境。 4、化能异养需氧型 这类微生物的能源和碳源均来自于有机物,适合生存于有氧环境,真菌和绝大多数的细菌都是这一类型,常见的有:霉菌(真核生物)、草履虫及变形虫(原生生物)、放线菌、根瘤菌、圆褐固氮菌、肺炎双球菌、结核杆菌、霍乱弧菌、炭疽杆菌、麻风杆菌、黄色短杆菌、土壤农杆菌、枯草芽孢杆菌、苏云金芽孢杆菌、谷氨酸棒状杆菌等。 5、化能异养厌氧型 这类微生物的能源和碳源也是均来自于有机物,但是只有在缺氧的条件下才能很好的生长,如:乳酸菌、甲烷杆菌、反硝化细菌、破伤风杆菌、幽门螺旋杆菌。 6、化能异养兼性厌氧型 这类微生物的能源和碳源也是均来自于有机物,在有氧和无氧的条件下均能生长,如:大肠杆菌、酵母菌(真核生物)、金黄色葡萄糖球菌、支原体、酿脓链球菌。 7、兼性营养需氧型 这类微生物比较少见,如:裸藻,又叫眼虫(原生生物),适合生存于有氧环境,它在含有有机物的水中,能够靠细胞膜吸取水里的有机物“食物”,过着动物式的化能异养生活。但是同时,眼虫的细胞中具有含叶绿素的叶绿体,在无有机物的情况下,能够自己制造营养物质进行光合作用。因此兼有光能自养和化能异养的代谢方式。 8、兼性营养兼性厌氧型 这类微生物也是比较少见,如:红螺菌,它的同化方式是兼性营养型,以光为能源,以二氧化碳为主要碳源,以水或其他无机物作为供氢体,进行光合作用,还原CO2合成有机物。属于光能自养;或者以光为能源,以有机物为主要碳源,并且以有机物作为供氢体进行光合作用,同化有机物形成自身物质,属于光能异养。而它的异化方式也是兼性的,在湖泊、池塘的淤泥中进行厌氧呼吸;而在废水处理体系中却是需氧的。

第五章微生物与发酵工程测试题附答案

第五章微生物与发酵工程测试题附答案 班级姓名得分 一、选择题(每题1.5分,共60分) 1.细菌的遗传物质位于() A.核区和线粒体中;B.核区中;C.核区、质粒和线粒体中;D.核区和质粒中。 2.下列有关细菌繁殖的叙述,正确的是() A.细菌通过有丝分裂进行分裂生殖 B.分裂生殖时DNA随机分配 C.分裂生殖时细胞质平均分配 D.分裂生殖时DNA复制后平均分配 3.关于病毒增殖的叙述中正确的是() A.病毒侵入宿主细胞后,合成一种蛋白质 B.病毒的繁殖只在宿主的活细胞中进行 C.病毒繁殖时以核衣壳为单位进行 D.在普通培养基上能培养病毒 4.细菌繁殖中不可能发生的是() A.有丝分裂 B.DNA复制 C.细胞壁形成 D.蛋白质合成 5.关于生长因子,下列说法不正确的是()

A.是微生物生长不可缺少的微量有机物 B.是微生物生长不可缺少的微量矿质元素 C.主要包括维生素、氨基酸和碱基 D.一般是酶和核酸的组成成分 6.有关微生物营养物质的叙述中,正确的是() A.是碳源的物质不可能同时是氮源 B.凡碳源都提供能量 C.除水以外的无机物只提供无机盐 D.无机氮源也能提供能量 7.四瓶失去标签的无色透明的液体各装有:大肠杆菌超标的自来水;丙球蛋白(一种抗体)溶液;溶解了DNA分子的NaCl溶液;葡萄糖溶液。依次利用下列哪组物质可以鉴别出来() ①伊红—美蓝培养基②双缩尿试剂③苏丹Ⅲ④二苯胺⑤班氏试剂⑥斐林试剂⑦碘液 A.②③④⑤B.①③④⑥C.①②③⑦D.①②④⑦ 8.下面对菌落的表述不正确的是() A.肉眼可见的菌落一般是由许多细菌大量繁殖而成的 B.霉菌等在面包上生长形成的不同颜色的斑块即为菌落 C.噬菌体能使固体培养基上的细菌裂从而使菌落变得透明 D.细菌、放线菌和真菌在培养基上形成的菌落形态不同 9.与下列几种微生物有关的叙述中正确的是() ①酵母菌②乳酸菌③硝化细菌④蓝藻⑤烟草花叶病毒⑥根瘤菌

第五章微生物的新陈代谢

第五章微生物的新陈代谢微生物从外界环境中摄取营养物质,在体内经过一系列的化学反应,转变为自身细胞物质,以维持其正常生长和繁殖,这一过程即新陈代谢,简称代谢,包括合成代谢和分解代谢。 分解代谢酶系 复杂分子简单分子+ ATP + [H] (有机物)合成代谢酶系 微生物代谢特点有两点1、代谢旺盛(强度高转化能力强)2、代谢类型多。 第一节微生物的能量代谢 一、化能异养微生物的生物氧化和产能 生物氧化的形式:某物质与氧结合、脱氢、失去电子。 生物氧化的过程:脱氢(或电子)、递氢(或电子)、受氢(或电子)。 生物氧化的功能:产能(ATP)、产还原力[H]、产小分子之间代谢物。 生物氧化的类型|呼吸、无氧呼吸、发酵。

(一)底物脱氢的四条途径 以葡萄糖作为生物氧化的典型底物,在生物氧化的脱氢阶段中,可通过四条途径完成其脱氢反应,并伴随还原力[H]和能量的产生。 1、EMP途径(糖酵解途径、己糖二磷酸途径) (1)EMP途径的主要反应 (1.3-二磷酸甘油酸) EMP途径的总反应: C6H12O6 + 2NAD++ 2ADP + 2Pi 2CH3COCOOH+ 2NADH

+2H+ + 2ATP + 2H20 (2)EMP终产物的去向: 1)有氧条件:2NADH+H+经呼吸链的氧化磷酸化反应产生6ATP; 2)无氧条件:

①丙酮酸还原成乳酸; ②酵母菌(酿酒酵母)的酒精发酵:丙酮酸脱羧为乙醛,乙醛还原为乙醇。 (3)EMP途径在微生物生命活动中的重要意义 ①供应ATP形式的能量和还原力(NADH2); ②是连接其他几个重要代谢的桥梁(TCA、HMP、ED 途径) ③为生物合成提供多种中间代谢物; ④通过逆向反应可进行多糖合成。 (4)生产实践意义 与乙醇、乳酸、甘油、丙酮、丁醇等的发酵产生关系密切。 2、HMP途径(戊糖磷酸途径、磷酸葡萄糖酸途径、WD途径) 葡萄糖不经EMP途径和TCA循环而得到彻底氧化,并产生大量NADPH+H+形式的还原力及多种重要中间代谢产物。 (1)HMP途径的主要反应

第7章 微生物代谢

第七章微生物的代谢 能量代谢:伴随物质转化而发生的能量形式相互转化。物质代谢:物质在体内转化的过程。 初级代谢:提供能量、前体、结构物质等生命活动所必需的代谢物的代谢类型;产物:氨基酸、核苷酸等。次级代谢:它们不是微生物生长所必需的代谢物质的代谢类型;产物:抗生素、色素、激素、生物碱等。 第一节微生物的能量代谢 微生物的能量代谢:微生物生命活动所需要的化学能都是由微生物对环境所提供的能量(或本身储存的能量)进行能量形式的转变而得到的,这个过程称为微生物的能量代谢。 一、化能异养菌的生物氧化和产能 生物氧化(biological):物质在细胞内经过一系列连续的氧化还原反应,逐步分解并释放能量的过程。它是发生在活细胞内的一系列产能性氧化反应的总称。 葡萄糖是化能异养型微生物进行能量代谢最基本的途径。 葡萄糖的生物氧化过程包括: 脱氢:EMP途径、HMP途径、ED途径、TCA循环。 类型:有氧呼吸、无氧呼吸和发酵(根据电子受体的不同)。 (一)底物脱氢的途径 1、EMP途径(Embden-Meyerhof-paras pathway)又称为糖酵解途径,分两个阶段共10步反应。 2、HMP途径(hexose monophosphate pathway)又称磷酸戊糖途径或单磷酸己糖途径、磷酸葡萄糖酸途径或WD途径。是产生大量NADPH2形式的还原力和多种重要中间代谢物的代谢途径。 特点:葡萄糖不经EMP途径和TCA循环而得到彻底氧化,并产生大量NADPH+H+。 3、ED途径又称2-酮-3-脱氧-6-磷酸葡糖酸(KDPG)裂解途径。 ED途径可以不依赖于EMP和HMP途径而单独存在,是少数缺乏完整EMP途径微生物的一种替代途径。其特点是葡萄糖只经4步反应即可快速获得由EMP途径需经10步才能获得的丙酮酸。 4、TCA循环(tricarboxylic acid cycle):丙酮酸经过一系列循环反应而彻底氧化、脱酸、形成CO2、H2O和NADH2的过程。 第二节微生物的分解代谢与合成代谢 一、分解代谢 (一)碳水化合物的分解 糖类物质是微生物赖以生存的主要碳源物质与能源物质。主要有淀粉、纤维素、半纤维素、果胶和几丁质等。 1、淀粉的降解:通过α-淀粉酶、β-淀粉酶、葡萄糖苷酶、异淀粉酶将其水解成双糖与单糖后,被微生物吸收,再被分解与利用。淀粉是重要的发酵原料,利用它可以生产多种多样的发酵产品。 发酵工业:酒精、酒类、有机酸,味精、酶制剂等 食品工业:饴糖、葡萄糖、果葡糖浆 制药工业:抗生素 2、纤维素降解:只有在产生纤维素酶的微生物作用下,才被分解成简单的糖类。 多种微生物具有纤维素分解酶,其中尤以霉菌的木霉活力较高。 3、半纤维素降解:半纤维素的组成类型很多,因而分解它们的酶也各不相同。菌种:曲霉、根霉与木霉等属。 4、果胶质的降解:果胶酶分由D-半乳糖醛酸通过α-1,4糖苷键连接成的果胶。产物:半乳糖醛酸。菌种:芽孢杆菌、梭状芽孢杆菌、曲霉、葡萄孢霉和镰刀霉等属. 5、几丁质的分解:由N—乙酰葡萄糖胺通过于1,4糖苷键连接而成。产物:N—乙酰葡萄糖胺。再经脱氨基酶作用,生成葡萄糖和氨。 菌种:某些细菌(溶几丁质芽孢杆菌)和放线菌(链霉菌)。 (二)含氮有机物的分解

第五章微生物的代谢

第五章微生物的代谢 一、填空题 1、酵母菌进行乙醇发酵时,将葡萄糖经________途径产生丙酮酸,由丙酮酸生成的乙醛被_______成乙醇。 2、代谢是细胞内发生的全部生化反应的总称,主要是由和两个过程组成。微生物的分解代谢是指在细胞内降解成,并能量的过程;合成代谢是指利用在细胞内合成并能量的过程。 3、生态系统中,微生物通过能直接吸收光能并同化 CO 2,微生物分解有机化合物,通过产生CO 2 。 4、微生物的4种糖酵解途径中,是存在于大多数生物体内的一条主 流代谢途径;是存在于某些缺乏完整EMP途径的微生物中的一种替代途径,为微生物所特有;是产生4碳、5碳等中间产物,微生物合成提供多种前体物质的途径。 5、产能代谢中,微生物通过磷酸化和磷酸化将某种物质氧化而释放的能量储存在ATP等高能分子中;光合微生物则通过磷酸化将光能转变成为化学能储存在ATP中。磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。 6、呼吸作用与发酵作用的根本区别是呼吸作用中电子载体不是将电子直接传递给底物降解的中间产物,而是交给系统,逐步释放出能量后再交给。 7、微生物有两种同化CO 2的方式:和;自养微生物固定CO 2 的途径主要有3条:卡尔文循环途径,可分为、和 3个阶段。 二、选择题 1、化能自养微生物的能量来源于() A、有机物 B、还原态无机化合物 C、氧化态无机化合物 D、日光 2、同型乳酸发酵中葡萄糖生成丙酮酸的途径是() A、EMP途径 B、HMP途径 C、ED途径 D、WD途径 3、下列代谢方式中,能量获得做有效地方式是()

A、发酵 B、有氧呼吸 C、无氧呼吸 D、化能自养 4、卡尔文循环途径中CO 2 固定(羧化反应)的受体是() A、核酮糖-5-磷酸 B、核酮糖-1,5-二磷酸 C、3-磷酸甘油醛 D、3-磷酸甘油酸 5、下列那个描述不符合次级代谢及其产物() A、次级代谢的生理意义不像初级代谢那样明确 B、次级代谢产物的合成不受细胞的严密控制 C、发生在指数生长后期和稳定期 D、质粒与次级代谢的关系密切 6、厌氧微生物进行呼吸吗?() A、进行呼吸,但是不利用氧气 B、不进行呼吸,因为呼吸过程需要氧气 C、不进行呼吸,因为它们利用光合成作用生成所需ATP D、不进行呼吸,因为它们利用糖酵解作用产生所需ATP 7、碳水化合物是微生物重要的能源和碳源,通常()被异养微生物优先利用。 A、甘露糖和蔗糖 B、葡萄糖和果糖 C、乳糖 D、半乳糖 8、硝化细菌是:() A、化能自养菌,氧化氨生成亚硝酸获得能量 B、化能自养菌,氧化亚硝酸生成硝酸获得能量 C、化能异养菌,以硝酸盐为最终的电子受体 D、化能异养菌,以亚硝酸盐为最终的电子受体 三、判断题 1、微生物的能量除了贮藏在ATP中外,还可贮藏在GTP、CTP和Ac-CoA中。 2、有氧呼吸产生的能量比无氧呼吸多,非环式光合磷酸化产生的能量比环式光合磷酸化多。 3、在利用等量的葡萄糖时,接合单胞菌进行酒精发酵时产生的能量没有酵母菌进行酒精发酵时产生的能量多。 4、双歧杆菌进行异型乳酸发酵时的关键性酶是磷酸戊糖解酮酶。 5、硫酸盐还原菌在无氧条件下还原SO 42-→H 2 S时,只能通过电子传递链产生

相关主题
文本预览
相关文档 最新文档