当前位置:文档之家› 最新圆的基础习题(含答案)

最新圆的基础习题(含答案)

最新圆的基础习题(含答案)
最新圆的基础习题(含答案)

一、选择题

1.对于下列命题:

①任意一个三角形一定有一个外接圆,并且只有一个外接圆;

②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;

③任意三角形一定有一个内切圆,并且只有一个内切圆;

④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.

其中,正确的有( ).

A.1个 B.2个 C.3个D.4个

2.下列命题正确的是( ).

A.相等的圆周角对的弧相等 B.等弧所对的弦相等

C.三点确定一个圆 D.平分弦的直径垂直于弦

3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为( ).

A.米

B.米

C.米

D.米

4.已知两圆的半径分别为2、5,且圆心距等于2,则两圆位置关系是( ).

A.外离B.外切C.相切D.内含

5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF =6,则圆的直径

长为( ).

A.12 B.10 C.4 D.15

第3题图第5题图第6题图

第7题图

6.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ).

A.(2,-1) B.(2,2) C.(2,1) D.(3,1)

7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB 等于( ).

A.55°B.90°C.110°D.120°

8.一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ).

A.60°B.90°C.120°D.180°

二、填空题

9.如图所示,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________

(只填一个即可).

10.已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.

11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.

第9题图第11题图第12题图第15题图

12.如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有

________________.

13.点M到⊙O上的最小距离为2cm,最大距离为10 cm,那么⊙O的半径为

________________.

14.已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且,则AC的长为_______.

15.如图所示,⊙O是△ABC的外接圆,D是弧AB上一点,连接BD,并延长至E,连接AD,若AB=AC,

∠ADE=65°,则∠BOC=________________.

16.已知⊙O的直径为4cm,点P是⊙O外一点,PO=4cm,则过P点的⊙O的切线长为________________cm,这两条切线的夹角是________________.

三、解答题

17.如图,是半圆的直径,过点作弦的垂线交半圆于点,交于

点使.试判断直线与圆的位置关系,并证明你的结论;

18.在直径为20cm的圆中,有一弦长为16cm,求它所对的弓形的高。

19.如图,点P在y轴上,交x轴于A、B两点,连结BP并延长交于C,过点C的直线交轴于,且的半径为,.

(1)求点的坐标;

(2)求证:是的切线;

20. 阅读材料:如图(1),△ABC的周长为,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用.表示△ABC的面积.

∵,

又∵,,,

∴(可作为三角形内切圆的半径公

式).

(1)理解与应用:利用公式计算边长分别为5、12、13的三角形的内切圆半径;

(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(2)),且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;

(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、a n,合理猜想其内切圆半径公式(不需说明理由).

答案与解析

【答案与解析】一、选择题

1.【答案】B;

【解析】任意一个圆的内接三角形和外切三角形都可以作出无数个.①③正确,②④错误,故选B.

2.【答案】B;

【解析】在同圆或等圆中相等的圆周角所对的弧相等,所以A不正确;等弧就是在同圆或等圆中能够

重合的弧,因此B正确;三个点只有不在同一直线上才能确定一个圆,所以C不正确;平分

弦(不是直径)的直径垂直于此弦,所以D不正确.对于性质,定义中的一些特定的条件,

3.【答案】B;

【解析】以实物或现实为背景,以与圆相关的位置关系或数量关系为考查目标.这样的考题,背景公平、

现实、有趣,所用知识基本,有较高的效度与信度.

4.【答案】D;

【解析】通过比较两圆半径的和或差与圆心距的大小关系,判断两圆的位置关系. 5-2=3>2,所以两圆

位置关系是内含.

5.【答案】B ;

【解析】圆周角是直角时,它所对的弦是直径.直径EF.

6.【答案】C;

【解析】横坐标相等的点的连线,平行于y轴;纵坐标相等的点的连线,平行于x 轴.结合图形可以发现,

由点(2,5)和(2,-3)、(-2,1)和(6,1)构成的弦都是圆的直径,其交点即为圆心(2,1).

7.【答案】C;

【解析】能够由切线性质、等腰三角形性质找出数量关系式.由AC切O于A,则∠OAB=35°,

所以∠AOB=180°-2×35°=110°.

8.【答案】C;

【解析】设底面半径为r,母线长为,则,∴,

∴,

∴ n=120,∴∠AOB=120°.

二、填空题

9.【答案】∠BAE=∠C或∠CAF=∠B.

10.【答案】外切.

11.【答案】147°;

【解析】因为DB是⊙O的切线,所以OA⊥DB,由∠AOM=66°,得∠

OAM=

∠DAM=90°+57°=147°.

12.【答案】∠6,∠2,∠5.

【解析】本题中由弦AB=CD可知,因为同弧或等弧所对的圆周角相等,故有∠1 =∠6=∠2=∠5.

13.【答案】4 cm或6 cm ;

【解析】当点M在⊙O外部时,⊙O半径4(cm);

当点M在⊙O内部时,⊙O半径.

点与圆的位置关系不确定,分点M在⊙O外部、内部两种情况讨论.

14.【答案】或;

【解析】根据题意有两种情况:

①当C点在A、O之间时,如图(1).

由勾股定理OC=,故.

②当C点在B、O之间时,如图(2).由勾股定理知,

故.

没有给定图形的问题,在画图时,一定要考虑到各种情况.

15.【答案】100°;

【解析】∠ADE=∠ACB=65°,∴∠BAC=180°-65°×2=50°,∠BOC=2∠BAC =100°.

在前面的学习中,我们用到了圆内接四边形的性质(对角互补,外角等于内对角),在解一些客观性题目时,可以使用.

16.【答案】; 60°;

【解析】连接过切点的半径,则该半径垂直于切线.在由⊙O的半径、切线长、OP 组成的直角三角形中,

半径长2cm,PO=4cm.由勾股定理,求得切线长为,两条切线的夹角为30°×2=60°.

本题用切线的性质定理得到直角三角形,利用勾股定理和切线长定理求解.

三、解答题

17.【答案与解析】

AC与⊙O相切.

证明:∵弧BD是∠BED与∠BAD所对的弧,

∴∠BAD=∠BED,

∵OC⊥AD,

∴∠AOC+∠BAD=90°,

∴∠BED+∠AOC=90°,

即∠C+∠AOC=90°,

∴∠OAC=90°,

∴AB⊥AC,即AC与⊙O相切.

18.【答案与解析】

一小于直径的弦所对的弓形有两个:劣弧弓形与优弧弓形. 如图,HG为⊙O的直径,且HG⊥AB,AB=16cm,HG=20cm

故所求弓形的高为4cm或16cm

19.【答案与解析】

(1)连结.

.

,.

是的直径,

.

,,

,,.

(2)过点

.

当时,,

.

,,

.

是的切线.

20.【答案与解析】

(1)∵ 52+122=169=132,∴此三角形为直角三角形.

∴三角形面积,,周长=5+12+13=30.

∴,解得r=2.

(2)连接OA、OB、OC、OD,四边形ABCD被划分为四个小三角形.

∵,

又∵,,,.∴

∴.

(3).

圆的基础习题(含答案)

一、选择题?1.对于下列命题: ①任意一个三角形一定有一个外接圆,并且只有一个外接圆;?②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;?③任意三角形一定有一个内切圆,并且只有一个内切圆;?④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.?其中,正确的有( ).? A.1个 B.2个C.3个D.4个 ? 2.下列命题正确的是( ).?A.相等的圆周角对的弧相等B.等弧所对的弦相等 C.三点确定一个圆 D.平分弦的直径垂直于弦 ? 3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为().?A.米 B.米C.米 D.米 4.已知两圆的半径分别为2、5,且圆心距等于2,则两圆位置关系是( ). A.外离 B.外切C.相切 D.内含? 5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF=6,则圆的直径?长为( ). A.12 B.10 C.4 D.15? ? 第3题图第5题图第6题图第7题图??6.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ). A.(2,-1)B.(2,2)C.(2,1) D.(3,1) 7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于( ). A.55°B.90°C.110° D.120°?? 8.一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ).? A.60° B.90°C.120°

D.180°? 二、填空题9 ?.如图所示,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________?(只填一个即可).? 10.已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.? 11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________. 第9题图第11题图第12题图第15题图 ?12.如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________. ? 13.点M到⊙O上的最小距离为2cm,最大距离为10 cm,那么⊙O的半径为________________. 14.已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且,则AC的长为_______. ?15.如图所示,⊙O是△ABC的外接圆,D是弧AB上一点,连接BD,并延长至E,连接AD,若AB=AC,?∠ADE=65°,则∠BOC=________________. 16.已知⊙O的直径为4cm,点P是⊙O外一点,PO=4cm,则过P点的⊙O的切线长为________________cm,这两条切线的夹角是________________. 三、解答题?17.如图,是半圆的直径,过点作弦的垂线交半圆 于点,交于点使.试判断直线与圆的位置关系,并证明你的结论;? ? 18.在直径为20cm的圆中,有一弦长为16cm,求它所对的弓形的高。??19.如图,点P在y轴上,交x轴于A、B两点,连结BP并延长交于C,过点C的直线

圆经典例题精析

圆经典例题精析 考点一、圆的有关概念和性质 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) (A)4个(B)3个(C)2个(D)1个 【考点】本题考查直径、过不在同一条直线上的三点的圆、外心、等圆与等弧等概念, 【思路点拨】其中第②个命题不对的原因在于忽视了过三点作图的条件.若三点在一条直线上,则不能作出过这三点的圆,故②不对. 【答案】B. 2.下列判断中正确的是( ) (A)平分弦的直线垂直于弦 (B)平分弦的直线也必平分弦所对的两条弧 (C)弦的垂直平分线必平分弦所对的两条弧 (D)平分一条弧的直线必平分这条弧所对的弦 【考点】垂径定理 【解析】弦的垂直平分线平分弦、垂直于弦,因此平分弦所对的两条弧.A中被平分的弦应不是直径; B理由同A;D中平分弧的直线的直线应过圆心. 【答案】C. 3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则( ) (A)(B) (C)的度数=的度数(D)的长度=的长度 【思路点拨】因为在圆中,圆心角的度数与它所对的弧的度数相等,而∠AOB=∠A′OB′,所以的 度数=的度数. 【答案】C. 4.如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB的度数是( ) A.80° B.100° C.120° D.130°

【考点】同弧所对的圆周角等于圆心角的一半,圆内接四边形的对角互补. 【思路点拨】可连结OC,则由半径相等得到两个等腰三角形, ∵∠A+∠B+∠ACB=360°-∠O=260°,且∠A+∠B=∠ACB,∴∠ACB=130°. 或在优弧AB上任取一点P,连结PA、PB,则∠APB=∠O=50°, ∴∠ACB=360°-∠APB =130°. 【答案】D. 总结升华:圆的有关性质在解决圆中的问题时,应用广泛,运用简便. 举一反三: 【变式1】某公园的一石拱桥是圆弧形(劣弧),跨度为24米,拱的半径为13米,则拱高为_____. 【考点】垂径定理. 【思路点拨】本题可用几何语言叙述为:如图,AB为⊙O的弦,CD为拱高,AB=24米,半径OA=13米,求拱高CD的长. 【解析】由题意可知:CD⊥AB,AD=BD,且圆心O在CD的延长线上.连结OA, 则OD===5(米).所以CD=13-5=8(米). 【答案】8米. 【变式2】如图,AB是⊙O的直径,∠ACD=15°,则∠BAD=__________°. 【考点】同弧所对的圆周角相等,直径所对的圆周角是90°. 【思路点拨】AB是直径,则∠ADB=90°,∠ACD=∠ABD=15°,可求得∠BAD. 【答案】75°. 【变式3】如图,⊙O的直径AB和弦CD相交于点E,且AE=1cm,EB=5cm,∠DEB=60°,求CD的长. 【解析】因为AE=1cm,EB=5cm,所以OE=(1+5)-1=2(cm),半径等于3cm.在Rt△OEF中可求EF

圆的基础习题(附答案)

. 圆的基本概念 一.选择题(共1小题) 1.(2013?)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为() A.2B.8 C.2D.2 二.解答题(共23小题) 2.(2007?双柏县)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D. (1)请写出五个不同类型的正确结论; (2)若BC=8,ED=2,求⊙O的半径. 3.(2007?)如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径. 4.(1998?)如图,AB、CD是⊙O的弦,M、N分别为AB、CD的中点,且∠AMN=∠CNM.求证:AB=CD. 5.如图,过圆O一点M的最长的弦长为10,最短的弦长为8,求OM的长.

6.(1997?)已知AB是⊙O的弦,P是AB上一点,AB=10,PA=4,OP=5,求⊙O的半径. 7.(2010?黔东南州)如图,水平放置的圈柱形水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留π) 8.安定广场南侧地上有两个石球,喜爱数学的小明想测量球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm,请你算出这个石球的半径. 9.(1999?)已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别是OA、OB的中点.求证:MC=NC. 10.已知:如图,∠PAC=30°,在射线AC上顺次截取AD=2cm,DB=6cm,以DB为直径作⊙O交射线AP于E、F 两点,又OM⊥AP于M.求OM及EF的长. 11.(2013?)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE. (1)求证:∠B=∠D; (2)若AB=4,BC﹣AC=2,求CE的长.

林初中2017届中考数学压轴题专项汇编:专题20简单的四点共圆(附答案)

专题20 简单的四点共圆 破解策略 如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有: 1.若四个点到一个定点的距离相等,则这四个点共圆. 如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的 圆上. D 【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2. 【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值. (2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°. 2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.

D 【答案】(1)略;(2)AD ;(3)AD=DE·tanα. 【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE. (2)同(1),可得A,D,B,E四点共圆,∠AED=∠ABD=30°,所以AD DE =tan30°, 即AD= 3 DE. 3.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,∠CDE为外角,若∠B=∠CDE,则A,B,C,D四点在同一个圆上. 【答案】略 4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆. 如图,点A,D在线段BC的同侧,若∠A=∠D,则A,B,C,D四点在同一个圆上.

初中数学圆练习题大全

初中数学圆练习题大全 (一) 一. 填空 1.在半径为10cm的⊙O中,弦AB长为10cm,则O点到弦AB的距离是______cm. 3.圆外切等腰梯形的周长为20cm,则它的腰长为______cm. 4.AB是⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=4cm,,BD=9cm,则CD=______cm,BC=______cm. 5.若扇形半径为4cm,面积为8cm,则它的弧长为______cm. 6.如图,PA、PB、DE分别切⊙O于A、B、C点,若圆O的半径为6,OP=10, 则△PDE的周长为______. 7.如图,PA=AB,PC=2,PO=5,则PA=______. 8.斜边为AB的直角三角形顶点的轨迹是______. 9.若两圆有且仅有一条公切线,则两圆的位置关系是______. 10.若正六边形的周长是24cm,它的外接圆半径是______,内切圆半径是 ______. 二. 选择题 在下列各题的四个备选答案中,只有一个是正确的,请你将正确答案前 的字母填在括号内. 1.两圆半径分别为2和3,两圆相切则圆心距一定为[ ] A.1cm B.5cm C.1cm或6cm D.1cm或5cm 2.弦切角的度数是30°,则所夹弧所对的圆心角的度数是 [ ] A.30° B.15° C.60° D.45° 3.在两圆中,分别各有一弦,若它们的弦心距相等,则这两弦 [ ] A.相等 B.不相等 C.大小不能确定 D.由圆的大小确定 ∠PAD= [ ] A.10° B.15° C.30° D.25° 5.如图,PA、PB分别切⊙O于A、B,AC是⊙O的直径,连接AB、BC、OP,则 与∠APO相等的角的个数是 [ ] A.2个 B.3个 C.4个 D.5个 6.两圆外切,半径分别为6、2,则这两圆的两条外公切线的夹角的度数是 [ ] A.30° B.60° C.90° D.120° 7.正六边形内接于圆,它的边所对的圆周角是 [ ] A.60° B.120° C.60或120 D.30°或150°

圆的基础习题(含答案)

一、选择题 1.对于下列命题: ①任意一个三角形一定有一个外接圆,并且只有一个外接圆; ②任意一个圆一定有一个内接三角形,并且只有一个内接三角形; ③任意三角形一定有一个内切圆,并且只有一个内切圆; ④任意一个圆一定有一个外切三角形,并且只有一个外切三角形. 其中,正确的有( ). A.1个 B.2个 C.3个D.4个 2.下列命题正确的是( ). A.相等的圆周角对的弧相等 B.等弧所对的弦相等 C.三点确定一个圆 D.平分弦的直径垂直于弦 3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为( ). A.米 B.米 C.米 D.米 4.已知两圆的半径分别为2、5,且圆心距等于2,则两圆位置关系是( ). A.外离B.外切C.相切D.内含 5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF =6,则圆的直径 长为( ). A.12 B.10 C.4 D.15 第3题图第5题图第6题图 第7题图

6.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ). A.(2,-1) B.(2,2) C.(2,1) D.(3,1) 7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB 等于( ). A.55°B.90°C.110°D.120° 8.一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ). A.60°B.90°C.120°D.180° 二、填空题 9.如图所示,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________ (只填一个即可). 10.已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________. 11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________. 第9题图第11题图第12题图第15题图 12.如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有 ________________. 13.点M到⊙O上的最小距离为2cm,最大距离为10 cm,那么⊙O的半径为 ________________. 14.已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且,则AC的长为_______. 15.如图所示,⊙O是△ABC的外接圆,D是弧AB上一点,连接BD,并延长至E,连接AD,若AB=AC,

四点共圆的判定与性质

四点共圆的判定与性质 一、四点共圆的判定 (一)判定方法 1、若四个点到一个定点的距离相等,则这四个点共圆。 2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。 3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。 4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。 5、同斜边的直角三角形的顶点共圆。 6、若AB、CD 两线段相交于P 点,且PA×PB=PC×PD,则A、B、C、D 四点共圆(相交弦定理的逆定理)。 7、若AB、CD 两线段延长后相交于P。且PA×PB=PC×PD,则A、B、C、D 四点共圆(割线定理)。 8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。 (二)证明 1、若四个点到一个定点的距离相等,则这四个点共圆。 若可以判断出OA=OB=OC=OD,则A、B、C、D 四点在以O 为圆心OA 为半径的圆上。 2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。 若∠A+∠C=180 °或∠B+∠D=180 °,则点A、B、C、D 四点共圆。

3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。 若∠B=∠CDE,则A、B、C、D 四点共圆证法同上。 4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这 两个点和这条线的两个端点共圆。 若∠A=∠D 或∠ABD=∠ACD,则A、B、C、D 四点共圆。 6、若AB、CD 两线段相交于P 点,且PA×PB=PC×PD,则A、B、C、D 四点共圆(相交弦定理的逆定理)。

新初中数学圆的经典测试题含答案

新初中数学圆的经典测试题含答案 一、选择题 1.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆. 下列说法中错误的是( ) A .勒洛三角形是轴对称图形 B .图1中,点A 到?BC 上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等 【答案】C 【解析】 【分析】 根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误. 【详解】 鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确; 点A 到?BC 上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误; 鲁列斯曲边三角形的周长=3×60180DE DE ππ?=? ,圆的周长=22 DE DE ππ?=? ,故说法正确. 故选C. 【点睛】 主要考察轴对称图形,弧长的求法即对于新概念的理解. 2.如图,在ABC ?中,90ABC ∠=?,6AB =,点P 是AB 边上的一个动点,以BP 为

初三数学圆的基础知识小练习

初三数学圆的基础知识小 练习 Prepared on 24 November 2020

圆的基本知识 一、知识点 5、圆与圆的位置关系:(内含、相交、外离) 例3:已知⊙O 1的半径为6厘米,⊙O 2 的半径为8厘米,圆心距为d, 则:R+r=,R-r=; (1)当d=14厘米时,因为dR+r,则⊙O1和⊙O2位置关系是: (2)当d=2厘米时,因为dR-r,则⊙O1和⊙O2位置关系是: (3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是: (4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是: (5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是: 6、切线性质: 例4:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO=度(2)如图,PA、PB是⊙O的切线,点A、B是切点, 则=,∠=∠; 7、圆中的有关计算 (1)弧长的计算公式: 例5:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少 解:因为扇形的弧长=() 180 所以l=() 180 =(答案保留π) (2)扇形的面积: 例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少

解:因为扇形的面积S= () 360 所以S= () 360 =(答案保留π) ②若扇形的弧长为12πcm ,半径为6㎝,则这个扇形的面积是多少 解:因为扇形的面积S= 所以S== (3)圆锥: 例7:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少 解:∵圆锥的侧面展开图是形,展开图的弧长等于 ∴圆锥的侧面积= 知识点 1、与圆有关的角——圆心角、圆周角 (1)图中的圆心角;圆周角; (2)如图,已知∠AOB=50度,则∠ACB=度; (3)在上图中,若AB 是圆O 的直径,则∠AOB=度; 2、圆的对称性: (1)圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为. (2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧. 如图,∵CD 是圆O 的直径,CD ⊥AB 于E ∴=,= 3、点和圆的位置关系有三种:点在圆,点在圆,点在圆; 例1:已知圆的半径r 等于5厘米,点到圆心的距离为d , (1)当d =2厘米时,有dr ,点在圆(2)当d =7厘米时,有dr ,点在圆 (3)当d =5厘米时,有dr ,点在圆 4、三角形的外接圆的圆心——三角形的外心——三角形的交点; 三角形的内切圆的圆心——三角形的内心——三角形的交点;

初三数学圆经典例题

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d,

则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。 例3 ⊙O 平面一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. 例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. A B D C O · E

圆的综合练习题及答案

圆的综合练习题及答案公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

圆的综合练习题答案 1.如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B . (1)求证:AD 是⊙O 的切线; (2)若⊙O 的半径为3,AB =4,求AD 的长. (1)证明: 如图, 连接AO 并延长交⊙O 于点E , 连接BE , 则∠ABE =90°. ∴ ∠EAB +∠E =90°. ∵ ∠E =∠C , ∠C =∠BAD , ∴ ∠EAB +∠BAD =90°. ∴ AD 是⊙O 的切线. ……………………2分 (2)解:由(1)可知∠ABE =90°. ∵ AE =2AO =6, AB =4, ∴ 5222=-=AB AE BE . …………………………………………………3分 ∵ ∠E=∠C =∠BAD , BD ⊥AB , ∴ .cos cos E BAD ∠=∠ …………………………………………………4分 ∴ . AE BE AD AB = ∴ 5 5 12=AD . (5) 分 2.已知:在⊙O 中,AB 是直径,AC 是弦,OE⊥AC 于点E ,过点C 作直线FC ,使∠FCA=∠AOE,交 AB 的延长线于点D. (1)求证:FD 是⊙O 的切线; (2)设OC 与BE 相交于点G ,若OG =2,求⊙O

半径的长; 证明:(1)连接OC (如图①), ∵O A =OC ,∴∠1=∠A. ∵OE ⊥AC ,∴∠A +∠AOE =90°. ∴∠1+∠AOE =90°. 又∠FCA =∠AOE , 图① ∴∠1+∠FCA =90°. 即∠OCF =90°. ∴FD 是⊙O 的切 线. ……………………………………………………2分 (2)连接BC (如图②), ∵OE ⊥AC ,∴AE =EC. 又AO =OB , ∴OE ∥B C 且BC OE 2 1=.……………3分 ∴△OEG ∽△CBG. 图② ∴ 2 1 ==CB OE CG OG . ∵OG =2,∴CG =4. ∴OC = 6. ………………………………………………………………5分 即⊙O 半径是6. 3.如图,以等腰ABC ?中的腰AB 为直径作⊙O , 交底边 BC 于 点D .过点D 作DE AC ⊥,垂足为E . F 1 B D E O A C F G B D E O A C

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解 知识点、重点、难点 四点共圆就是圆得基本内容,它广泛应用于解与圆有关得问题.与圆有关得问题变化多,解法灵活,综合性强,题型广泛,因而历来就是数学竞赛得热点内容。 在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆得有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆得方法很重要。 判定四点共圆最基本得方法就是圆得定义:如果A、B、C、D四个点到定点O得距离相等,即OA=OB=OC =OD,那么A、B、C、D四点共圆. 由此,我们立即可以得出 1、如果两个直角三角形具有公共斜边,那么这两个直角三角形得四个顶点共圆。 将上述判定推广到一般情况,得: 2、如果四边形得对角互补,那么这个四边形得四个顶点共圆。 3、如果四边形得外角等于它得内对角,那么这个四边形得四个顶点共圆。 4、如果两个三角形有公共底边,且在公共底边同侧又有相等得顶角,那么这两个三角形得四个顶点共圆。 运用这些判定四点共圆得方法,立即可以推出: 正方形、矩形、等腰梯形得四个顶点共圆。 其实,在与圆有关得定理中,一些定理得逆定理也就是成立得,它们为我们提供了另一些证明四点共圆得方法.这就就是: 1、相交弦定理得逆定理:若两线段AB与CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。 2.割线定理得逆定理:若相交于点P得两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、 C、D四点共圆。 3、托勒密定理得逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD就是圆内接四边形。 另外,证多点共圆往往就是以四点共圆为基础实现得一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际就是同一个圆。 例题精讲 例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。已知P、D、C、E四点共圆,P、E、A、F 四点共圆,求证:B、D、P、F四点共圆。 证明连PD、PE、PF.由于P、D、C、F四点共圆,所以∠BDP = ∠PEC.又由于A、E、P、F四点共圆,所以∠PEC =∠AFP.于就是∠BDP= ∠AFP,故B、D、P、F四点共圆。 例2:设凸四边形ABCD得对角线AC、BD互相垂直,垂足为E,证明:点E关于AB、BC、CD、DA得对称点共圆。 为1 2 ,此变换把E关于AB、BC、 证明以E为相似中心作相似变换,相似比 CD、DA得对称点变为E在AB、BC、CD、DA上得射影P、Q、R、S(如图)、只需证明PQRS就是圆内接四边形。 由于四边形ESAP、EPBQ、EQCR及ERDS都就是圆内接四边形(每个四边形都有一组对角为直角),由E、P、B、Q共圆有∠EPQ = ∠EBQ、由E、Q、C、R共圆有∠ERQ=∠ECQ,于就是∠EPQ+∠ERQ = ∠EBQ+∠ECQ=90°、同理可得∠EPS +∠ERS =90°、从而有∠SPQ+∠QRS =180°,故PQRS就是圆内接四边形。 例3:梯形ABCD得两条对角线相交于点K,分别以梯形得两腰为直径各作一圆,点K位于这两个圆之外,证明:由点K向这两个圆所作得切线长度相等。 证明如图,设梯形ABCD得两腰为AB与CD,并设AC、BD与相应二圆得第二个交点分别为M、N、由于∠AMB、∠CND就是半圆上得圆周角,所以∠AM B=∠CND = 90°.从而∠BMC =∠BNC=90°,故B、M、N、C四点共圆,因此∠MNK=∠ACB.又∠ACB =∠KAD,所以∠MNK =∠KAD、于就是M、N、D、A四点共圆,因此KM·KA = KN·KD、由切割线定理得K向两已知圆所引得切线相等。 例4:如图,A、B为半圆O上得任意两点,AC、BD垂直于直径EF,BH⊥OA,求证:DH=AC、证法一在BD上取一点A',使A'D = AC,则ACDA'就是矩形。连结A'H、AB、OB、由于BD⊥EF、BH⊥OA,所以∠BDO =∠B HO=90°、于就是D、B, H、O四点共圆,所以∠HOB =∠HDB、由于∠AHB =∠AA'B = 90°,所以A、H、A'、B四点共圆。故∠DA'H=∠OAB,因此∠DHA'=∠OBA、而OA = OB,所以∠OBA=∠OAB,于就是∠DHA'=∠D A'H、所以DH=DA',故DH =

初三圆的典型例题

圆典型例题精选 【例题1】如图所示,AB 是圆O 的一条弦,OD AB ⊥,垂足为C ,交圆O 于点D ,点E 在圆O 上.(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长. 【例题2】如图,线段AB 经过圆心O ,交圆O 于点A,C ,点D 在圆O 上,连接AD ,BD , ∠A=∠B=30度.BD 是圆O 的切线吗?请说明理由. 【例题3】已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)请说明:∠ACO=∠BCD . (2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 【例题4】如图,梯形ABCD 内接于⊙O , BC ∥AD ,AC 与BD 相交于点E ,在不添加 任何辅助线的情况下: (1) 图中共有几对全等三角形,请把它们一一写出来,并选择其中 一对全等三角形进行证明. (2) 若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形 (全等三角形除外). 【例题5】如图,在Rt △ABC 中,∠C=90°,AC=5,BC=12,⊙O 的半径为3. (1)若圆心O 与C 重合时,⊙O 与AB 有怎样的位置关系? (2)若点O 沿线段CA 移动,当OC 等于多少时,⊙O 与AB 相切? E B D C A O 第 1 题图 图9 E D B A O C

【例题6】推理运算:如图,AB 为圆○直径,CD 为弦,且CD AB ⊥,垂足为H .OCD ∠的平分线CE 交圆○于E ,连结OE . (1)请说明:E 为弧ADB 的中点; (2)如果圆○的半径为1,3CD =,①求O 到弦AC 的距离;②填空:此时圆周上存在 个点到直线AC 的距离为 12 . 【例题7】已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,与AC ?交于点E ,请说明:△DEC 为等腰三角形. 【例题8】如图,已知⊙O 是△ABC 的外接圆,AB 为直径,若PA ⊥AB ,PO 过AC 的中点M .试说明:PC 是⊙O 的切线. 【例题9】已知:如图,AB 是⊙O 的切线,切点为A ,OB 交⊙O 于C 且C 为OB 中点,过C 点的弦CD 使∠ACD =45°,弧AD 的长为2 2 π, 求弦AD 、AC 的长. 【例题10】如图所示,ABC △是直角三角形,90ABC ∠=,以AB 为直径的圆○交AC 于点 E ,点D 是BC 边的中点,连结DE . (1)请说明:DE 与圆○相切; (2)若圆O 的半径为3,3DE =,求AE . A B O C P M 图4 A B C D ·O 45° A B D E O C H B D C E A O

四点共圆(习题)

圆内接四边形与四点共圆 思路一:用圆的定义:到某定点的距离相等的所有点共圆。→若连在四边形的三边的中垂线相交于一点,那么这个四边形的四个顶点共圆。(这三边的中垂线的交点就是圆心)。 产生原因:圆的定义:圆可以看作是到定点的距离等于定长的点的集合。 基本模型: AO=BO=CO=DO ? A、B、C、D四点共圆(O为圆心) 思路二:从被证共圆的四点中选出三点作一个圆,然后证另一个点也在这个圆上,即可证明这四点共圆。→要证多点共圆,一般也可以根据题目条件先证四点共圆,再证其他点也在这个圆上。 思路三:运用有关性质和定理: ①对角互补,四点共圆:对角互补的四边形的四个顶点共圆。 产生原因:圆内接四边形的对角互补。 基本模型: ∠ + = 180 B)? A、B、C、D四点共圆 ∠D 180 = ∠ + ∠D A(或0 ②张角相等,四点共圆:线段同侧两点与这条线段两个端点连线的夹角相等,则这两个点和线段的两个端点共四个点共圆。 产生原因:在同圆或等圆中,同弧所对的圆周角相等。 方法指导:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角(即:张角)相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

∠? A、B、C、D四点共圆 = CAB∠ CDB ③同斜边的两个直角三角形的四个顶点共圆,其斜边为圆的直径。 产生原因:直径所对的圆周角是直角。 ∠D = C? A、B、C、D四点共圆 = ∠ 90 ④外角等于内对角,四点共圆:有一个外角等于其内对角的四边形的四个顶点共圆。产生原因:圆内接四边形的外角等于内对角。 基本模型: ∠? A、B、C、D四点共圆 = ECD∠ B

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

圆基础练习题

《 圆》基础练习题 一.选择题 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有………………() (A )4个(B )3个(C )2个(D )1个 2.下列判断中正确的是………………………………………………………………() (A )平分弦的直线垂直于弦(B )平分弦的直线也必平分弦所对的两条弧 (C )弦的垂直平分线必平分弦所对的两条弧(D )平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB =∠A ′OB ′=60°,则………………() (A )=(B )> (C )的度数=的度数 (D )的长度=的长度 的度4.如图,已知⊙O 的弦AB 、CD 相交于点E , 的度数为60°,数为100°,则∠AEC 等于………………………………………………………………………() (A )60°(B )100°(C )80°(D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是() (A )67.5°(B )135°(C )112.5°(D )110° 6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那么圆P 与 OB 的位置关系是………………………………………………() (A )相离(B )相切(C )相交(D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为() (A )21(a +b +c )r (B )2(a +b +c )(C )3 1(a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM = 23,则tan ∠BCG 的值为……() (A )33(B )2 3(C )1(D )3 9.在⊙O 中,弦AB 和CD 相交于点P ,若PA =3,PB =4,CD =9,则以PC 、 PD 的长为根的一元二次方程为…………………………………………………………() (A )x 2+9x +12=0(B )x 2-9x +12=0(C )x 2+7x +9=0(D )x 2-7x +9=0 10.已知半径分别为r 和2r 的两圆相交,则这两圆的圆心距d 的取值范围是………() (A )0<d <3r (B )r <d <3r (C )r ≤d <3r (D )r ≤d ≤3r 二.填空题 11.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为_____. 12.如图,已知AB 为⊙O 的直径,∠E =20°,∠DBC =50°,则∠CBE =______.

圆周运动典型基础练习题大全

1.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为() A.1∶4 B.2∶3 C.4∶9 D.9∶16 2.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两 个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。两小环同 时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为() A.(2m+2M)g B.Mg-2mv2/R C.2m(g+v2/R)+Mg D.2m(v2/R-g)+Mg 3.下列各种运动中,属于匀变速运动的有() A.匀速直线运动B.匀速圆周运动C.平抛运动 D.竖直上抛运动 4.关于匀速圆周运动的向心力,下列说法正确的是( ) A.向心力是指向圆心方向的合力,是根据力的作用效果命名的 B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C.对稳定的圆周运动,向心力是一个恒力 D.向心力的效果是改变质点的线速度大小 5.一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v=0.2m/s , 那么,它的向心加速度为______m/s2,它的周期为______s。 6.在一段半径为R=15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ =0.70倍,则汽车拐弯时的最大速度是m/ s 7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直方向 的夹角为θ ,试求小球做圆周运动的周期。 8如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所 受拉力达到F=18N时就会被拉断。当小球从图示位置释放后摆到悬 点的正下方时,细线恰好被拉断。若此时小球距水平地面的高度h=5m, 重力加速度g=10m/s2,求小球落地处到地面上P点的距离?求落地速 度?(P点在悬点的正下方) 9如图所示,半径R= 0.4m的光滑半圆轨道与粗糙的水平面相切于A点,质量为m= 1kg的小物体(可视为质点)在水平拉力F的作用下,从C点运动到A点, 物体从A点进入半圆轨道的同时撤去外力F,物体沿半圆轨道通 过最高点B后作平抛运动,正好落在C点,已知AC = 2m,F = 15N,g取10m/s2,试求:物体在B点时的速度以及此时半圆 轨道对物体的弹力? 20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质 量均为m的小球A、B以不同速率进入管内,A通过最高点C

中考圆专题基础练习题

圆专题 一、圆心角、圆周角 1.如图,设⊙O的半径的为R,且AB=AC=R,则∠BAC=_______. 2.如图,AB为⊙O的弦,∠OAB=75O ,则此弦所对的优弧是圆周的______。

4.如图,在△ABC 中,∠C 是直角,∠A=32O 18’ ,以点C 为圆心、BC 为半径作圆,交AB 于点D,交AC 于点E,则? BD 的度数是______。 5.如图,点O 是△ABC 的外心,已知∠ACB=100O ,则劣弧? AB 所对的∠AOB=______度。 6.如图,AB 是⊙O 的直径,CD 与AB 相交于点E, ∠ACD=60O , ∠ADC=50O ,则∠AEC=______度。 7.如图,以等腰△ABC 的边AB 为直径的半圆,分别交AC 、BC 于点D 、E,若AB=10, ∠OAE=30O ,则DE=______。 8.在锐角△ABC 中,∠A=50O ,若点O 为外心,则∠BOC=_____;若点I 为内心,则∠BIC=______;若点H 为垂心,则∠BHC=________. 9.若△ABC 内接于⊙O ,∠A=n O ,则∠BOC=_______. 10.如图,已知AB 和CD 是⊙O 相交的两条直径,连AD 、CB ,那么α和β的关系是( ) A.α=β B.β> 21α C.β<2 1 α D.β=2α 11.如图,在⊙O 中,弦AC 、BD 交于点E ,且 ? ??==CD BC AB ,若∠BEC=130O ,则∠ACD 的度数为( ) A.15O B.30O C.80O D.105O 12.如图,AB 为半圆的直径,AD ⊥AB,点C 为半圆上一点,CD ⊥AD,若CD=2,AD=3,求AB 的长。 13.如图,AO ⊥BO,AO 交⊙O 于点D ,AB 交⊙O 于点C, ∠A=27O ,试用多种方法求?DC 、? BC 的度数。 14.求证:如果AB 和CD 为⊙O 内互相垂直的两条弦,那么∠AOC 和∠BOD 互补。

相关主题
文本预览
相关文档 最新文档