当前位置:文档之家› 无凸缘一次拉深

无凸缘一次拉深

无凸缘一次拉深
无凸缘一次拉深

无凸缘圆筒形工件的拉深模设计案例

任务:无凸缘圆筒形工件的拉深模设计(一次拉深成形)

工件图 : 如图 1所示

生产批量 : 大批量

材料 :10 钢板

料厚 :1mm

图 1 工件图

设计步骤:

1.工艺分析

此工件为无凸缘圆筒形工件 , 要求内形尺寸 , 没有厚度不变的要求。此工件的形状满足拉深的工艺要求 , 可用拉深工序加工。

工件底部圆角半径 r = 8mm, 大于拉深凸模圆角半径 r 凸 =4~6mm (查表首次拉深凹模的圆角半径 r 凹 = 6t = 6mm, 而 r 凸 = (0.6~1)r 凹 = 4~6mm ,r> r 凸), 满足首次拉深对圆角半径的

要求。尺寸 7.007.72+Φmm, 查公差表为 IT14级 , 满足拉深工序对工件公差等级的要求。

判断拉深次数。

(1)计算毛坯直径 D

如图 1所示 ,料厚为1mm ,按中径计算。

h = (29.5 -0.5)mm = 29 mm

d =(72.7 + 0.35(△/2) + 1)mm = 74 mm

工件的相对高度 h/d = 29mm/74mm=0.4 ,根据相对高度查得修边余量 △h =2mm

查无凸缘圆筒形拉深工件的毛坯尺寸计算公式为 :

2256.072.14r rd dH d D --+= 将 d = 74mm ,H = h + △h = (29 +2)mm = 31mm ,r = ( 8 + 0.5 ) = 8.5mm ,

代入上式得毛坯的直径为116mm 。

(2) 判断拉深次数

工件总的拉深因数 m 总 = d/D = 74mm/116mm = 0.64 。毛坯的相对厚度 t/D = 1mm/116mm = 0.0086。

用式t/D ≥0.045(1-m)判断拉深时是否需要压边

因0162.064.01(045.0)1(045

.0=-=-)m

而 0162.0)1(045.00086.0/=-<=m D t , 故需加压边圈。

由相对厚度查表(无凸缘圆筒件用压边圈拉伸时的拉伸系数)得首次拉深的极限拉深因数 m 1=0.54 。因 m 总 > m 1, 故工件只需一次拉深。

2. 确定工艺方案

本工件首先需要落料 , 制成直径 D=116mm 的圆片 ( 由冲裁工艺完成 ), 然后以 D =116mm

的圆板料为毛坯进行拉深 , 拉深成为内径为7.007.72+Φmm 、内圆角r 为 8mm 的无凸缘圆筒 , 最后按

h =29.5mm 进行修边。

3. 参数计算

(1) 计算压边力、拉深力 1) 查压边力的计算公式为 []

p d D F r Q 2122(4)凹+-=π 式中 ,r 凹 = r 凸 = 8mm,D = 116mm,d 1 = 74mm,查表得 p = 2.7Mpa 。

把各已知数据代人上式 , 得压边力为 F Q =11350N

2) 拉深力

根据公式 F=K πdt σb

已知 m =0.64, 由表查得 K=0.75,10钢的强度极限σb =440Mpa 。将 K=0.75,d =74mm,t =1mm, σb =440Mpa 代入上式 , 得 F=76700N 。

3) 压力机的公称压力

按式F 压≥1.4(F+F Q )=1.4(76700+12600)=125020N ,故压力机的公称压力要大于 125kN 。

(2) 模具工作部分尺寸的计算

1) 拉深模的间隙。由表查得拉深模的单边间隙为 Z/2=1.1t=1.1mm

则拉深模的间隙 Z =2 × 1.1mm=2.2mm 。

2) 拉深模的圆角半径。凹模的圆角半径选取r 凹 = 8t = 8mm,凸模的圆角半径r 凸等于工件的内圆角半径 , 即r 凸 = r = 8mm 。

3) 凸、凹模工作部分的尺寸和公差。由于工件要求内形尺寸 ,则以凸模为设计基准。凸模尺寸的计算式公式0min )4.0(p d d p δ-?+=。

将模具公差按 IT10 级选取 , 则δp=0.12mm 。把 d min = 72.7mm ,Δ=0.7mm ,δp=0.12mm 代入上式 , 则凸模尺寸为012.098.72-=p d

间隙取在凹模上 , 则凹模的尺寸按式D Z d d d δ++?+=0min )4.0(计算 , 把d min = 72.7mm ,Δ=0.7mm ,δd=0.12mm Z=2.2mm, 代入上式 , 则凹模的尺寸为

12.00

18.75+=d d mm 。 (3) 确定凸模的通气孔,查表得凸模的通气孔直径为 6.5mm 。

4. 模具的总体设计

总装图如图 2所示。

说明:拉深模具在单动压力机上拉深,压边圈采用平面式的,坯料用压边圈的凹槽定位,凹槽深度小于 1mm, 以便压料 , 压边力用弹性元件控制 , 模具采用倒装结构,出件时用卸料螺钉顶出。

由于此拉深模为非标准形式,需计算模具闭合高度。其中各模板的尺寸需取国标。模具的闭合高度为 :

H模 =H上模 +H压 +H固 +H下模座 +25mm

式中 25mm 是模具闭合时,压边圈与固定板之间的距离。

取H上模=(30+8+14+30)mm =82mm, H压=2Omm, H固=20mm, H下模座=

4Omm, 则模具的闭合高度为 :

H模=(82+20+20+40+25)mm=187mm

5. 设备的选择设备

工作行程需要考虑工件成形和方便取件,因此工作行程

S≥2.5h工件= 2.5×31.5mm=78mm。

查设备规格确定选择 JA21-35 压力机。

除上述外,对于一项完整的模具设计,还必须要有各个标准件的选用和非标准件的设计,在此不再作介绍。

图 2 模具的总装图

1 一打杆

2 一挡环

3 一模柄

4 、 1

5 一螺钉 5 一上模板← -垫板

7 一中垫板 8 一凹模 9 一打板 10 、 21 一销钉 11 一压边圈

12 一凸模 13 一凸模固定板 14 一下模板 16 、 19 一托板 17 一橡胶板

18 一螺柱 20 一螺母 22 一卸料螺钉

4

圆筒拉深件冲压模设计

题目:圆筒拉深件:如下图,材料;spcen生产批量年产20万件。请设计其冲压之总装配图及模具主要零件的各零件图(任选一副模具,如:首次拉深模或后续拉深模)。 圆筒拉深件

目录 1 引言··································· 1.1冲压模具发展历史和国外冲压模具发展状况··············· 1.2 冲压模具行业发展现状及技术趋势··················· 1.3 我国模具水平与国际先进水平的差距·················· 2 工艺分析···························· 2.1材料···························· 2.2生产批量·························· 2.3 形状与尺寸························· 2.4 精度························· 3 工艺尺寸的计算···························· 3.1 确定切边余量···························· 3.2 计算毛胚直径···························· 3.3 拉升系数··························· 3.4 拉深工序的直径··························· 3.5 拉深工序的高度·························· 3.6 拉深模间隙·························· 4生产方案·························· 5排样方案和计算材料利用率·························· 6计算落料和每次拉深的刃口尺寸·························· 7凸凹模圆角半径的确定·························· 8冲压力的计算························· 4.1 落料力························· 4.2 卸料力························· 4.3 压边力························· 4.4 拉深力························· 9冲压设备的选择························· 10拉深的工件序图························ 5.1 首次拉深························ 5.2 第二次拉深························ 11 零件图························ 6.1 凹模和凸模························ 6.2 总装配图························

盒形件拉深模具设计内容知道

目录 题目盒型件拉深模设计 (2) 前言 (2) 第一章审图 (5) 第二章拉深工艺性分析 (6) 2.1对拉深件形状尺寸的要求 (6) 2.2拉深件圆角半径的要求 (6) 2.3 形拉深件壁间圆角半径rpy (7) 2.4 拉深件的精度等级要求不宜过高 (7) 2.5 拉深件的材料 (7) 2.6 拉深件工序安排的一般原则 (8) 第三章拉深工艺方案的制定 (8) 第四章毛坯尺寸的计算 (9) 4.1 修边余量 (9) 4.2毛坯尺寸 (9) 第五章拉深次数确定 (10) 第六章冲压力及压力中心计算 (11) 6.1 冲压力计算 (11) 6.2 压力中心计算 (12) 第七章冲压设备选择 (12) 第八章凸凹模结构设计 (13)

8.1凸模圆角半径 (13) 8.2 凸凹模间隙 (13) 8.3 凸凹模尺寸及公差 (14) 第九章总体结构设计 (14) 9.1 模架的选取 (14) 9.2 模柄 (15) 9.3拉深凸模的通气孔尺寸 (15) 9.4导柱和导套 (16) 9.5 推杆 (17) 9.6卸料螺钉 (17) 9.7螺钉和销钉 (17) 第十章拉深模装配图绘制和校核 (18) 10.1拉深模装配图绘制 (18) 10.2 拉深模装配图的校核 (20) 第十一章非标准件零件图绘制 (21) 11.1冲压凸模 (21) 11.2 冲压凹模 (22) 11.3 压边圈 (22) 11.4 凸模垫板 (23) 第十二章结论 (24) 参考文献 (25)

题目盒型件拉深模设计 其目的在于巩固所学知识,熟悉有关资料,树立正确的设计思想,掌握设计方法,培养学生的实际工作能力。通过模具结构设计,学生在工艺性分析、工艺方案论证、工艺计算、模具零件结构设计、编写技术文件和查阅文献方面受到一次综合训练,增强学生的实际工作能力 前言 从几何形状特点看,矩形盒状零件可划分成2 个长度为(A-2r) 和2 个长度为(B-2r) 的直边加上4 个半径为r 的1/4 圆筒部分(图4.4.1) 。若将圆角

盒形件拉深设计

华中科技大学材料学院 盒形件加工工艺及模具设计 班级:XXXXXXX 学生姓名:X X X 学号:XXXXXXX 时间:2015年1月

1、零件工艺性分析 (1) 2、工艺方案的确定 (1) 3、工艺计算 (3) 3.1拉深部分工艺计算 (3) 3.2落料时冲裁工艺计算 (8) 4、冲压设备的选用 (12) 5、落料拉深模主要零部件计算 (13) 5.1落料凹模设计计算 (13) 5.2拉深凸模设计计算 (14) 5.3固定板设计计算 (15) 5.4卸料结构计算 (16) 5.5压边圈设计计算 (17) 5.6凸凹模设计计算 (18) 5.7其它零件设计和选用 (18) 5.8模具闭合高度计算 (23) 6、模具总装图的绘制 (24) 7、结束语 (24) 8、参考文献 (25)

1、零件工艺性分析 1.1零件结构图示 图1.1:加工零件图 1.2零件结构分析 工件为矩形盒形件,零件形状简单,要求为外形尺寸;尺寸为长、宽、高分别为45mm ,27mm ,20mm ;料后t=0.4mm ,没有厚度方向上不变的要求;底部圆角半径p r =3mm ,矩形四个角处圆角半径为r =4mm ,满足拉深工艺对形状和圆角半径的要求。 1.3材料性能分析 零件所用材料为H68M ,拉伸性能好,易于成形。 1.4精度等级分析 公等级定为IT14级。满足普通冲压工艺对精度等级的要求。 2、工艺方案的确定 由上分析,该零件为矩形盒形件,可采用拉深成形。为确定拉深工艺方案,先计算拉深次数及相关工艺尺寸。 2.1修边余量 工件相对高度 0h 20 ==5r 4 ,则依据下表可知修边余量 0h=~h =0.0420=0.8mm ??(0.030.05)。 工件相对高度△h 2.5~6 7~17 18~44 45~100

拉伸工艺与拉深模具设计

拉深(又称拉延)是利用拉深模在压力机的压力作用下,将平板坯料或空心工序件制成开口空心零件的加工方法。它是冲压基本工序之一,广泛应用于汽车、电子、日用品、仪表、航空和航天等各种工业部门的产品生产中,不仅可以加工旋转体零件,还可加工盒形零件及其它形状复杂的薄壁零件,如图4.1.1所示。 a)轴对称旋转体拉深件b)盒形件c)不对称拉深件 图4.1.1拉深件类型 拉深可分为不变薄拉深和变薄拉深。前者拉深成形后的零件,其各部分的壁厚与拉深前的坯料相比基本不变;后者拉深成形后的零件,其壁厚与拉深前的坯料相比有明显的变薄,这种变薄是产品要求的,零件呈现是底厚、壁薄的特点。在实际生产中,应用较多的是不变薄拉深。本章重点介绍不变薄拉深工艺与模具设计。 拉深所使用的模具叫拉深模。拉深模结构相对较简单,与冲裁模比较,工作部分有较大的圆角,表面质量要求高,凸、凹模间隙略大于板料厚度。图4.1.2为有压边圈的首次拉深模的结构图,平板坯料放入定位板6内,当上模下行时,首先由压边圈5和凹模7将平板坯料压住,随后凸模10将坯料逐渐拉入凹模孔内形成直壁圆筒。成形后,当上模回升时,弹簧4恢复,利用压边圈5将拉深件从凸模10上卸下,为了便于成形和卸料,在凸模10上开设有通气孔。压边圈在这副模具中,既起压边作用,又起卸载作用。

图4.1.2拉深模结构图 1-模柄2-上模座3-凸模固定板4-弹簧5-压边圈 6-定位板7-凹模8-下模座9-卸料螺钉10-凸模 圆筒形件是最典型的拉深件。平板圆形坯料拉深成为圆筒形件的变形过程如图

图4.2.1拉深变形过程图4.2.2 拉深的网格试验

拉深过程中出现质量问题主要是凸缘变形区的起皱和筒壁传力区的拉裂。凸缘区起皱是由于切向压应力引起板料失去稳定而产生弯曲;传力区的拉裂是由于拉应力超过抗拉强度引起板料断裂。同时,拉深变形区板料有所增厚,而传力区板料有所变薄。这些现象表明,在拉深过程中,坯料内各区的应力、应变状态是不同的,因而出现的问题也不同。为了更好地解决上述问题,有必要研究拉深过程中坯料内各区的应力与应变状态。 图4.2.3是拉深过程中某一瞬间坯料所处的状态。根据应力与应变状态不同,可将坯料划分为五个部分。

宽凸缘拉伸件模具设计

钣金成型课程设计说明书宽凸缘拉深件模具设计(一) 院系航空航天工程学部(院) 专业飞行器制造工程 班号0403102 学号2010040301056 姓名韩开丞 指导教师刘占军 沈阳航空航天大学 2013年11月

摘要 随着国防工业的大力发展,对机械模具的要求越来越高,对工件工序安排、材料选取与、工艺设计和设备制备等环节都提出了更高的要求。 本课程设计的题目为宽凸缘拉伸件成型,在设计中,先分析了20号钢的工艺特点,接着对成型件进行了工序方案的确定(工序有落料和三次拉深)。然后确定了模具种类,并设计出了每道工序的加工尺寸。 根据加工工序尺寸和相应标准,设计出了每道工序的各个模具零件的尺寸。重点对落料和首次拉深的复合模进行了设计,该模具采用先落料再拉深;文中分别对其进行了刃口尺寸计算、冲压力计算、压力机选取、毛坯值计算、压边圈设计和凸凹模等一系列零件设计。 还用计算机软件绘制了一些列图纸,用到了CATIA、AUTOCAD绘图软件;最后生成了复合模具的装配图、零件图数张,供参考。 关键词落料拉深尺寸计算凸凹模装配图

目录 第1章冲压工艺性及方案设计 (1) 1.1冲压件工艺分析 (1) 1.2预定工艺方案 (1) 1.2.1工艺方案分析 (1) 第2章主要工艺计算过程 (2) 2.1确定修边余量 (2) 2.2计算毛坯直径D (2) 2.3确定拉深次数 (2) 2.4拉深工序圆角半径的确定 (4) 2.5毛坯直径修正 (4) 2.6计算以后各次拉深高度 (5) 2.7落料件工序尺寸 (6) 2.8各工序的工件相关尺寸 (6) 2.9绘制工序图 (7) 第3章冲压力计算 (11) 3.1落料成型时冲裁力计算 (11) 3.2压边力计算 (11) 3.3拉深力计算 (12) 第4章压力机选择 (13) 第5章模具刃口尺寸 (14) 5.1凸、凹模间隙设计 (14) 5.1.1落料成型凸、凹模间隙计算 (14) 5.1.2拉深成型凸、凹模间隙计算 (14) 5.2凸、凹模刃口尺寸和公差的确定 (14) 5.2.1落料凸、凹模刃口尺寸计算 (14) 5.2.2拉深刃口尺寸计算 (15) 5.3各工序的模具刃口尺寸汇总如下 (17) 第6章板料毛坯值计算 (18) 第7章凸、凹模的材料及工艺性能选择 (19) 7.1复合模具凸凹模 (19) 7.2第一次拉深 (19) 7.3第二次拉深 (19) 7.4第三次拉深 (19) 第8章压边圈设计 (20) 8.1首次拉深压边圈设计 (20) 8.2第二次拉深压边圈设计 (20) 8.3第三次拉深压边圈设计 (20) 第9章上下模座的设计 (21) 9.1上模座的设计 (21)

矩形件拉深展开计算

矩形件的拉深 一. 拉深矩形件的变形特点 A 长边、 B 短边、H 高度,长边与短边连接处的圆角半径称为转角半径,以r c 表示,直边与盒底连接处的圆角半径称为底角半径,以r p 表示,盒形件有4个直边区,分别为2个长直边区A-2r c ,2个短直边区B-2r c ,有4个圆角区,即r c 区,相当于以2r c 为直径的圆筒形件的1/4,r c /B 越小,越能反映矩形件的变形特点,r c /B 等于时,工件形状为长圆形,比值A/B 越接近于1,变形将越接近圆筒形件。 网格试验结果:在平板毛坯上有规律地划出网格,在直边区单元网格为矩形,横向间距a 与纵向间距b 各自都处处相等,在圆角区单元网格为扇形,纵向间距b 处处相等,横向间距a 则越远离r c 中心越大。拉深后,两种网格均产生了不均匀的变形。 1. 直边区不是简单的弯曲,横向受到压缩,纵向受到拉伸,越靠近圆角区变形越大。 拉深后横向间距a 缩短了,越靠近圆角区、越靠近边缘缩短得越多。纵向间距b 伸长了,越靠近圆角区伸长的越多。在直边中间纵向间距基本没有变化,仍保持相等的初始间距。 2. 圆角区变形得到了减轻,横向的压缩变形要比相应的圆筒形件减轻,纵向的拉伸变 形也比相应的圆筒形件减轻。 圆角区的辐射线未变成平行线,横向间距仍保持上大下小。纵向间距的变化没有圆筒形件的变化程度大。 3. 应力分布不均匀,圆角区中间最大,向两侧直边区逐渐减小。 拉深矩形件的变形区主要在圆角区,其应力与应变状态与圆筒形件是相同的,由变形的不均匀性可以推断应力的分布是很不均匀的。径向拉应力、切向压应力沿凹模口的分布是圆角区较大,直边区很小,最大值在角平分线处。 结论:在圆筒形件的直径d 等于矩形件转角半径r c 的两倍的可比条件下,矩形件拉破的危险性比圆筒形件要小得多,因此允许的变形程度可比圆筒形件更大些。 矩形件拉深时同样存在起皱与拉破问题,且发生在圆角区。在直边区还有一个特殊的直边缓松工艺问题,这时由于拉深过程中圆角区材料从横向挤向直边区,使直边区材料沿横向显得偏多,造成工件的刚性不好,严重时可造成工件的形状不规则,出现扭曲现象。 二. 矩形件的变形程度表示方法 矩形件的假想拉深系数m r : r H rH r m rH R r r r r r r H r r R r rd dh d D R r m r p c p p c c c c r /21 2214.086.0256.072.1402202 20 =====--+=--+== 表4-19:由平板毛坯一次拉成矩形件的极限拉深系数m r 。 表4-20:由平板毛坯一次拉成矩形件所能达到的圆角区最大相对高度H/r c 。 表4-21:由平板毛坯一次拉成矩形件所能达到的以高度H 与宽度B 之比表示的最大相对高度H/B 。 三. 矩形件再拉深变形分析 矩形件的再拉深是指以前道工序拉成的具有直立侧壁的空心件为工序件再拉深成矩形

第四章-拉深工艺及拉深模具设计--习题题目练习(附答案)

第四章拉深工艺及拉深模具设计复习题答案 一、填空题 1.拉深是是利用拉深模将平板毛坯压制成开口空心件或将开口空心件进一步变形的冲压工艺。 2.拉深凸模和凹模与冲裁模不同之处在于,拉深凸、凹模都有一定的圆角而不是锋利的刃口,其间隙 一般稍大于板料的厚度。 3.拉深系数m是拉深后的工件直径和拉深前的毛坯直径的比值,m越小,则变形程度越大。 4.拉深过程中,变形区是坯料的凸缘部分。坯料变形区在切向压应力和径向拉应力的作用下,产生切 向压缩和径向伸长的变形。 5.对于直壁类轴对称的拉深件,其主要变形特点有:(1)变形区为凸缘部分;(2)坯料变形区在切 向压应力和径向拉应力的作用下,产生切向压缩与径向的伸长,即一向受压、一向收拉的变形;(3)极限变形程度主要受传力区承载能力的限制。 6.拉深时,凸缘变形区的起皱和筒壁传力区的拉裂是拉深工艺能否顺利进行的主要障碍。 7.拉深中,产生起皱的现象是因为该区域内受较大的压应力的作用,导致材料失稳_而引起。 8.拉深件的毛坯尺寸确定依据是面积相等的原则。 9.拉深件的壁厚不均匀。下部壁厚略有减薄,上部却有所增厚。 10.在拉深过程中,坯料各区的应力与应变是不均匀的。即使在凸缘变形区也是这样,愈靠近外缘,变 形程度愈大,板料增厚也愈大。 11.板料的相对厚度t/D越小,则抵抗失稳能力越愈弱,越容易起皱。 12.因材料性能和模具几何形状等因素的影响,会造成拉深件口部不齐,尤其是经过多次拉深的拉深件, 起口部质量更差。因此在多数情况下采用加大加大工序件高度或凸缘直径的方法,拉深后再经过切边工序以保证零件质量。 13.拉深工艺顺利进行的必要条件是筒壁传力区最大拉应力小于危险断面的抗拉强度。 14.正方形盒形件的坯料形状是圆形;矩形盒形件的坯料形状为长圆形或椭圆形。 15.用理论计算方法确定坯料尺寸不是绝对准确,因此对于形状复杂的拉深件,通常是先做好拉深模, 以理论分析方法初步确定的坯料进行试模,经反复试模,直到得到符合要求的冲件时,在将符合要求的坯料形状和尺寸作为制造落料模的依据。 16.影响极限拉深系数的因素有:材料的力学性能、板料的相对厚度、拉深条件等。 17.一般地说,材料组织均匀、屈强比小、塑性好、板平面方向性小、板厚方向系数大、硬化指数大的 板料,极限拉深系数较小。 18.拉深凸模圆角半径太小,会增大拉应力,降低危险断面的抗拉强度,因而会引起拉深件拉裂,降低 极限变形。 19.拉深凹模圆角半径大,允许的极限拉深系数可减小,但过大的圆角半径会使板料悬空面积增大,容 易产生失稳起皱。

无凸缘圆筒形件落料——拉深复合模具设计

无凸缘圆筒形件的落料——拉深复合模具设计 绪论 毕业设计是为了模具设计与制造专业学生在学完基础理论课、技术基础课和专业课的基础上,所设置的一个重要环节。目的就是为了运用我们所学课程的理论和生产实际知识,进行一次模具设计的实际训练,从而培养和提高我们独立工作的能力。冲压模具设计通过收集资料、工艺分析、工艺计算、确定冲模的结构设计,各个零部件的设计、绘制模具总装配图、零件图,最后完善和书写设计说明书,终于完成整个的设计过程。 目前,我国冲压技术与先进工业发达国家相比还有一定差距,主要原因是我国在冲压基础理论及成形工艺、模具标准化、模具设计、模具制造工艺及设备等方面与工业发达国家尚有相当大的差距。导致我国模具在寿命、效率、加工精度、生产周期等方面与先进工业发达国家的模具相比差距相当大。 随着科学技术的不断进步和工业生产的迅速发展,冲压加工作为现代工业领域内重要的生产手段之一,更加体现出其特有的优越性。在现代工业生产中,由于市场竞争日益激烈,产品性能和质量要求越来越高,更新换代的速度越来越快,冲压产品正朝着复杂化、多样化、高性能、高质量方向发展,模具也正朝着复杂化、高效率、长寿命方向发展。 一、冲压成形理论及冲压工艺 加强冲压变形基础理论的研究,以提供更加准确、实用、方便的计算方法,正确地确定冲压工艺参数和模具工作部分的几何形状和尺寸,解决冲压变形中出现的各种实际问题,进一步提高冲压件的质量。 研究和推广采用新工艺,如精冲工艺、软模成形工艺、高能高速成形工艺、超塑性成形工艺以及其他高效经济的成形工艺等,进一步提高冲压技术水平。 二、模具先进制造工艺及设备 模具制造技术现代化是模具工业发展的基础。计算机技术、信息技术、自动化技术等先进技术正在不断向传统制造技术渗透、交叉、融合,形成先进制造技术。模具先进制造技术主要体现如下方面: 1.高速铣削加工普通铣削加工采用低的进给速度和大的切削参数,而高速铣削加工则采用高的进给速度和小的切削参数。高速铣削加工相对于普通铣削加工具有高效、高精度、高的表面质量、可加工高硬材料等特点。由此可见,高速铣削加工是模具制造技术的重要发展方向。

阶梯圆筒落料拉深模具设计

第1章 冲压工艺设计 1.1 零件的工艺分析 此零件形状为阶梯圆筒形件,需要采用落料,拉深,切边三道工序,通过计算确定拉深次数。 零件材料为10钢,根据参考文献[1]表 1.4.1得:10钢的抗剪强度=210MPa 。 由此可见,其塑性较好,有较高的强度,适合于成形加工。τ=260~440MPa 、抗拉强度σb =300~440MPa ﹑伸长率δ10=29%、屈服强度=210MPa 。 由此可见,其塑性较好,有较高的强度,适合与成形加工。 此零件毛坯形状为圆形,故采用冲裁工艺中的落料工序。 首先计算出毛坯的尺寸,根据毛坯尺寸要求计算出凸凹模的尺寸,但要注意落料见的尺寸应增加修边余量,以保证零件的高度。后面还有拉深等其它工序,最重要的是毛坯外形尺寸精度要保证下一道工序的完成。 拉深见工艺性的好坏,直接影响到该零件能否用拉深方法生产出来,不仅能满足产品的使用要求,同时也能够用最简单,最经济和最快的方法生产出来。 拉深见外形尺寸的要求应根据零件的高度以及厚度等选择一次拉深还是多次拉深。 1.计算落料毛坯尺寸: t=0.5mm<1mm. 故可以按外形尺寸计算 2.128 34≈≈d d t 查《指导》表4-2. 取修边余量δ=2.5mm 则零件外径 D ’=34+2×2.5=39㎜ 由《指导》表4-4.将零件分为序号9和序号11两部分 由序号9得:2 22 32111828.6d d r rd d D -+++= 取 1d =21.7mm 2d =28mm 3d =39mm r=2mm ∴ D 1=222228395.187.215.128.67.21-+?+??+≈38.9mm

带凸缘拉深件模具设计说明书

设计题目:宽凸缘圆筒形件拉深模具设计。 设计与计算步骤: 1. 拉深工艺计算 (1)修边余量的确定 查表4-2(来自《冲压模具课程设计指导与范例》——化学工业出版社,以下所查各表均出自此)得修边余量?R=4.3 (2)毛坯尺寸的计算 查表4-4,知其中1d =72,2d =78,3d =84,4d =109.6,r=3,h=32 计算出D=152mm 。 (3)确定拉深次数和拉深系数

查表4-9得工件第一次拉深的最大相对高度11/0.6h d = 查表4-10得第一次拉深时的拉深系数10.51m = /0.487h d =<11/0.6h d =,所以工件可一次拉出。 2. 拉深力的计算 查表4-19. 13 3.14722410 1.1203.9l b F d t k KN πσ==????= 3. 压边力和压边装置的设计 查表4-11,确定此拉深工艺需要采用压边圈,采用弹性压边装置 t d 11-推杆; 12-推板;13-紧固螺钉; 14-紧固螺栓; 15-空心垫板; 16-压边圈; 17-螺母; 18-下模座

压边力的计算: 221[(2)]4 Y A F D d r P π = -+ 查表4-27、4-28。计算得: 22[152(7229.6)]334.8, 49.6 Y A F KN π = -+??===其中r 4.压力机吨位的选择 203.934.8238.7KN F F F >+=+=压拉 压力机行程应满足:S>2.5h 100mm =工件 根据表9-9,选择压力机型号J23-80。 其主要技术规格如下。 KN mm mm mm mm ?公称压力:1000最大装模高度:480工作台尺寸:7101080连杆调节量:100滑块行程:130 5.拉深模结构设计 (1)拉深凸、凹模圆角半径 a. 凹模圆角半径r 9.6A === b.凸模圆角半径(0.6~1)0.89.67.68T A r r ==?= (2)拉深凸、凹模间隙 查表4-32,取单边间隙Z/2=2.2mm (3)凸、凹模工作零件尺寸计算 A 0.12 A max 00 00T max T 0.08 0.08 D (0.75)80d 0.75Z 75.6 D D δδ++---=-?==-?-==凹模尺寸凸模尺寸()(80-0-4.4) 其中A T δδ、由表4-34查取。

圆筒形拉深件毛坯尺寸计算

圆筒形拉深件毛坯尺寸计算 2007-10-24 15:39:04| 分类:专业知识 | 标签: |字号大中小订阅 4 . 2 直壁旋转体零件拉深工艺的设计 圆筒形零件是最典型的拉深件,掌握了它的工艺计算方法后,其它零件的工艺计算可以借鉴其计算方法。下面介绍如何计算圆筒形零件毛坯尺寸、拉深次数、半成品尺寸,拉深力和功,以及如何确定模具工作部分的尺寸等。 4.2.1 1.拉深件毛坯尺寸计算的原则 1)面积相等原则 表面积等于拉深后零件的表面积”的原则来确定(毛坯尺寸确定还可按等体积,等重量原则)。 2)形状相似原则 、椭圆形时,其拉深前毛坯展开形状也基本上是圆形或椭圆形。对于异形件拉深,其毛坯的周边轮廓必须采用光滑曲线连接,应无急剧的转折和尖角。 压零件的总成本中,材料费用一般占到60 %以上。 件的口部将出现凸耳(口部不平)。为了得到口部平齐,高度一致的拉深件,需要拉深后增加切边工序,将不平齐的部分切去。所以在计算毛坯之前,应先在拉深件上增加切边余量(表42.1、4.2.2)。 表4.2.1无凸缘零件切边余量Δh(mm) 拉深件高度h 拉深相对高度h/d或h/B 附图>0.5~0.8 >0.8~1.6 >1.6~2.5 >2.5~4 ≤10 >10~20 >20~50 >50~100 >100~150 >150~200 >200~250 >250 1.0 1.2 2 3 4 5 6 7 1.2 1.6 2.5 3.8 5 6.3 7.5 8.5 1.5 2 2.5 3.8 5 6.3 7.5 8.5 2 2.5 4 6 8 10 11 12 [img=118,139]mhtml:file:/ /F:\冲压\4 _ 2 直壁旋转体 零件拉深工艺的设 计.mht! [/img] 表4.2.2有凸缘零件切边余量ΔR(mm) 凸缘直径dt或Bt 相对凸缘直径dt/d或Bt/B 附图< 1.5 1.5~2 2~2.5 2.5~3 < 25 >25~50 >50~100 1.8 2.5 3.5 1.6 2.0 3.0 1.4 1.8 2.5 1.2 1.6 2.2 [img=125,125]mhtml:file:/ /F:\冲压\4 _ 2 直壁旋转体 零件拉深工艺的设

带凸缘拉伸件毕业设计

机电职业技术学院 毕业设计(论文) 作者:学号: 系部:模具技术系 专业:精密模具设计与制造 题目:冷冲模(带凸缘拉伸件) 指导者: 评阅者: 2015年 5月

带凸缘拉深件模具设计 摘要 拉深是利用模具使平板毛坯变成为开口的空心零件的冲压方法,用拉深工艺可以制成筒形、阶梯形、锥形、抛物面形、盒形和其他不规则形状的薄壁零件,其中又以筒形件简单和多见,而有凸缘筒形件又分为宽凸缘和窄凸缘件。 只有加强拉深变形基础理论的研究,才能提供更加准确、实用、方便的计算方法,才能正确地确定拉深工艺参数和模具工作部分的几何形状与尺寸,解决拉深变形中出现的各种实际问题,从而,进一步提高制件质量。 在拉深工艺设计时,必须知道冲压件能否一次拉出,这就引出了拉深系数的概念。拉伸系数决定于每次拉深时允许的极限变形程度。在多次拉深中,对于宽凸缘拉深件,则应在第一次拉深时,就拉成;零件所要求的凸缘直径,而在以后各次拉深中,凸缘直径保持不变。为了保证以后拉深时凸缘不变形,宽凸缘拉深件首次拉入凹模的材料应比零件最后拉深部分实际所需材料多3%~5%,这些多余材料在以后各次拉深中,逐渐将减少部分材料挤回到凸缘部分,使凸缘增厚,从而避免拉裂。 关键词:筒形,模具设计,拉深,冲压

Abstract The extension is a mould to make the plate blank into the stamping method for hollow parts of the opening, thin-walled parts with deep drawing process can be made into a cylinder shape, ladder shaped, cone, parabolic, box and other irregular shapes, and the case of cylindrical parts simple and rare, and flange cylindrical parts is divided into wide flange and narrow flange. Only by strengthening the basic theory research of deformation calculation method of drawing, can provide more accurate, practical and convenient, can correctly determine the geometry and size of drawing process parameters and working parts of die, to solve the actual problems, drawing deformation in order to further improve the quality of workpieces. In the process design of deep drawing, must know whether a stamping out, this leads to the concept of drawing coefficient. Limit drawing coefficient depends on each drawing the allowable deformation degree. Many in the drawing, for wide flange drawing parts, should be in the first drawing, pull into; the diameter of the flange parts required, and after each time depth, the diameter of the flange remain unchanged. In order to ensure the flange without

拉深盒型件拉深工艺

拉深盒型件拉深工艺

盒形件 盒形件属于非旋转体零件,包括方形盒、矩形盒和椭圆形盒等。与旋转体零件的拉深相比,盒形件拉深时,毛坯的变形分布要复杂得多。 盒形件拉深变形特点 从几何形状的特点,矩形盒状零件可以划分为2个长度为(A-2r)和2个长度为(B—2r)的直边,加4个半径为r 的1/4圆筒部分组成(图4.4.1)。若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于弯曲。但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深复合,有其特有的变形特点,这可通过网格试验进行验证。 图4.4.1 盒形件拉深变形特点 拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。变形前直边处的横向尺寸是等距的,即ΔL1=ΔL2=ΔL3,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图4.4.1所示) 。这些变化主要表现在: ⑴直边部位的变形直边部位的横向尺寸ΔL1,ΔL2,ΔL3变形后成为ΔL1′,ΔL2′,ΔL3′,间距逐渐缩小,愈靠直边中间部位,缩小愈少,即ΔL1>ΔL1′>ΔL2′>ΔL3′。纵向尺寸△h1,△h2,△h3变形后成为△h1′,△h2′,△h3′,间距逐渐增大,愈靠近盒形件口部增大愈多,即△h1<△h1′<△h2′<△h3′。可见,此处的变形不同于纯粹的弯曲。 (2) 圆角部位的变形 ??拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。同心圆弧的间距不再相等,而是变大,越向口部越大,且同心圆弧不位于同一水平面内。因此该处的变形不同于纯粹的拉深。 从以上可知,由于有直边的存在,拉深时圆角部分的材料可以向直边流动,这就减轻了圆角部分的变形,使其变形程度与半径r相同,高度h相等的圆筒形件比较起来要小。同时表明圆角部分的变形也是不均匀的,即圆角中心大,相邻直边处变形小。从塑性变形力学观点看,由于减轻了圆角部分材料的变形程度,需要克服的变形抗力也相应减小,危险断面破裂的可能性也减小。盒形件的拉深特点如下:

课程设计带凸缘筒形件首次拉深的拉深模设计

恩施职业技术学院 课程设计 课程名称_ 冲压工艺与模具设计 _ 题目名称带凸缘筒形件首次拉深设计 学生学院恩施职业技术学院 专业班级模具设计与制造091261班 学号 09126152 学生姓名夏满 指导教师黄雁飞 20 11 年 05 月12日

设计目录 设计目的 通过此次拉深模实际旨在让我们了解一般拉深模的设计思路,设计歩骤,把课堂上的理论知识综合起来,提高我们对模具设计的认知能力,进而能独自设计出来一套模具。 任务书………………………………………………………………………………………………………………………. 一,工艺分析…………………………………………………………………………………………………………………… 1,冲压工艺方案的确定 2,工艺流程 二,工艺参数计算……………………………………………………………………………………………………………. 1,修边余量的计算 2,初算毛坯直径 3,判断能否一次拉出 4,计算拉深次数及各工序的拉深直径 5,首次拉深凹模、凸模圆角半径的确定 6,毛坯直径的调整 7,第一次相对高度的校核 8,计算以后各次拉深直径 9,画出工序图 三,零件的排样及压力机吨位的选择……………………………………………………………………………… 1,零件的排样 (1)零件排样 (2)一个歩距范围内的材料利用率 2,压力机吨位的选择 (1)冲裁力的计算 (2)压边力的计算 (3)拉深力的计算 (4)卸料力的计算 (5)总压力 四,模具的结构形式及模具工作部分尺寸的计算…………………………………………………………… 1,模具的结构 2,卸料弹簧的选取 3,模具工作部分尺寸的计 (1)落料模

盒形件拉伸成形分析

盒形件拉伸成形分析零件(盒形件) 通过SolidWorks软件绘制零件如图所示 图1 零件图2 坯料其中零件尺寸为320X200X35,坯料尺寸为480X320,单位mm。 分别另存为igs格式的文件,准备导入Dynafrom软件。 Dynafrom成形步骤 1 导入零件,修改名称 打开Dynafrom软件,在菜单栏中选择“文件”——“导入”,将两个igs格式的零件依次导入软件中,选择“零件层”——“编辑”,分别将坯料名称修改为blank,将零件名称修改为die。 2 网格划分 点击“零件层”——“显示/隐藏零件层”,选择“die”,点击确定,将die 隐藏。 点击“前处理”——“单元”,点选,将最大尺寸修改为5,如图3所示: 然后依次点击“选择曲面”,“显示曲面”,“确定”,“应 用”,“是” 图4

图3 图5 零件被划分网格 后如图4所示,点击 “退出”——“确定”。 同样,再将blank 隐藏,再点击右下角 的“当前零件层”,点 击“die”,退出,将die设为当前层。再重担blank的步骤,对die进行网格划分,网格划分后效果如图5所示。 3 创建压边圈 将blank层显示出来。点击“零件层”——“创建”,输入binder,“确定”。 点击“前处理”——“线/点”,点击“创建”,选择“点”——“工作平面上的点”,在坯料周围画出矩形,如图6所示,再点击“确定”——“确定”,因而退出。 在工具栏中选择“坯料生成器”——“边界线”,用光标,单击画出的矩形,将单元大小改为5,“确定”,接受网格?点击“是”,效果如图7所示。 图6 图7 此时,binder在零件的中间,如图8。点击“前处理”——“单元”——“变 换”,点选“输入值”,点击“选择单元”,选择binder层,选择“伸展” ,在视图内点选binder,点击“确定”,在Z轴上进行调整,输入适当值,将binder层调整到离blank层适当距离,如图9所示:

筒形件拉深模具设计2

正文 如下图1所示拉深件,材料为08钢,厚度0.8mm,制件高度70mm,制件精度IT14级。该制件形状简单,尺寸小,属普通冲压件。试制定该工件的冲压工艺规程、设计其模具、编制模具零件的加工工艺规程。

图1 一、冲压件工艺分析 1、材料:该冲裁件的材料08钢是碳素工具钢,具有较好的可拉深性能。 2、零件结构:该制件为圆桶形拉深件,故对毛坯的计算要。 3、单边间隙、拉深凸凹模及拉深高度的确定应符合制件要求。 4、 凹凸模的设计应保证各工序间动作稳定。 5、 尺寸精度:零件图上所有未注公差的尺寸,属于自由尺寸,可按IT14级确定工件尺寸的公差。 查公差表可得工件基本尺寸公差为: 74.00 50+φ 74 .0070+ 3.00 5+R 25.008.0+ 二、工艺方案及模具结构类型 1、工艺方案分析 该工件包括落料、拉深两个基本工序,可有以下三种工艺方案: 方案一:先落料,首次拉深一,再次拉深。采用单工序模生产。 方案二:落料+拉深复合,后拉深二。采用复合模+单工序模生产。 方案三:先落料,后二次复合拉深。采用单工序模+复合模生产。 方案四:落料+拉深+再次拉深。采用复合模生产。 方案一模具结构简单,但需三道工序三副模具,成本高而生产效率低,难以满足大批量生产要求。方案二只需二副模具,工件的精度及生产效率都较高,工件精度也能满足要求,操作方便,成本较低。方案三也只需要二副模具,制造难度大,成本也大。方案四只需一副模具,生产效率高,操作方便,工件精度也能满足要求,但模具成本造价高。通过对上述四种方案的分析比较,该件的冲压生产采用方案二为佳。 2、 主要工艺参数的计算 (1)确定修边余量 该件h=70mm ,h/d=70/50=1.4,查《冲压工艺与模具设计》表4-10 可得mm h 8.3=?

圆筒件落料拉深冲压模具课程设计说明书DOC

课程设计 课程名称材料成型工艺及设计 题目名称圆筒件的模具设计 专业班级材控112 学号33311227 学生姓名张孝富 指导教师聂信天夏荣霞徐秀英2014年 9 月 25日

目录 课程设计任务书 (2) 产品图及设计说明 (2) 序言 (3) 第1章制件的工艺性分析 (4) 1.1 圆筒件工艺性分析 (4) 1.2 零件工艺方案的确定 (4) 第2章工艺方案的制定及分析比较 (5) 第3章圆筒形拉深件工艺计算 (6) 3.1 工艺尺寸的计算 (6) 3.2 拉深力的确定 (8) 3.2.1首次拉深 (8) 3.2.2第二次拉深 (9) 3.2.3第三次拉深 (9) 3.2.4第四次拉深 (9) 3.2.5确定压力中心 (10) 3.3 拉深模间隙 (10) 3.4 凸凹模工作部分的尺寸及公差的确定 (10) 3.4.1第一次拉深 (10) 3.4.2第二次拉深 (10) 3.4.3第三次拉深 (11) 3.4.4第四次拉深 (11) 3.5 落料拉深复合模其它工艺计算 (11) 3.6 排样图设计及材料利用率计算 (12) 3.7 压边的橡胶计算 (13) (14) 3.8 卸料装置的设计 (14) 3.8.1刚性卸料装置 (14) 3.8.2弹性卸料装置 (14) 3.8.3橡皮的选用 (15) 3.8.4卸料板 (15) 3.8.5推件装置 (15) 3.8.6卸料螺钉 第4章模具结构的确定 (16) 4.1模具的形式 (16) 4.1.1 正装式特点 (16)

4.1.2 倒装式特点 (16) 4.2 定位装置 (16) 4.3 卸料装置 (16) 4.3.1 条料的卸除 (16) 4.3.2 工件的卸除 (16) 4.4 导向零件 (16) 4.5 模架 (16) 4.5.1标准模架的选用 (17) 第5章编写工艺卡片 (17) 结束语 (18) 参考文献 (19)

盒形件落料拉深

计算机毕业设计https://www.doczj.com/doc/011098453.html,JSPJAVAVBC++DelphiPHPVFPPB网络电子毕业设计电子信息通信单片机嵌入式 机电毕业设计机械模具数控工艺夹具电气PLC机电一体汽车土木毕业设计 当前位置:主页 > 机电毕业设计 > 模具 > 盒形件落料拉深复合冲裁模具设计 摘要我设计的是一个落料拉深复合冲裁模,在本次设计中我参考了大量有关冷冲模模具设计实例等方面的资料。再结合老师布置的题(设计一个工件为盒形件的复合冲裁模),我充分运用了资料上所有设计模具中通用的表、手册等,如修边余量的确定、拉深件毛坯直径的 摘要 我设计的是一个落料拉深复合冲裁模,在本次设计中我参考了大量有关冷冲模设计实例等方面的资料。再结合老师布置的题(设计一个工件为盒形件的复合冲裁模),我充分运用了资料上所有设计中通用的表、手册等,如修边余量的确定、拉深件毛坯直径的计算公式、盒形件用压边圈拉深系数、盒形件角部的第一次拉深系数等,然后再集结了自己平时的所学,还有通过对工件的零件、模具工作部分(凸凹模、拉深凸模、落料凹模)、模具装配图的绘制,我的绘图功底也有了一定程度地提高。 本次设计的主要内容:工件的工艺性分析;冲压工艺方案的确定;模具的技术要求及材料选用;主要设计尺寸的计算;工作部分尺寸计算;模具的总体设计;主要零部件的结构设计;模具的总装图;模具的装配等。 我觉得通过本次的毕业设计,达到了这样的目的: 1.综合运用本专业所学课程的理论和生产实际知识,进行一次冷冲压模具(落料拉深冲裁模)设计工作的实际训练,从而培养和提高我们独立工作的能力。 2.巩固与扩充所学有关冷冲模具设计课程的内容,掌握冷冲压模具设计的方法和步骤。 3.掌握冷冲压模具设计的基本技能,如计算、绘图、查阅设计资料和手册,熟悉标准和规范等。 关键词:冷冲压落料拉深

圆筒拉伸模具设计毕业设计论文

毕业设计说明书 圆筒拉伸模具设计

圆筒拉伸模具设计 摘要 本文首先论叙了我国目前冲压模具制造技术发展现状以及发展趋势。正文部分介绍了一种直筒形电动机壳体的拉深模具设计,内容主要包括:拉深原理分析、拉深工艺分析及方案比较选择、模具结构的设计计算。在设计中充分利用了计算机辅助设计(CAD/CAM):用AutoCAD2000绘制了所有零件图和装配图;用 Pro/E2001设计了模具的三维实体造型。另外还运用Flash MX 制作出动画,演示了整个模具的工作过程。 关键词:模具、壳体拉深、工艺分析、结构设计、凸模角度

Abstract This text talks about our country hurtles to press the molding tool manufacturing technical present condition and the development trends currently.Then the text part introduces a kind of design for drawing die which is used for the motor case's body with frank tube shape,which content includes mainly :The priciple analysis of Drawing ,the technical analysis for Drawing ,the scheme relatively chosen, design and calculate for the die structure. There have fully utilized CAD in the design [CAD/CAM]:Have drawn all part pictures and installation diagrams with Auto CAD 2000;Have designd the three-dimensional entity's modelling of the die with pro/E2001.Still use FLash MX to be made and set out the picture in addition ,demonstrate the working process of whole die. Key words: die、shell drawing、the priciple analysis、the structure design、punch angel

相关主题
文本预览
相关文档 最新文档