当前位置:文档之家› 实验二十二 分子的立体构型和分子的性质

实验二十二 分子的立体构型和分子的性质

实验二十二  分子的立体构型和分子的性质
实验二十二  分子的立体构型和分子的性质

第五章结构化学

实验二十二分子的立体构型和分子的性质

一、实验目的

(1)分子的立体构型从分子中原子排布的几何关系描述分子的结构,对于了解分子的性质具有重要意义。

(2)通过自己动手制作和仔细观察分子模型,掌握分子的空间结构,加深对分子构型和分子性质的了解。

二、实验原理

1.分子点群与分子的偶极矩和旋光性

具有极性化学键的分子,其分子形状決定分子是否具有偶极矩,进而影响分子间作用力及沸点、表面张力、汽化热与溶解度等性质。利用路易斯电子点式和价层电子对互斥理论(Valence Shell Electron Pair Repulsion, VSEPR)可以预测分子形狀,进而获得分子晶体的对称动作群(即分子点群)。分子点群与分子的偶极矩和旋光性密切相关。

分子是否具有偶极矩的判据:若分子中有两个或两个以上的对称元素交于一点,则该分子无偶极矩,反之则有偶极矩。即属于C1、C s、C n、C nv群的分子有偶极矩,属于C i、S n、C nh、D n、D nh、D nd、T d和O h群的分子无偶极矩。

分子是否具有旋光性的判据:有象转轴S n的分子无旋光性,无象转轴S n的分子有旋光性。由于S1=σ,S2=i,因此,也可以说具有对称面σ、对称中心i和象转轴S4n(n=1,2,…)的分子无旋光性,属于C1,Cn,Dn点群的分子有旋光性。

三、仪器与试剂

塑料球棍分子模型 1 套(湖南大学教育科技公司生产,包括彩色塑料小球若干,另准备随意贴黏土数块, 色纸一张),数码相机1台(公用)。

四、预习要求

1.了解寻找分子中独立对称元素、判断分子点群的方法;

2.了解分子所属点群判断分子有无偶极矩;

3.了解分子所属点群判断分子有无旋光性。

五、实验内容

1.根据路易斯电子点式和价层电子对互斥理论预测分子形状,并用不同颜色的球棍搭建具有正确键角的分子模型(表1),用数码相机记录所搭建的分子模型。寻找对称元素及数目,确定分子点群,并判断其是否具有偶极矩和旋光性。黑球:代表碳原子C;白球:代表氢原子H;红球:代表氧原子O;蓝球:代表氮原子N;绿球:代表氯原子Cl;其他:代表杂原子P或F。

(1)搭出下列分子模型,了解它们的对称性,填写表1各栏内容。H2O2,NF3,BF3,C2H6(重叠式、交叉式以及任意式),CH3CCl3(扭曲式),CH4,

CH3Cl ,CH2Cl2,CHCl3,PtCl42-,PCl5,,,Cl

,,

C6H12(环己烷:船式和椅式),SF6。

(2)搭出下列乙烯型化合物的模型,了解它们的对称性。并填写表2各栏内容CH2=CH2,CHCl=CHCl(顺式),CHCl=CHCl(反式),CH2=CCl2(3)搭出下列丙二烯型化合物的模型,了解它们的对称性。

CH2=C=CH2,CHCl=C=CHCl

六、实验数据与记录

1.室温℃大气压Pa

2. 根据实验容填写表1、表2和表3。

表22.1 常见分子点群的辨认

[注意] 在搭制分子的球棍模型时,通常按照下面的惯例用不同的颜色表示不同的原子:C黑色,H浅灰色,O红色,N蓝色,Cl绿色,Br红棕色,I红紫色,S 黄色,P紫色;金属原子则以该金属单质显示的颜色表示。

[思考题]

(1)在14种点阵型式中,为什么有四方I, 而无四方F? 为什么有正交C, 而无四方C? 为什么有立方F, 而无立方C? 根据什么原则确定点阵型式?

(2)结构基元、点阵点、晶胞和点阵型式等概念的正确含义和相互关系怎样?

七、参考文献

1. 周公度, 段连运, 结构化学基础 (第三版), 北京大学出版社 (2002)

2. 厦门大学化学系物构组, 结构化学, 科学出版社 (2004)

3. 李炳瑞, 结构化学, 高等教育出版社 (2004)

4. 东北师范大学等, 高等教育出版社 (2003)

实验二十二 分子的立体构型和分子的性质

第五章结构化学 实验二十二分子的立体构型和分子的性质 一、实验目的 (1)分子的立体构型从分子中原子排布的几何关系描述分子的结构,对于了解分子的性质具有重要意义。 (2)通过自己动手制作和仔细观察分子模型,掌握分子的空间结构,加深对分子构型和分子性质的了解。 二、实验原理 1.分子点群与分子的偶极矩和旋光性 具有极性化学键的分子,其分子形状決定分子是否具有偶极矩,进而影响分子间作用力及沸点、表面张力、汽化热与溶解度等性质。利用路易斯电子点式和价层电子对互斥理论(Valence Shell Electron Pair Repulsion, VSEPR)可以预测分子形狀,进而获得分子晶体的对称动作群(即分子点群)。分子点群与分子的偶极矩和旋光性密切相关。 分子是否具有偶极矩的判据:若分子中有两个或两个以上的对称元素交于一点,则该分子无偶极矩,反之则有偶极矩。即属于C1、C s、C n、C nv群的分子有偶极矩,属于C i、S n、C nh、D n、D nh、D nd、T d和O h群的分子无偶极矩。 分子是否具有旋光性的判据:有象转轴S n的分子无旋光性,无象转轴S n的分子有旋光性。由于S1=σ,S2=i,因此,也可以说具有对称面σ、对称中心i和象转轴S4n(n=1,2,…)的分子无旋光性,属于C1,Cn,Dn点群的分子有旋光性。 三、仪器与试剂 塑料球棍分子模型 1 套(湖南大学教育科技公司生产,包括彩色塑料小球若干,另准备随意贴黏土数块, 色纸一张),数码相机1台(公用)。 四、预习要求 1.了解寻找分子中独立对称元素、判断分子点群的方法;

2.了解分子所属点群判断分子有无偶极矩; 3.了解分子所属点群判断分子有无旋光性。 五、实验内容 1.根据路易斯电子点式和价层电子对互斥理论预测分子形状,并用不同颜色的球棍搭建具有正确键角的分子模型(表1),用数码相机记录所搭建的分子模型。寻找对称元素及数目,确定分子点群,并判断其是否具有偶极矩和旋光性。黑球:代表碳原子C;白球:代表氢原子H;红球:代表氧原子O;蓝球:代表氮原子N;绿球:代表氯原子Cl;其他:代表杂原子P或F。 (1)搭出下列分子模型,了解它们的对称性,填写表1各栏内容。H2O2,NF3,BF3,C2H6(重叠式、交叉式以及任意式),CH3CCl3(扭曲式),CH4, CH3Cl ,CH2Cl2,CHCl3,PtCl42-,PCl5,,,Cl ,, C6H12(环己烷:船式和椅式),SF6。 (2)搭出下列乙烯型化合物的模型,了解它们的对称性。并填写表2各栏内容CH2=CH2,CHCl=CHCl(顺式),CHCl=CHCl(反式),CH2=CCl2(3)搭出下列丙二烯型化合物的模型,了解它们的对称性。 CH2=C=CH2,CHCl=C=CHCl 六、实验数据与记录 1.室温℃大气压Pa 2. 根据实验容填写表1、表2和表3。 表22.1 常见分子点群的辨认

分子的立体构型(高考总复习)

分子的立体构型 写出下列物质分子的电子式和结构式,并根据键角确定其分子构型: 分子类型化学式电子式结构式键角分子立体构型 三原子分子 CO2O==C==O180°直线形 H2O105°V形 四原子分子 CH2O约120°平面三角形 NH3107°三角锥形 五原子分子CH4109°28′正四面体形 (1) 分子类型键角立体构型实例 AB2 180°直线形CO2、BeCl2、CS2 <180°V形H2O、H2S AB3 120°平面三角形BF3、BCl3 <120°三角锥形NH3、H3O+、PH3 AB4109°28′正四面体形CH4、NH+4、CCl4 (2)典型有机物分子的立体结构:C2H4、苯(C6H6)、CH2==CH—CH==CH2(1,3-丁二烯)、CH2==CH—C≡CH(乙烯基乙炔)等都是平面形分子;C2H2为直线形分子。 例1(2017·衡水中学高二调考)下列有关键角与分子立体构型的说法不正确的是() A.键角为180°的分子,立体构型是直线形 B.键角为120°的分子,立体构型是平面三角形 C.键角为60°的分子,立体构型可能是正四面体形 D.键角为90°~109°28′之间的分子,立体构型可能是V形 【考点】常见分子的立体构型 【题点】键角与分子立体构型的关系 答案B 解析键角为180°的分子,立体构型是直线形,例如CO2分子是直线形分子,A正确;苯分

子的键角为120°,但其立体构型是平面正六边形,B错误;白磷分子的键角为60°,立体构 型为正四面体形,C正确;水分子的键角为105°,立体构型为V 形,D正确。 例2下列各组分子中所有原子都可能处于同一平面的是() A.CH4、CS2、BF3 B.CO2、H2O、NH3 C.C2H4、C2H2、C6H6 https://www.doczj.com/doc/011063648.html,l4、BeCl2、PH3 【考点】常见分子的立体构型 【题点】常见分子立体构型的综合判断 答案C 解析题中的CH4和CCl4为正四面体形分子,NH3和PH3为三角锥形分子,这几种分子的所有原子不可能都在同一平面上。CS2、CO2、C2H2和BeCl2为直线形分子,C2H4为平面形分子,C6H6为平面正六边形分子,这些分子都是平面形结构。故选C项。 1.价层电子对互斥理论 分子中的价层电子对包括σ键电子对和中心原子上的孤电子对,由于价层电子对相互排斥的作用,尽可能趋向彼此远离。 2.价层电子对的计算 (1)中心原子价层电子对数=σ键电子对数+孤电子对数。 (2)σ键电子对数的计算 由分子式确定,即中心原子形成几个σ键,就有几对σ键电子对。如H2O分子中,O有2对σ键电子对。NH3分子中,N有3对σ键电子对。 (3)中心原子上的孤电子对数的计算 中心原子上的孤电子对数=1 2(a-xb) ①a表示中心原子的价电子数; 对主族元素:a=最外层电子数; 对于阳离子:a=价电子数-离子电荷数; 对于阴离子:a=价电子数+离子电荷数。 ②x表示与中心原子结合的原子数。 ③b表示与中心原子结合的原子最多能接受的电子数,氢为1,其他原子=8-该原子的价电子数。 实例σ键电 子对数 孤电子 对数 价层电 子对数 电子对的排 列方式 VSEPR模型 分子的立体 构型 BeCl2、CO2202直线形直线形 BF3、BCl330 3平面三角形 平面三角形SO221V形

高中化学分子的结构与性质

分子的结构与性质 【知识动脉】 知识框架 产生原因:共价键的方向性 Sp3 决定因素:杂化轨道方式sp2 分子的空间构型sp 空间构型的判断:VSEPR理论 空间构型决定性质等电子原理 手性分子 配合物 一、杂化轨道理论 1. 杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。 思考:甲烷分子的轨道是如何形成的呢? 形成甲烷分子时,中心原子的2s和2p x,2p y,2p z等四条原子轨道发生杂化,形成一组新的轨道,即四条sp3杂化轨道,这些sp3杂化轨道不同于s轨道,也不同于p轨道。 根据参与杂化的s轨道与p轨道的数目,除了有sp3杂化外,还有sp2杂化和sp杂化,sp2杂化轨道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p轨道杂化形成的。 思考: 应用轨道杂化理论,探究分子的立体结构。

C2H4 BF3 CH2O C2H2 思考:怎样判断有几个轨道参与了杂化? [讨论总结]:三种杂化轨道的轨道形状,SP杂化夹角为°的直线型杂化轨道,SP2杂化轨道为°的平面三角形,SP3杂化轨道为°′的正四面体构型。 小结:HCN中C原子以sp杂化,CH2O中C原子以sp2杂化;HCN中含有2个σ键和2π键;CH2O中含有3σ键和1个π键 【例1】(09江苏卷21 A部分)(12分)生物质能是一种洁净、可再生的能源。生物质气(主要成分为CO、CO2、H2等)与H2混合,催化合成甲醇是生物质能利用的方法之一。甲醛分子中碳原子轨道的杂化类型为。甲醛分子的空间构型是;1mol甲醛分子中σ键的数目为。 解析与评价:甲醛分子中含有碳氧双键,故碳原子轨道的杂化类型为sp2杂化;分子的空间构型为平面型;1mol甲醛分子中含有2mol碳氢δ键,1mol碳氧δ键,故含有δ键的数目为3N A 答案:sp2平面型3N A 【变式训练1】(09宁夏卷38)[化学—选修物质结构与性质](15分) 已知X、Y和Z三种元素的原子序数之和等于42。X元素原子的4p轨道上有3个未成对电子,Y元素原子的最外层2p轨道上有2个未成对电子。X跟Y可形成化合物X2Y3,Z元素可以形成负一价离子。请回答下列问题: (1)X与Z可形成化合物XZ3,该化合物的空间构型为____________; 2、价层电子对互斥模型 把分子分成两大类:一类是中心原子上的价电子都用于形成共价键。如CO2、CH2O、CH4等分子中的C 原子。它们的立体结构可用中心原子周围的原子数来预测,概括如下: ABn 立体结构范例 n=2 直线型CO2 n=3 平面三角形CH2O n=4 正四面体型CH4 另一类是中心原子上有孤对电子 ............)的分子。如 ....(未用于形成共价键的电子对 H2O和NH3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。因而H2O分子呈V型,NH3分子呈三角锥型。 练习2、应用VSEPR理论判断下表中分子或离子的构型。进一步认识多原子分子的立体结构。 化学式中心原子含有孤对电子对数中心原子结合的原子数空间构型 H2S

分子的立体构型知识点

第二节分子的立体构型 知识点一形形色色的分子 1. 分子的立体构型 (1)概念:指多原子构成的共价分子中的原子的空间关系问题。由于多原子构成的分子中一定存在共价键,共价键的方向性使得分子中的原子按一定的空间结构排列,形成了分子的构型。如3原子分子的构型有直线型(CO2)和V(H2O)型两种。 (2)作用:分子构型对物质的活泼性、极性、状态、颜色和生物活性等性质都起决定性作用。 特别提醒:双原子均为直线型,不存在立体构型。 2.形形色色的分子 不同分子,构型不同。常见分子立体构型如下表: 知识点二价层电子对互斥模型 1.价层电子对互斥理论(VSEPR模型) (1)内容:分子中的价层电子对(包括σ键电子对和中心原子上的孤对电子)由于相互排斥作用,尽可能而趋向于彼此远离以减小斥力,分子尽可能采用对称的空间构型。电子对之间夹角越大,排斥力越小。 (2)VSEPR模型特征:用有区别的标记表示分子中的孤对电子和成对电子,如H2O、NH3的VSEPR 模型特征为: 2.利用价层电子对互斥理论判断分子的空间构型 (1)VSEPR模型把分子分成以下两大类 ①中心原子上的价电子都用于成键。在这类分子中,由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离,成键原子的几何构型总是采取电子对排斥最小的那种结构。它们的立体结构可用中心原子周围的原子数来预测。如:

②中心原子上有孤对电子的分子或离子。对于这类分子,首先建立四面体模型,每个键占据一个方向(多重键只占据一个方向),孤对电子也要占据中心原子周围的空间,并参与互相排斥。 (2)价层电子对数的计算 ①σ键电子对数的计算 σ键电子对数可由分子式确定,中心原子有几个σ键,就有几对σ键电子对。如H2O分子中σ键电子对数为,NH3分子中σ键电子对数为。 ②孤电子对数的计算 中心原子上的孤电子对数=1/2(a-xb) a为中心原子的价电子数; x为与中心原子结合的原子数; b为与中心原子结合的原子最多能接受的电子数。 如:如何确定CO2-3和NH+4的中心原子的孤电子对数 阳离子:a为中心原子的价电子数减去离子的电荷数(绝对值),故NH+4中中心原子为N,a=5-1,b=1,x=4,所以中心原子孤电子对数=1/2(a-xb)=1/2(4-4×1)=0。 阴离子:a为中心原子的价电子数加上离子的电荷数(绝对值),故CO2-3中中心原子为C:a=4+2,b=2,x=3,所以中心原子孤电子对数=1/2(a-xb)=1/2(6-3×2)=0。 ③中心原子的价层电子对数=σ键电子对数+1/2(a-xb)。 例1:下列分子中心原子的价层电子对数是3的是( ) A.H2O B.BF3C.CH4D.NH3 【解析】H2O中O的价层电子对数=2+1/2(6-2×1)=4 BF3中B的价层电子对数=3+1/2(3-3×1)=3 CH4中C的价层电子对数=4+1/2(4-4×1)=4 NH3中N的价层电子对数=3+1/2(5-3×1)=4。 (3)分子立体构型的确定 依据价层电子对互斥模型,判断出分子中中心原子的孤电子对数,再利用中心原子的成键电子对数,两者结合,就可以确定分子较稳定的立体构型。举例说明如下表:

高考化学备考专题训练(苏教):第4单元 分子的立体结构及性质(选修3)

1.用价层电子对互斥理论预测H2O和BF3的立体结构,两个结论都正确的是( ) A.直线形,三角锥形 B.V形,三角锥形 C.直线形,正四面体形 D.V形,平面三角形 【解析】由于H2S分子中心原子S有未用于形成共价键的孤电子对,占据中心原子周围的空间,并参与互相排斥使H2S分子呈V形;而BF3分子中心原子B的价电子都用于形成共价键,根据价层电子对互斥理论可知BF3为平面三角形,D正确。 【答案】D 2.下列微粒中,不含有孤电子对的是( ) A.H2O B.H3O+ C.NH3 D.NH4+ 【解析】分别写出其电子式 即可得出答案。 【答案】D 3.下列分子构型为正四面体的是( ) ①P2②NH3③CCl4④CH4⑤H2S ⑥CO2 A.①③④⑤ B.①③④⑤⑥ C.①③④ D.④⑤ 【解析】NH3是三角锥形、H2S是V形,CO2是直线形,故选C。 【答案】C 4.下列叙述正确的是( ) A.NH3是极性分子,分子中N原子处在3个H原子所组成的三角形的中心[] https://www.doczj.com/doc/011063648.html,l4是非极性分子,分子中C原子处在4个Cl原子所组成的正方形的中心 C.H2O是极性分子,分子中O原子不处在2个H原子所连成的直线的中央 D.CO2是非极性分子,分子中C原子不处在2个O原子所连成的直线的中央 【解析】NH3的N原子以sp3杂化,形成三角锥形结构,电荷分布不对称是极性分子。CCl4分子中C—Cl键为极性键,C原子采取sp3杂化,且无孤电子对,分子构型为正四面体形,C原子位于正四面体的中心。H2O分子中H—O键为极性键,O采取sp3杂化,且有两对孤电子对,分子构型为V形,整个分子电荷分布不对称,为极性分子。CO2分子中C采取

分子的立体构型

[知识要点] 一、常见多原子分子的立体结构: (原子数目相同的分子的立体结构不一定相同) CH4 NH3 CH2O CO2 H2O 【小结】同为三原子分子或四原子分子,分子的空间构型不同。所以多原子分子的立体结构不但与所连原子数目有关,还与其他因素(比如中心原子是否有孤对电子及孤对电子的数目)有关 二、价层电子对互斥模型: (用中心原子是否有孤对电子及孤对电子的数目,预测分子的立体结构)价层电子对互斥模型认为分子的立体结构是由于分子中的价电子对(成键电子对和孤对电子对)相互排斥的结果。中心原子价层电子对(包括成键电子对和未成键的孤对电子对)的互相排斥作用,使分子的几何构型总是采取电子对相互排斥最小的那种构型,即分子尽可能采取对称的空间构型这种模型把分子分为两类: 1、中心原子上的价电子都用于形成共价键(中心原子无孤对电子) 中心原子无孤对电子,分子中存在成键电子对与成键电子对间的相互排斥,且作用力相同,分子的空间构型以中心原子为中心呈对称分布。如CO2、CH2O、CH4、HCN等分子。它们的立体结构可用中心原子周围的原子数来预测: 2、中心原子上有孤对电子(未用于形成共价键的电子对)的分子。 中心原子上有孤对电子,分子中存在成键电子对与成键电子对间的相互排斥、成键电子对与孤对电子对间的相互排斥、孤对电子对与孤对电子对间的相互排斥。孤对电子要占据中心原子周围的空间,并参与互相排斥,使分子呈现不同的立体构型 如H2O和NH3,中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥,中心原子周围的δ键+孤对电子数=4,所以NH3与H2O的VSEPR理想模型都是四面体形。因而H2O分子呈V 型,NH3分子呈三角锥形。 【小结】电子对的空间构型(VSEPR理想模型)与分子的空间构型存在差异的原因是由于孤对电

化学选修3第二章-分子结构与性质--教案

化学选修3第二章-分子结构与性质--教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用 第二章分子结构与性质 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。

分子的立体构型

分子的立体构型 第1课时价层电子对互斥理论 [目标定位] 1.认识共价分子结构的多样性和复杂性。2.理解价层电子对互斥理论的含义。3.能根据有关理论判断简单分子或离子的构型。 一、常见分子的立体构型 1.写出下列物质分子的电子式和结构式,并根据键角确定其分子构型: 2.归纳总结分子的立体构型与键角的关系:

分子的立体构型 (1)分子构型不同的原因:共价键的方向性与饱和性,由此产生的键长、键角不同。 (2)依据元素周期律推测立体结构相似的分子,如CO2与CS2、H2O与H2S、NH3与PH3、CH4与CCl4等;CH4和CCl4都是五原子型正四面体,CH3Cl、CH2Cl2、CHCl3是四面体构型但不是正四面体,而白磷是四原子型正四面体,它与CH4等五原子型正四面体的构型、键角是不同的(P4分子中的键角为60°)。 (3)典型有机物分子的立体结构:C2H4、苯(C6H6)、CH2===CH—CH===CH2(丁二烯)、CH2===CH—C≡CH(乙烯基乙炔)等都是平面形分子;C2H2为直线形分子。 1.硫化氢(H2S)分子中,两个H—S键夹角都接近90°,说明H2S分子的立体构型为__________;二氧化碳(CO2)分子中,两个C===O键夹角是180°,说明CO2分子的立体构型为__________;四氯化碳(CCl4)分子中,任意两个C—Cl键的夹角都是109°28′,说明CCl4分子的立体构型为____________。 答案V形直线形正四面体形 解析用键角可直接判断分子的立体构型。三原子分子键角为180°时为直线形,小于180°时为V形。S、O同主族,因此H2S和H2O分子的立体构型相似,为V形。由甲烷分子的立体构型可判断CCl4的分子构型。 2.下列各组分子中所有原子都可能处于同一平面的是() A.CH4、CS2、BF3B.CO2、H2O、NH3 C.C2H4、C2H2、C6H6D.CCl4、BeCl2、PH3 答案 C 解析题中的CH4和CCl4为正四面体形分子,NH3和PH3为三角锥形分子,这几种分子的所有原子不可能都在同一平面上。CS2、CO2、C2H2和BeCl2为直线形分子,C2H4为平面形分子,C6H6为平面正六边形分子,这些分子都是平面形结构。故选C项。 二、价层电子对互斥理论 1.价层电子对互斥理论的基本内容:分子中的价电子对——成键电子对和孤电子对由于相互排斥作用,尽可能趋向彼此远离。 (1)当中心原子的价电子全部参与成键时,为使价电子斥力最小,就要求尽可能采取对称结构。

分子的立体构型(1)

新课标人教版选修三物质结构与性质 第二章分子结构与性质第二节分子的立体结构 第一课时 一、形形色色的分子 【投影展示】CO2、H2O、NH3、CH2O、CH4分子的球辊模型(或比例模型); 1、三原子分子 化学式结构式分子的立体结构模型分子的空间构型键角 直线形180° V形105° 2、四原子分子 化学式结构式分子的立体结构模型 平面三角形120° 三角锥形107°3、五原子分子 正四面体形109°28’4、其他分子 5、资料卡片CH3COOH C8H8 CH3OH C6H6 CH3CH2OH

分子世界如此形形色色,异彩纷呈,美不胜收,常使人流连忘返。 分子立体构型与其稳定性有关。例如,上图S 83像皇冠,如果把其中一个向上的硫原子倒转向下,尽管也可以存在,却不如皇冠是稳定;又如椅式C 6H 6比船式C 6H 6稳定 【问题】1、什么是分子的立体构型 答:分子的立体构型是指分子中原子的空间排布。 那么分子结构又是怎么测定的呢可以用现代手段测定。 【阅读】 选修3 P37——科学视野分子的立体结构的测定: 红外线光谱 学生活动:知识整理:运用你对分子的已有的认识,完成下列表格 分子式 分子的立体 结构 原子数目 键角 电子式 H 2O CO 2 NH 3 BF 3 CH 2O CH 4 C 2H 4 C 6H 6 P 4 【问题】 3、 同为三原子分子的CO 2和H 2O ,四原子分子的NH 3和CH 2O ,它们的立体结构却不同,为什么 学生活动:【准备知识】填写下列表格中内容: 分子中的原子 分子立体构型 红外线 分析

二、 价层电子对 互斥模型(VSEPR 模型) 1、价层电子对互斥模型: 1940年美国的Sidgwick NV 等人相继提出了价层电子对互斥理论,简称VSEPR 法,该法适用于主族元素间形 成的ABn 型分子或离子。 该理论认为:一个共价分子或离子中,中心原子A 周围所配置的原子B (配位原子)的几何构型,主要决定于中心原子的价电子层中各电子对间的相互排斥作用。 a:中心原子的价电子数(最外层电子数) ① 对于阳离子价电子数=最外层电子数-电荷数 ② 对于阴离子价电子数=最外层电子数+电荷数 x :与中心原子相结合的原子数 b :与中心原子相结合的原子能得到的电子数 例如:CO 2: CO 2 孤电子对=1/2(4-2×2) =0 分子真实 构型 中心原子上孤电子对=1/2(a -x b)

2020届高三化学选修三物质结构和性质常考题型——立体结构和杂化类型判断

2020届高三化学选修三物质结构与性质常考题型 ——立体结构和杂化类型判断.DOC 【方法和规律】 1、立体构型的判断方法——价层电子对互斥理论 (1)中心原子价层电子对数===σ键电子对数+孤电子对数 (2)2中心原子的数中心原子的价层和 配位原子的化合价的总价电子数电子对+= 2 中心原子的数中心原子的价层和 配位原子的化合价的总最外层电子数电子对+= 【微点拨】①配位原子是指中心原子以外的其它原子 (即与中心原子结合的原子) ②若是离子,则应加上或减去与离子所带的电荷数 (阴加阳减) ③氧、硫原子若为配位原子,则其化合价规定为"零”,若为中心原子,则价电子数为6 (3)价层电子对互斥理论判断分子空间构型的具体方法 价层电子对数目 电子对排布方式 电子对的空间构型(VSEPR 模型) 孤电子对数 分子的立体结构 常见实例 2 直线形 0 直线形 CO 2 1 直线形 3 平面正三角形 0 正三角形 BF 3 1 V 形 SO 2 2 直线形 4 空间正四面体 正四面体 CH 4 1 三角锥 NH 3 2 V 形 H 2O 3 直线形 ClO — (4)分子或离子 中心原子 价层电子对数 δ键电子对数 孤电子对数 电子对构型 分子构型 中心原子杂化类型 CO 2 BeCl 2 BF 3 SO 3 SO 2 CH 4 NH 3 PCl 3 H 2O NO 3— SO 32— NH 4+

PO43— H3O+ 2、中心原子的杂化类型判断 规律:杂化轨道数==价层电子对数==σ键电子对数+孤电子对数 价层电子对数杂化方式 4 sp3杂化 3 sp2杂化 2 sp杂化 技巧1:ABn型的分子或离子,用 中心原子的 数 中心原子的价层 和 配位原子的化合价的总 价电子数 电子对 + =, 来迅速判断(见上表) 技巧2:若有多个中心原子时,则根据:“杂化轨道数==价层电子对数==σ键电子对数+孤电子对数”来判断如:三聚氰胺分子的结构简式如图所示,分析氮原子、碳原子的杂化类型 杂化类型价层电子对数σ键电子对 数孤电子对数孤电子对数确定方法 环外氮原子sp3 4 3 1 氮原子最外层有5个电子,形成了3 对共用电子对,则有一对孤对电子环上氮原子sp2 3 2 1 环上碳原子sp2 3 3 0 碳原子最外层4个电子,形成了4对共用电子对,所以碳上无孤对电子 ①若杂化轨道在空间的分布为正四面体形或三角锥形,则分子的中心原子发生sp3杂化 ②若杂化轨道在空间的分布呈平面三角形,则分子的中心原子发生sp2杂化 ③若杂化轨道在空间的分布呈直线形,则分子的中心原子发生sp杂化 技巧4:根据杂化轨道之间的夹角判断 ①若杂化轨道之间的夹角为109°28′,则分子的中心原子发生sp3杂化 ②若杂化轨道之间的夹角为120°,则分子的中心原子发生sp2杂化 ③若杂化轨道之间的夹角为180°,则分子的中心原子发生sp杂化 技巧5:根据等电子原理进行判断 CO2是直线形分子,CNS-、N-3与CO2是等电子体,所以分子构型均为直线形,中心原子均采用sp杂化 技巧6:根据分子或离子中有无π键及π键数目判断 没有π键为sp3杂化,含一个π键为sp2杂化,含两个π键为sp杂化 【真题感悟】 1、[2019·全国卷Ⅰ·节选] 乙二胺(H2NCH2CH2NH2)是一种有机化合物,分子中氮、碳的杂化类型分别是_______ 2、[2019·全国卷Ⅱ·节选] 元素As与N同族。预测As的氢化物分子的立体结构为________ 3、[2019·全国卷Ⅲ·节选] NH4H2PO4中,电负性最高的元素是________;P的________杂化轨道与O的2p轨道 形成________键 4、[2019·江苏卷·节选] SO42—的空间构型为____________,抗坏血酸的分子结构如图所示,分子中碳原子的轨道 杂化类型为____________

分子的立体构型练习1

高二化学选修3练习案编号:使用时间:2013-4 编写人高娟审核人: 第二章第二节分子的立体构型第一课时 1.下列物质中,分子的立体结构与水分子相似的是() A.CO2 B.H2S C.PCl3 D.SiCl4 2.下列分子的立体结构,其中属于直线型分子的是() A.H2O B.CO2 C.C2H2 D.P4 3.下列分子或离子中,不含有孤对电子的是() A、H2O、 B、H3O+、 C、NH3、 D、NH4+ 4.下列分子的结构中,原子的最外层电子不都满足8电子稳定结构的是() A.CO2 B.PCl3 https://www.doczj.com/doc/011063648.html,l4 D.NO2 5.下列分子或离子的中心原子,带有一对孤对电子的是() A.XeO4 B.BeCl2 C.CH4 D.PCl3 6. 在以下的分子或离子中,空间结构的几何形状不是三角锥形的是() A.NF3 B.CH3- C.BF3 D.H3O+ 7. 、用价层电子对互斥模型判断SO3的分子构型() A、正四面体形 B、V形 C、三角锥形 D、平面三角形 8、下列说法正确的是() A、NO2、SO2、BF3、NCl3分子中没有一个分子中原子的最外层电子都满足了8电子稳定结构 B、P4和CH4都是正四面体分子且键角都为109°28′ C、N H4+呈平面正方形结构 D、NH3分子中有一对未成键的孤电子对,它对成键电子的排斥作用较强 9、写出你所知道的分子具有以下形状的物质的化学式,并指出它们分子中的键角分别是多少? (1)直线形 (2)平面三角形 (3)三角锥形 (4)正四面体 10、为了解释和预测分子的空间构型,科学家在归纳了许多已知的分子空间构型的基础上,提出了一种十分简单的理论模型——价层电子对互斥模型。这种模型把分子分成两类:一类 是;另一类是。BF3和NF3都是四个原子

分子的立体构型(1)

新课标人教版选修三物质结构与性质 第二章 分子结构与性质 第二节 分子的立体结构 第一课时 一、形形色色的分子 【投影展示】CO 2、H 2O 、NH 3、CH 2O 、CH 4分子的球辊模型(或比例模型); 1、 三原子分子 化学式 结构式 分子的立体结构模型 分子的空间构型 键角 直线形 180° V 形 105° 2、 四原子分子 化学式 结构式 分子的立体结构模型 平面三角形 120° 三角锥形 107° 3、五原子分子 正四面体形 109°28’ 4、其他分子 5、资料卡片 CH 3 COOH C 8H 8 CH 3OH C 6H 6 CH 3CH 2 OH

分子世界如此形形色色,异彩纷呈,美不胜收,常使人流连忘返。 分子立体构型与其稳定性有关。例如,上图S 83像皇冠,如果把其中一个向上的硫原子倒转向下,尽管也可以存在,却不如皇冠是稳定;又如椅式C 6H 6比船式C 6H 6稳定 【问题】1、什么是分子的立体构型? 答:分子的立体构型是指分子中原子的空间排布。 那么分子结构又是怎么测定的呢?可以用现代手段测定。 【阅读】 选修3 P37——科学视野分子的立体结构的测定: 红外线光谱 【问题】 3、 同为三原子分子的CO 2和H 2O ,四原子分子的NH 3和CH 2O ,它们的立体结构却不同,为什么? 分子中的原子 分子立体构型 红外线 分析

二、价层电子对互斥模型(VSEPR 模型) 1、价层电子对互斥模型: 1940年美国的Sidgwick NV 等人相继提出了价层电子对互斥理论,简称VSEPR 法,该法适用于主族元素间形成的ABn 型分子或离子。 该理论认为:一个共价分子或离子中,中心原子A 周围所配置的原子B (配位原子)的几何构型,主要决定于中 心原子的价电子层中各电子对间的相互排斥作用。 a:中心原子的价电子数(最外层电子数) ① 对于阳离子价电子数=最外层电子数-电荷数 ② 对于阴离子价电子数=最外层电子数+电荷数 x :与中心原子相结合的原子数 b :与中心原子相结合的原子能得到的电子数 例如:CO 2: CO 2 孤电子对=1/2(4-2×2) =0 H 2O : O 上孤电子对数=1/2(6 -2×1) =2 CO 32-: C 上孤电子对数=1/2(4 +2 -3×2) =0 学生活动:填写下表内容 分子或离子中的价层电子对在空间的分布(即含孤电子对的VSEPR 模型) 分子真实 构型 中心原子上孤电子对=1/2(a -x b)

选修三分子的立体构型说课稿

教学设计 人教版选修三 第二章分子的结构和性质 第二节分子的立体构型 (第一课时)

第二节分子的立体构型 一、设计思想 1.将抽象的理论模型化,化难为简,详略得当,有效教学? 2.创设多层面多角度的问题,激发学生学习的兴趣,构建出价层电子对互斥理论与分子立体构型 的有机结合和熟练运用。 3.注重学习中所蕴含的化学方法,培养学生的逻辑思维能力和解决问题的能力。 二、教材分析 1?教材的内容、地位和作用 本节选自新课标人教版化学必修3第二章第二节,由四部分内容组成,依次为形形色色的分子、价层电子对互斥理论、杂化轨道理论简介和配位化合物简介,重点介绍价层电子对互斥理论、杂化轨道理论和配位化合物。本节教材可用三个课时完成,说课内容为第一课时。 按照新课标要求,在必修2和选修3第二章第一节已介绍共价键知识基础上,本节介绍了分子的立体结构,并根据价层电子对互斥理论对简单分子结构的多样性和复杂性进行了解,并为学习杂化轨道理论奠定了基础,使学生能从分子结构的角度认识物质的性质,在教材中具有承上启下的作用。 2教学目标 知识与技能 (1) 了解分子的多样性和复杂性,能应用价层电子对互斥 理论和模型解释。

(2)会判断常见的简单多原子分子或离子的立体构型。过程与方法

(1)通过自主学习、交流讨论和多媒体展示,让学生主动参与到探究分子结构的过程 中增强感性认识。 (2)通过探究分子的立体构型,培养学生空间想象能力,自学能力和归纳总结的能力。 情感、态度与价值观 (1)感受分子结构的多样性和复杂性,提高探究分子结构的兴趣,培养严谨认真的科学态度。 (2)通过学习培养学生独立思考、积极进取的精神,以及用数学的思想解决化学问题的能力, 切身感悟化学学科的奇妙。 3.教学重难点 (1)分子的立体构型 (2)价层电子对互斥理论 、学情分析 学生的空间想象能力较差,且相尖知识的准确度不够,在教学中需要细致把握。另 一方面本节知识属于化学理论教学,与已有知识联系较少,通过设计引导才能取得较好的 教学效果教学方法 问题探究法模型构造法 学生自主学习法多媒体展示法 教学过程 1.创设情境引入新课 分发挥想象力,说说它们的空间形状。 [投影]

分子立体结构知识点

化学分子立体结构知识点 (一)价电子互斥理论:分子的立体结构决定了分子许多重要的性质,例如分子中化学键的类型、分子的极性、分子之间的作用力大小、分子在晶体里的排列方式等等。分子的立体结构通常是指其σ键的分子骨架在空间的排布。 1、价层电子对互斥模型(VSEPR 模型):是一种可以用来预测分子立体结构的理论模型,总的原则是中心原子价电子层电子对(包括成键电子对和未成键的孤对电子对)的互相排斥作用,使分子的几何构型总是采取电子对相互排斥最小的那种构型,即分子尽可能采取对称的空间构型。 2、VSEPR 模型的内容:VSEPR 模型把分子分为两类: (1)中心原子上的价电子都用于形成共价键,即中心原子无孤对电子的,根据键的条数或者说AB n 型分子中n 的个数,判断分子构型。如CO 2、CH 2O 、CH 4等分子中的C 原子。它们的立体结构可用中心原子周围的原子数来预测,概括如下: (2)中心原子上有孤对电子(未用于形成共价键的电子对)的分子,则将孤对电子也算作键数,同上推出包括孤对电子的分子构型,然后去掉孤对电子后看分子新构型。如H 2O 和NH 3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。因而H 2O 分子呈V 型,NH 3分子呈三角锥型。 【拓展】AB m 型分子或离子中的价电子对数(孤对电子+形成共价键的电子对)的计算方法: (1)对于主族元素,中心原子价电子数=最外层电子数,配位原子按提供的价电子数计算,如:PCl 5 中52515=?+= n (2)O 、S 作为配位原子时按不提供价电子计算,作中心原子时价电子数为6; (3)离子的价电子对数计算 如:NH 4+ : 421415=-?+=n ; SO 42- :42 206=++=n 3、VSEPR 模型的应用: (1)VSEPR 模型预测分子立体结构方法:首先确定中心原子的价层电子对数,然后确定中心原子有无孤对电子数,再结合实际例子分析。 (2)VSEPR 模型是模型化方法的具体体现,它把原子数相同、价电子数相同的一类化学粒子的结构加以概括,体现了等电子原理的思想,例如五原子八电子的CH 4、SiH 4、NH 4+,它们都是正四面体构型。 (二)杂化轨道理论:价层电子对互斥模型只能解释化合物分子的空间构形,却无法解释许多深层次的问题,如无法解释甲烷中四个 C ---H 的键长、键能相同及H -C -H 的键角为109 ? 28′。因为按照我们已经学过的价键理论,甲烷的4个C - H 单键都应该是σ键,然而,碳原子的4个价层原子轨道是3个相互垂直的2p 轨道和1个球形的2s 轨道,用它们跟4个氢原子的1s 原子轨道重叠,不可能得到四面体构型的甲烷分子。为了解决这一矛盾,鲍林提出了杂化轨道理论。 1、杂化的概念:杂化是指原子在相互结合成键过程中,原来能量接近的原子轨道要重新混合,形成新的原子轨道。这种轨道重新组合的过程叫做杂化。所形成的新的轨道叫杂化轨道。 2、杂化轨道的类型: (1)sp 3 杂化:一个s 轨道与三个p 轨道杂化后,得四个sp 3杂化轨 道,每个杂化轨道的s 成分为1/4,p 成分为3/4,它们的空间取向 是四面体结构,相互的键角θ=109o28′。 (2)sp 2杂化:一个s 轨道与两个p 轨道杂化,得三个sp 2杂化轨道, 每个杂化轨道的s 成分为1/3,p 成分为2/3,三个杂化轨道在空间 分布是在同一平面上,互成120o 。 (3)sp 杂化:一个s 轨道与一个p 轨道杂化后,得两个sp 杂化轨 道,每个杂化轨道的s 成分为1/2,p 成分为1/2,杂化轨道之间的 夹角为180度。 【总结】sp 型的三种杂化(见右图) 【小结】杂化轨道的特点 (1)形成分子时,通常存在激发、杂化和轨道重叠等过程。

化学:分子的立体构型1(1)

分子的立体构型(1) 用价层电子对互斥理论推断分子或离子的空间构型具体步骤 (1)确定中心原子A价层电子对数目:价层电子对数=中心原子所成σ键数+ 中心原子孤电子对数 (2)确定VSEPR模型 (3)分子空间构型确定(有孤电子对时略去VSEPR模型中的中心原子上的孤电子对得到分子的真实构型) 化学式孤电子 对数 σ键电 子对数 价层电 子对数 VSEPR模型名称 分子或离子的立 体构型名称 H2O NH3 CH4 CO2 BF3 SO2 SO3 Cl2O BeCl2 CO2-3 NH+4 H3O+NO-2 NO-3 ClO-3 NH-2 PO3-4 SO2-3 SO42-CHCl3 HCHO HCN

1. 下列说法正确的是 A. 所有的分子都是由两个或两个以上的原子构成 B. 所有的三原子分子都是直线形构型 C. 所有的四原子分子都是平面三角形构型 D. 五原子分子不一定是正四面体形构型 2.下列叙述正确的是 A.NH3分子中N原子处在3个H原子所组成的三角形的中心 B.CCl4分子中C原子处在4个Cl原子所组成的正方形的中心 C.H2O分子中O原子不处在2个H原子所连成的直线的中央 D.CO2分子中C原子不处在2个O原子所连成的直线的中央 3. 膦(PH3)又称磷化氢,在常温下是一种无色有大蒜臭味的有毒气体,以下叙述正确的是 A.PH3的分子构型为平面三角形B.PH3分子中有未成键的孤对电子 C.PH3的热稳定性比NH3强D.PH3分子的P-H键是非极性键 4.下列物质中,化学键类型和分子立体构型皆相同的是 A.CO2和SO2B.CH4和SiH4C.BF3和PH3D.HCl和NH4Cl 5.下列分子构型为正四面体的是①P4②NCl3③SiCl4④CCl4⑤H2S⑥CS2 A.①③④⑤B.①③④⑤⑥C.①③④D.④⑤ 【选做题】 【2018新课标1卷】LiAlH4是有机合成中常用的还原剂,LiAlH4中的阴离子空间构型是______ 【2018新课标2卷】H2S、SO2、SO3的气态分子中,中心原子价层电子对数不同于其他分子的是_________。气态三氧化硫以单分子形式存在,其分子的立体构型为_____形 【2018新课标3卷】炉甘石(ZnCO3)入药,可用于治疗皮肤炎症或表面创伤。ZnCO3中,阴离子空间构型为________________ 【2017新课标1卷】X射线衍射测定等发现,I3AsF6中存在I3+离子其几何构型为__________ 【2016新课标2卷】[Ni(NH3)6]SO4中阴离子的立体构型是_____。 【2016新课标3卷】AsCl3分子的立体构型为_______. 【2015新课标2卷】A、B、C、D为原子序数依次增大的四种元素,A2-和B+具有相同的电子构型,C、D为同周期元素,C核外电子总数是最外层电子数的3倍,D元素最外层有一个未成对电子。C和D反应可生成组成比为1∶3的化合物E,E的立体构型为,化合物D2A的立体构型为,中心原子的价层电子对数为。

分子的立体结构及性质习题(12.13)

分子的立体结构及性质习题(12.13) 1.用价层电子对互斥理论预测H2O和BF3的立体结构,两个结论都正确的是( ) A.直线形,三角锥形 B.V形,三角锥形 C.直线形,正四面体形 D.V形,平面三角形 2.下列微粒中,不含有孤电子对的是( ) A.H2O B.H3O+ C.NH3 D.NH4+ 3.下列分子构型为正四面体的是( ) ①P2 ②NH3 ③CCl4 ④CH4 ⑤H2S ⑥CO2 A.①③④⑤ B.①③④⑤⑥ C.①③④ D.④⑤ 4.下列叙述正确的是( ) A.NH3是极性分子,分子中N原子处在3个H原子所组成的三角形的中心 https://www.doczj.com/doc/011063648.html,l4是非极性分子,分子中C原子处在4个Cl原子所组成的正方形的中心 C.H2O是极性分子,分子中O原子不处在2个H原子所连成的直线的中央 D.CO2是非极性分子,分子中C原子不处在2个O原子所连成的直线的中央 5.在乙烯分子中有5个σ键、1个π键,它们分别是( ) A.sp2杂化轨道形成σ键、未杂化的2p轨道形成π键 B.sp2杂化轨道形成π键、未杂化的2p轨道形成σ键 C.C—H之间是sp2形成的σ键,C—C之间是未参加杂化的2p轨道形成的π键 D.C—C之间是sp2形成的σ键,C—H之间是未参加杂化的2p轨道形成的π键 6.下列推断正确的是( )

A.BF3为三角锥形分子 B.NH4+的电子式为 ,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s—p σ键 D.CH4分子中的碳原子以4个sp3杂化轨道分别与4个氢原子的1s轨道重叠,形成4个C—H σ键 7.有关苯分子中的化学键描述正确的是( ) ①每个碳原子的sp2杂化轨道中的其中一个形成大π键 ②每个碳原子的未参加杂化的2p轨道形成大π键 ③碳原子的三个sp2杂化轨道与其他原子形成三个σ键 ④碳原子的未参加杂化的2p轨道与其他原子形成σ键 A.①② B.②③ C.③④ D.①④ 8.下列对sp3、sp2、sp杂化轨道的夹角的比较,得出结论正确的是( ) A.sp杂化轨道的夹角最大 B.sp2杂化轨道的夹角最大 C.sp3杂化轨道的夹角最大 D.sp3、sp2、sp杂化轨道的夹角相等 9.NH3、H2S等是极性分子,CO2、BF3、CCl4等是含极性键的非极性分子。根据上述实例可推出ABn型分子是非极性分子的经验规律是( ) A.分子中不能含有氢原子 B.在AB n分子中A的相对原子质量应小于B的相对原子质量 C.在AB n分子中A原子没有孤电子对 D.分子中每个共价键的键长应相等 10.某物质的实验式为PtCl4·2NH3,其水溶液不导电,加入AgNO3溶液反应也不产生沉淀,以强碱处理并没有NH3放出,则关于此化合物的说法中正确的是( ) A.配合物中中心原子的电荷数和配位数均为6

相关主题
文本预览
相关文档 最新文档