当前位置:文档之家› 潮流计算作业A4

潮流计算作业A4

潮流计算作业A4
潮流计算作业A4

电力系统潮流计算综述

学院:电气工程学院

专业:电力系统及其自动化

学号:s

姓名:张雪

摘要

电力系统潮流计算是电力系统分析中最基本的一项计算。本文对电力系统潮流计算进行了综述。首先简单回顾了潮流计算的发展历史,对当前基于计算机的各种潮流算法的原理及其优缺点,作了简要介绍和比较,并介绍了它们采用的一些特别技术及程序设计技巧;接着简要分析了三种新型的潮流计算方法的计算原理及优缺点,它们分别是基于人工智能的潮流计算方法、基于L1范数和现代内点理论的电力系统潮流计算方法、基于符号分析的潮流计算方法等。除此之外还介绍了配电系统潮流计算算法。

关键词:电力系统;潮流计算;综述;新型潮流计算方法;配电系统

1 概述

电力系统潮流计算是研究电力系统稳态运行的一项基本运算。它根据给定系统的网络结构及运行条件来确定整个系统的运行状态:主要是各节点电压(幅值和相角),网络中功率分布及功率损耗等。它既是对电力系统规划设计和运行方式的合理性、可靠性及经济性进行定量分析的依据,又是电力系统静态和暂态稳定计算的基础。潮流计算经历了一个由手工,利用交、直流计算台到应用数字电子计算机的发展过程。现在的潮流算法都以计算机的应用为前提。1956年ward 等人编制成实用的计算机潮流计算程序,标志着电子计算机开始在电力系统潮流计算中应用。基于导纳矩阵的高斯—塞德尔法是电力系统中最早得到应用的潮流计算方法。因它对病态条件(所谓具有病态条件的系统是指:重负荷系统;包含有负电抗支路的系统;具有较长辐射型线路的系统;长线路与短线路接在同一节点,且其长度比值又很大的系统;或平衡节点位于网络远端的系统)特别敏感,又发展了基于阻抗阵的高斯—塞德尔法,但此法中阻抗阵是满阵占大量内存,而限制了其应用。1961年VanNes等人提出用牛顿法求解系统潮流问题,经后人的不断改进,而得到广泛应用并出现了多种变型以满足不同的需要,如快速解耦法、直流法、保留非线性算法等。同时,60年代初开始出现运用非线性规划的最优潮流算法。60年代末Dom-8mel和Tinney提出最优潮流的简化梯度法,70年代有人提出海森矩阵法,80年代SunDl提出最优潮流牛顿算法,还可把解耦技术应用于最优潮流,从而形成解耦型最优潮流牛顿算法,还可把解祸技术应用于最优潮流,从而形成解耦型最优潮流牛顿算法。随着直流输电技术的发展,交直流联合电力系统的潮流计算方法相应出现。另外,其它各种潮流算法如最小化潮流算法、随机潮流算法等也不断涌现。至于用于特殊用途的潮流算法如谐波潮流、适于低压配电网的潮流算法也得到了较快的发展。

潮流算法多种多样,但一般要满足四个基本要求:(i)可靠收敛;(ii)计算速度

快;(iii)使用方便灵活;(iv)内存占用量少。它们也是对潮流算法进行评价的主要依据。

在潮流计算中,给定的量应该是负荷吸收的功率、发电机发出的功率或者发电机的电压。这样,按照给定量种类的不同,可以将节点分为以下三类[1]:

(1)PQ 节点。给定节点的注入有功功率P 和注入无功功率Q 。这类节点对应于实际系统中纯负荷节点(如变电所母线)、有功和无功功率都给定的发电机节点(包括节点上带有负荷),以及联络节点(注入有功和无功功率都等于零)。这类节点占系统中的绝大多数,它们的节点电压有效值和相位未知。

(2)PV 节点。给定节点的注入有功功率P 和节点电压有效值U ,待求量是节点的注入无功功率Q 和电压的相位θ。这类节点通常为发电机节点,其有功功率给定而且具有比较大无功容量,它们能依靠自动电压调节器的作用使母线电压保持给定值。有时将一些装有无功补偿设备的变电站母线也处理为PV 节点。

(3)平衡节点。在潮流计算中,必须设置一个平衡节点,其电压有效值为给定值,电压相位为θ=0,即系统中其它各点的电压相位都以它为参考;而注入的有功功率和无功功率都是待求量。实际上,由于所有的PQ 节点和PV 节点的注入有功功率都已经给定,而网络中的总有功功率损耗是未知的,因此平衡节点的注入有功功率必须平衡全系统的有功功率和有功损耗而不能加以给定。

需要注意的是以上介绍的节点分类只是一般的原则,而不是一成不变的。 2 潮流计算主要方法与评价

潮流计算问题的数学模型

电力系统潮流的基本方程为[2]:

*1n i i

ij j j i

P jQ Y U U =-=∑g

(i =1,2,3…n ) (1) 或 *1n j i i ij

j j P jQ U Z U =-=∑g (i =1,2,3…n ) (2)

其中,ij Y ,ij Z 分别为节点导纳矩阵和节点阻抗矩阵的相应元素,n 为系统节点数。

这就是潮流计算问题最基本的方程式,是一个以节点电压U g

为变量的非线性代数方程组。由此可见,采用节点功率作为节点注入量是造成方程组呈非线性的根本原因。由于方程组为非线性的,因此必须采用数值计算方法,通过迭代来求解。根据在计算中对这个方程组的不同应用和处理,就形成了不同的潮流算法。

对于电力系统中的每个节点,要确定其运行状态,需要四个变量:有功注入P 、无功注入Q 、电压模值U 及电压相角θ。n 个节点总共有4n 个运行变量要确定。再观察式(1)和式(2),总共包括n 个复数方程式,如果将实部与虚部分开,则形成

2n 个变量作为已知量而预先给以指定。也即对每个节点,要给定其两个变量的值作为已知条件,而另两个变量作为待求量。

按照电力系统的实际运行条件,根据预先给定的变量的不同,电力系统中的节点又可分为PQ 节点、PV 节点及Vθ节点或平衡节点三种类型。对应于这些节点,分别对其注入有功、无功功率,有功功率及电压模值以及电压模值和相角加以指定;并且对平衡节点来说,其电压相角一般作为系统电压相角的基准(即θ=0o )。

交流电力系统中的复数电压变量可以用两种坐标形式来表示

i j i i U U e θ=g

(3) 或 i i i U e jf =+g

(4) 而复数导纳为

ij ij ij Y G jB =+ (5) 将(3)、式(4)以及式(5)代入以导纳矩阵为基础的式(1),并将实部与虚部分开,可得到以下两种形式的潮流方程。

潮流方程的直角坐标形式为:

(G e B f )()i i ij i ij j i ij j ij j j i j i

P e f G f B e ∈∈=-++∑∑ (6)

(i 1,2,,n)=L

(G e B f )()i i ij i ij j i ij j ij j j i j i

Q f e G f B e ∈∈=--+∑∑ (7)

(i 1,2,,n)=L

潮流方程的极坐标形式为:

U (G cos B sin )i i j ij ij ij ij j i

P U θθ∈=+∑ (8)

(i 1,2,,n)=L

U (G sin B cos )i i j ij ij ij ij j i

Q U θθ∈=-∑ (9)

(i 1,2,,n)=L

以上各式中,j i ∈ 表示∑号后的标号为j 节点必须直接和节点i 相联,并包括j=i 的情况。这两种形式的潮流方程统称为节点功率方程,是牛顿-拉夫逊等潮流算法所采用的主要数学模型。

对于以上潮流方程中的有关运行变量,还可以按其性质的不同加以分类,这对于进行例如灵敏度分析以及最优潮流的研究等都是比较方便的。

每个节点的注入功率是该节点的电源输入功率Gt P 、Gt Q 和负荷需求功率Li P 、Li Q 的代数和。负荷需求的功率取决于用户,是无法控制的,所以称之为不可控

变量或扰动变量。而某个电源所发的有功、无功功率则是可以由运行人员控制或改变的变量,是自变量或称为控制变量。至于各个节点的电压模值或相角,则属于随着控制变量的改变而变化的因变量或状态变量;当系统中各个节点的电压模值及相角都知道以后,则整个系统的运行状态也就完全确定了。若以p 、u 、x 分别表示扰动变量、控制变量、状态变量,则潮流方程可以用更简洁的方式表示为:

f(x,u,p)=0 (10)

根据式(10),潮流计算的含义就是针对某个扰动变量p ,根据给定的控制变量u ,求出相应的状态变量x 。

电力系统的潮流计算需要求解一组非线性代数方程。目前求解非线性代数方程一般采用的是迭代方法,而应用电子数字计算机进行迭代计算可以得到非常精确的结果。常用的潮流算法有牛顿—拉夫逊法、快速解耦法(PQ 分解法)、直流潮流法、极小化潮流算法、最优潮流算法、保留非线性法、交直流潮流法等。 牛顿-拉夫逊法

牛顿—拉夫逊法简称牛顿法,是求解非线性代数方程的一种有效且收敛速度快的迭代计算方法,而形成雅可比矩阵和求解修正方程式是牛顿法潮流计算中的主体。牛顿—拉夫逊法将潮流方程f(x)=0用泰勒级数展开,并略去二阶及以上高阶项,然后求解。其实质是逐次线性化,求解过程的核心是反复形成并求解修正方程。其迭代格式为:

'(k)(k)(k)(k 1)(k)(k)(X )X (X )f f X X X +??=-??=+???

(11) 式中:'(X)f 是(X)f 对于变量X 的一阶偏导数矩阵;k 为迭代次数。

各种形式牛顿法的共同优点是:(1)收敛速度快,具有平方收敛特性,其迭代次数与系统规模基本无关;(2)能求解大部分有病态条件的问题;(3)利用了保持稀疏性技术,所需内存适中。它是六十年代以来,广泛应用的方法。但具有以下缺点:(1)由于雅可比矩阵的维数约为节点总数的两倍而且在迭代过程中不断改变,因此在大规模电力系统中应用牛顿法计算潮流比较费时;(2)编程复杂;(3)需要良好的初值(可由高斯-赛德尔法给出),否则不收敛或收敛到无法运行的解上;(4)对重病态条件可能不收敛;

而快速分解法则是通过不断简化迭代过程中变化的矩阵来进行潮流计算,一般来说,快速分解法所需要的迭代次数比牛顿法多,但每次迭代的计算工作量远小于牛顿法,因此总的来说迭代求解过程所需要的时间要少得多。直流潮流算法是一种十分近似的方法,它主要用于系统中有功功率分布的近似估算。极小化潮流算法是将功率方程式的求解问题转化为一个求函数的极小值问题,然后应用数

学规划方法进行求解,极小化潮流算法的主要缺点是所需要的计算机内存计算时间比常规牛顿法更多。

根据f(x)的表达式不同,牛顿法又分功率偏差型算法和电流偏差型算法。根据复电压变量采用的坐标形式不同,牛顿法又有直角坐标形式、极坐标形式和混合形式。

功率偏差型算法

令i j i i U U e θ=g

,可得极坐标形式修正方程式为: P H N Q M L U U θ????????=-??????????????

(12) 令i i i U e jf =+g

,可得直角坐标形式修正方程式为:

2P H N e Q M L f R S U ?????????????=-?????????????????? (13) 其特点是每次迭代,雅可比矩阵都需要重新形成。雅可比矩阵虽非对称,但分块雅可比矩阵为一高度稀疏阵。程序设计中采用的技巧有:(i)稀疏存储(ii)按行消去,采用边形成、边消元、边存储的方式(iii)节点编号优化(最优顺序消去)。 电流偏差型算法

修正方程式由复电流偏差量构成,以直角坐标形式表示。当网络中只有PQ 节点和所有节点都为零注入的情况下,修正方程式为:

r m I B G f I G B e ?-???????-=?????????

????? (14) 式中:r I ?、m I ?分别代表节点i 电流偏差的实部和虚部。其优点是对存在许多无负荷或轻负荷节点的网络,潮流计算有较好的收敛性,可用于暂态稳定计算中。

改进牛顿法

为了改进牛顿法在内存占用量及计算速度方面的不足,1974年提出快速解耦法(又称P 一Q 分解法),是较成功的一种算法;为了改进牛顿法在处理病态条件时的缺陷,提高算法的收敛性能,70年代后期开始采用一种保留非线性潮流算法,将泰勒级数的高阶项也考虑进来,效果较好。

快速解耦法

它是密切结合电力系统固有特点,对牛顿法改进后得到的一种方法。原理是根据系统有功主要决定于电压相角的变化,而无功主要决定于电压模值的变化这一特性,并进行合理假设:(i)线路两端的相角差不大,且ij ij G B =,即认为

cos 1ij θ≈;sin ij ij ij G B θ=;(ii)与节点无功功率对应的导纳2i i Q U 远小于节点的自导纳ii B ,即2i i ii Q U B =,最后得修正方程式:

'''P U B Q U B U θ??=????=???

(15) 式中:'B 、''B 是由节点导纳阵的虚部构成的常数对称矩阵,但作了下述修改:(i)在形成'B 时,略去那些主要影响无功和电压模值的因素包括输电线的充电电容及变压器非标准变比;(ii)在形成'B 时,不计串联元件的电阻。这种形成'B 及''B 的方案,又称为XB 方案。

此法特点包括:(i)以一个(n 一l)阶和一个(n 一m 一1)阶方程代替了牛顿法的(2n 一m 一2)阶方程,减少了内存需量及计算量。这里n 为系统节点数;m 为PV 节点数。(ii)用常数阵替代了随迭代过程变化的雅可比阵J ,缩短了每次迭代的时间。(iii)用对称阵'B 、''B 替换了不对称阵J ,减少了三角分解的计算量并节约了内存。因而,它具有简单、快速、内存节省且收敛可靠的优点,是广泛应用于在线处理计算的方法,并已成为当前国内外最优先使用的算法。存在的问题是R/X 比值过大及因线路特别重载致使两节点间相角差特大时,收敛特性变坏或不收敛。

对大R/X 比值病态问题的解决:(i)参数补偿,又分为串联补偿法和并联补偿法两种;(ii)算法改进,与上述传统的XB 方案相反,在形成'B 时采用精确的导纳矩阵虚部,而在形成''B 时只计串联元件的电抗值,并采用严格的,P Q U θ--交替迭代方案。

保留非线性潮流算法

此类方法是将潮流方程组用泰勒级数展开,并保留高阶项。

(l)带二阶项的直角坐标形式牛顿算法

因直角坐标形式的潮流方程为一个二次方程组,所以泰勒级数只取前三项即为精确展开式。设潮流方程为(x)Y(x)Y 0s f =-=。则由其泰勒级数展开式可得

12001(X )J X H 2s n X X X X Y Y X X ??????????=+?+????????

M M (16) 式中:0J 为初始运行条件下的雅可比矩阵;H 为一常数矩阵;

[](0)12,,,T

n x x x x x x ???=-=?????L 为修正量向量。 程序设计技巧是泰勒展开式的第三项可写成和第一项相同的函数表达式仅变量不同,以X ?代X 。即有

(0)(x )J X Y(X)s Y Y =+?+? (17)

由式(17)得迭代公式:

(k 1)1(0)(k)(X )Y Y(x )s X J Y +-???=--+??? (18)

此法主要特点是:(i)采用由初值(0)X 计算得的恒定雅可比阵,因而计算速度较牛顿法快,但仍慢于快速解耦法;(ii)处理病态的能力提高;(iii)内存需量较牛顿法大。

(2)带二阶项的直角坐标形式快速潮流算法

NagendraRao 等运用了两个技巧对计算进行简化:(i)改造导纳阵的对角元;(ii)所有节点电压初值取为平衡节点电压,最后将雅可比矩阵化为常数对称矩阵。对二阶项的计算,也充分利用了前一次的几个迭代量,避免了繁复计算。

此法主要特点是:(i)所需内存因雅可比阵的对称性大为减少;(ii)计算速度比牛顿法快40%~50%,接近快速解耦法;(iii)受病态条件影响小,比快速解耦法有更好的收敛可靠性。

最小化潮流算法

最小化潮流算法把潮流计算问题归结为求由潮流方程构成的一个目标函数的最小值间题,一般要采用数学规划方法或最小化技术。这种算法能有效的解决病态电力系统的潮流计算间题,并已得到了广泛应用,特别是可用于电力系统电压稳定问题的研究。

采用最小化算法的优点是:(i)潮流计算永不会分散,(ii)提供了给定运行条件下,潮流问题是否有解的判断标志。

特殊性质的潮流算法

直流潮流 它对系统作了以下简化假定:ij ij g b =,ij θ数值很小,i j U U ≈,略去线路

电阻及所有对地支路,并不计支路的无功潮流。因而得其数学模型:'0

P B θ=。它的优点是计算速度最快;缺点是计算精度不高,且无法计算无功Q 。

三相潮流

它是处理不对称电力系统的潮流计算方法。目前采用的方法主要有两种:(i)相分量法。直接采用abc 相坐标系统,各元件以相参数表示,各已知或待求量均

较对称系统以三倍数增加。(ii)序分量法(或对称分量法)。采用对称分量坐标,将系统各量分为正、负、零序分量,并对系统中不对称元件的序分量之间的耦合,通过加电流源补偿的方法使之解耦。

交直流联合电力系统的潮流计算

交直流联合电力系统的潮流计算是根据交流系统各节点给定的负荷和发电情况,结合直流系统指定的控制方式,通过计算来确定整个系统的运行状态它和纯交流电力系统相比,有以下特点:(i)增加直流电力系统变量,与交流电力系统变量通过换流站中交直流换流器建立联系;(ii)换流器一方面实现了交直流电力系统间的有功功率传递,另一方面又从系统中吸取无功;(iij)直流系统的运行须对各个换流器的运行控制方式加以指定,直流系统的状态量是给定的直流控制量和换流器交流端电压的函数。

主要有联合求解法和交替求解法两种计算方法,前者是将交流系统潮流方程组和直流系统的方程组联立起来,统一求解出交流及直流系统中所有未知变量。后者则将交流系统潮流方程组和直流系统的方程组分开来求解,求解直流系统方程组时各换流站的交流母线电压由交流系统潮流的解算结果提供;而在进行交流系统潮流方程组的解算时,将每个换流站处理成接在相应交流节点上的一个等效的有功、无功负荷,其数值则取自直流系统潮流的解算结果。这样交替迭代计算,直到收敛。

随机潮流

把潮流计算的已知量和待求量都作为随机变量来处理,最后求得各节点电压及支路潮流等的概率统计特性。此法最早是用直流模型,后发展为线性化的交流模型及采用最小二乘法并保留非线性的交流模型。其突出优点是通过一次计算就提供了系统运行和规划的全面信息。

除上述之外,还有其它一些用途不同的特殊潮流问题,如谐波潮流、动态潮流等,在此不一一列举。

潮流概念的推广

状态估计

实质是一种广义潮流计算。一般潮流计算时,已知量和方程式数等于未知量数。而在状态估计中,已知量和方程式数大于待求未知量数,利用冗余变量,在实际测量系统有偏差的情况下获得表征系统实际运行状态的状态量。主要方法有最小二乘估计法、支路潮流状态估计法、递推状态估计法等。

最优潮流

所谓最优潮流,就是当系统的结构参数及负荷情况给定时,通过控制变量的优选,所找到的能满足所有指定的约束条件,并使系统的某一性能指标或目标函数达到最优时的潮流分布.最优潮流计算是电力系统优化规划与运行的基础,它将成为能量管理系统(EMS)中的核心应用软件之一。其数学模型可表示为:

min (u,x)s.t.g(u,x)0h(u,x)0f ??=??≤?

(19)

选用不同的目标函数的控制变量,加上相应的约束条件,就构成不同应用目的的最优潮流问题。最优潮流的求解方法主要有:

(1)最优潮流的简化梯度算法

此法采用了简化梯度,并应用拉格朗日乘子和罚函数将等式和不等式约束加在目标函数中,从而把有约束问题变为无约束问题。优点是原理简单,设计简便。缺点是迭代点向最优点接近时走的是曲折路线,罚因子的选择比较困难。

(2)最优潮流的牛顿算法

对最优潮流问题:

min (x)s.t.g(x)0h(x)0f ??=??≤?

(20)

先不考虑不等式约束,构造拉格朗日函数:(x,)f(x)g(x)T L λλ=+,定义向量,T

Z x λ=,则应用海森矩阵法求最优解点*Z 的迭代方程为:W △z=-d ,式中:W ,d 分别为L 对于Z 的海森矩阵及梯度向量。本方法的关键是充分开发并在迭代过程中保持W 矩阵的高度稀疏性,另外在求解时采用特殊的稀疏技巧。对不等式约束的处理有两种方法:(i)罚函数法;(ii)不等式约束化为等式方程法。

(3)解耦最优潮流

把最优潮流的整体最优化问题分解为有功优化和无功优化两个子优化问题。它有一个特别的优点是容许根据两个子优化问题各自的特性而采用不同的求解方法。

3 几种新型的潮流计算方法

潮流计算的人工智能方法

近年来,人工智能作为一种新兴的方法,越来越广泛的应用到电力系统潮流计算中。该方法不像传统方法那样依赖于精确的数学模型,这种方法只能基于对自然界和人类本身活动的有效类比而获得启示。具有代表性的有遗传法、模拟退

火法、粒子群优化算法等。

遗传算法是20世纪80年代出现的新型优化算法,近年来迅速发展,它的机理源于自然界中生物进化的选择和遗传,通过选择(Selection)、杂交(Crossover)和变异(Mutation)等核心操作,实现“优胜劣汰”。遗传算法优点是具有很好的全局寻优能力,优化结果普遍比传统优化方法好。缺点是计算量比较大,计算时间长。

模拟退火算法是基于热力学原理建立的随机搜索算法,也可以视为一种进化优化方法,是一种有效的通用启发式随机搜索方法。算法思想来源于固体退火原理:将固体加温至充分高温,再让其徐徐冷却,加温时固体内部粒子随温升变为无序状态,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。其算法原理比较简单,只是对常规的迭代寻优算法进行一点修正,允许以一定的概率接受比前次稍差的解作为当前解。

粒子群优化算法源自对群鸟捕食行为的研究,本质上属于迭代的随机搜索算法,具有并行处理特征,鲁棒性好,易于实现。该算法原理上可以以较大的概括找到优化问题的全局最优解,计算效率较高,已成功地应用于求解电力系统中各种复杂的优化问题。

人工智能方法的优点是:

(1)与导数无关性。工程上很多优化问题的目标函数是不可导的,若采取前一类方法只能对其进行假设和近似,这显然影响到解的真实性。若采取非导数优化方法,则不需要知道函数的导数信息,只依赖于对目标函数的重复求值运算;

(2)随机性,容易跳出局部极值点,它们是一类全局优化算法,特别适用于非线性大规模问题以及问题的解空间分布不规则的情况;

(3)内在并行性,它的操作对象是一组可行解,而非单个可行解,搜索轨道有多条,而非单条,这种内在的可并行处理性大大提高了处理复杂优化问题的速度,对其内在并行性的开发可在一定程度上克服其性能上的不足。

其缺点是:表现不稳定,算法在同一问题的不同实例计算中会有不同的效果,造成计算结果的可信度不高;按概率进行操作,不能保证百分之百获得最优解,通常得到的解是与最优解很接近的次最优解;算法中的某些控制参数需要凭经验人为地给出,需要一定量的试验或专家经验。

3. 2 基于L1范数和现代内点理论的电力系统潮流计算方法

一般潮流计算采用迭代的计算方法。然而,这些直接迭代求解的方法有一个共同的缺点:病态潮流计算问题。在一些病态电力系统的计算中,算法常常出现振荡和不收敛的现象。针对上述情况,研究人员提出了基于非线性规划模型的算法。该类算法在数学上可表示为求一个由潮流方程构成的目标函数最小值问题。在给定运行条件下,若潮流问题有解,则目标值为零;若潮流向题无解,则目标

值为一不为零的正值。因此,即使是在病态系统的情况下,计算过程不会发散。国内专家学者对解决此问题也进行了许多有益的探讨。

提出了一种基于内点非线性规划的潮流计算模型和算法。基于L1范数的计算原理,潮流方程的求解可以转化为求解一个新的非线性规划模型L1LF,并结合现代内点算法来进行求解。和过去的模型相比,该模型非常的简洁、直观,易于编程。与现代内点算法相结合的求解过程表现出了良好的收敛性和快速性,计算结果准确、可靠,计算各种病态系统均可良好的收敛,基于L1范数的数学规划模型将传统电力系统潮流的直接迭代求解转化为对一简单规划问题的求解后,对系统运行中各部分的控制可更加简便。增加适当的不等式约束和相关控制变,即可获得近似于最优潮流的计算模型,可方便的进行潮流计算中的调整。

3. 3 电力系统潮流计算的符号分析方法

随着电力系统规模的扩大,电力系统的实时计算问题显得日益重要,但长期以来受算法的计算效率所限,潮流计算的速度难以得到实质性的突破。根据电力网络在实际运行中的特点,结合网络图论理论提出了运用符号分析方法求解电力网络潮流的新思路,有望克服传统数值计算方法在收敛性、冗余项对消、计算机有效字长效应等方面的不足。

基于符号分析方法的潮流计算方法通过建立电力网络的拓扑模型生成拓扑网络的全部树和2-树,应用网络的k-树树支导纳乘积对电力网络的节点电压方程进行拓扑求解,进而得出所求变量(即各节点电压)的符号表达式(即关于元件参数符号的显式表达式)。这种方法避免了求解非线性方程,不必进行行列式的展开和代数余子式的计算,而且不需要写出行列式和代数余子式,克服了传统数值计算的不足。同时它还带来一个附加的好处,即在构造函数时自然地产生并行处,以及由它的拓扑性质带来的电力网络运行方式改变后计算的灵活性。这些特点将在电力系统的在线计算、静态安全分析等领域发挥明显优势。另外,传统的潮流计算方法都是纯“数值计算”,利用这些方法计算出来的结果是数字而不是函数,它们的特点是逐点进行完整的数值计算,因此不可避免地存在收敛性问题、冗余项对消问题、计算机有效字长效应问题和相近数值求差时发生的浮点运算误差问题。

基于符号分析方法的潮流计算方法在电力系统在线静态安全分析、短路计算、灵敏度计算等领域中也可推广使用。

4 配电系统潮流计算算法的研究

线性规划

线性规划是数学规划的一个重要分支,它在理论和实践上都比较成熟,因而,在二十世纪十年代以前,线性规划发展很快,在配电系统经济运行、水库调度以及物资合理调运等方面,都得到了应用。

线性规划法是在一组线性约束条件下,寻找线性目标函数的最大值或最小值的优化方法。对于配电系统潮流计算问题,线性规划方法一般将非线性方程和约束使用泰勒级数近似线性化处理,或将目标函数分段线性化。它用非负变量的线性化形式来处理问题的目标函数和约束条件,线性规划解配电系统优化问题,是将问题的目标函数和约束条件线性化,并把注意力集中在顶点,有步骤地在顶点中寻优,从而保证了最优值的唯一性。这是一个很重要的特性。

一般线性规划问题用矩阵表示如下:

min ..0CX s t AX b X ??=??≥?

(21)

其中A 是m×n 矩阵,C 是n 维行向量,b 是n 维行列向量。

线性规划求解配电系统潮流计算又分为单纯形法和对偶单纯形法、混合整数规划法。

(1) 单纯形法和对偶单纯形法

求解线性规划问题最基本的方法是单纯形法和对偶单纯形法。单纯形法的基本思路是从一个基本可行解出发,求一个使目标函数有所改善的基本可行解;通过不断改进基本可行解,力图达到最优基本可行解。它是G. B. Dantzig 在1947年提出来的,后来许多学者又对其进行了改进,如修正单纯形法。修正单纯形法的基本思路是给定初始基本可行解后,通过修改旧基的逆来获得新基的逆,进而完成单纯形法的其他运算。对偶单纯形的基本思路是从原问题的一个对偶可行的基本解出发,求改进的对偶可行的基本解,当得到的对偶可行的基本解是原问题的可行解时,就达到最优解。在使用单纯形法和对偶单纯形法求解线性规划问题时,每次迭代都要把整个表格重新计算一遍,不必要地计算了许多与迭代过程无关的数据,从而使计算机的存贮量大,计算量也大。文献[3]研究了线性规划对偶单纯形法的改进。通过改进原始的单纯形法思想,建立了标准型线性规划对偶单纯形法的一种改进算法。与原对偶单纯形法相比,改进算法的存贮量和计算量大大减少。文献[4]给出了一种可以避免退化情况的单纯型方法和对偶单纯型方法。

(2) 混合整数规划法

除目标函数和约束函数是线性函数外,决策变量部分是整数值,则称此类问题为混合整数规划。在配电系统中既存在像发电机输出功率、节点电压等连续变量,又存在像变压器变比、可调电容等离散变量,因而潮流计算也属于混合整数

规划问题。这类方法求解的难点在于离散变量的处理。

对于潮流计算问题,线性规划方法一般利用泰勒级数对非线性方程和约束条件做近似线性化处理,或将目标函数分段线性化。线性化以后,求解可以用改进的单纯形法或对偶线性规划法。这对于严格的凸函数优化线性规划方法很有效果,但对有功无功耦合的目标函数优化,尤其是对以网损最小化为目标的优化效果不好,加之在潮流计算问题中,要考虑的等式约束方程,即每个节点的有功和无功功率注入平衡方程是典型的非线性方程,因此在耦合的潮流计算问题中较少使用线性规划法求解。但由于有功潮流可以以很好的精度线性化,而配电系统经济调度主要对发电厂有功进行分配,因此线性规划方法能够在安全约束经济调度中广泛地应用。

非线性规划

一般的非线性规划问题可描述为满足非线性约束条件的非线性函数的最小值问题,非线性规划是配电系统最优运行最早使用的一类最优化方法,因为它所描述的结构与电网络的物理模型结构很相似。该方法解法较多,很多在实际应用中已用于解决实时在线和离线运行等问题。

非线性规划法是在等式约束条件或不等式约束条件下优化目标函数,其中等式约束、不等式约束或目标函数至少有一个为非线性函数。它的一般形式可以写成:

min f(x) ..

s t AX b

Ex e ??

=?

?

=?

(22)

其中f(x)为目标函数,A为m×n矩阵,E为l×n矩阵,b和e分别为m维和l维列向量。在非线性规划方法中,最突出的几种方法是简化梯度法、牛顿法和内点法。二次规划法是非线性规划方法中的特殊情况。

二次规划

二次规划是一种特定形式的非线性规划,其目标函数是二次的,约束是线性的。相对于非线性规划来说,二次规划的形式比较简单,但也可大致地反映配电系统的物理特性,并且其Hessian矩阵是常数矩阵,一阶偏导数矩阵是线性的,这对于解潮流计算是很有利的条件。此外,二次规划还可以转化为线性规划问题来解算。这都使问题得以简化。

二次规划法与非线性规划还是有许多相似之处:精度比较高,但对大型系统的收敛性比较差。而且在许多地方,二次规划法还不如非线性规划。

5 结束语

本文简要列举了几种常用及特殊的潮流计算方法,但到目前为止,牛顿-拉夫逊仍然不失为最基本、最重要的一种算法。它是其它一些派生算法的基础,其快速的收敛性和良好的收敛可靠性,使它在单纯的潮流计算以及在优化、稳定等程序的应用中,继续占有重要的地位。其它的算法各有特点,但算法之间都互相补充。虽然经过三十多年的发展,潮流算法已比较成熟。但是,仍存在不少尚待解决的问题,例如:(i)各种牛顿法潮流算法,对于某些病态条件可能导致不收敛的问题;(ii)潮流计算的多解现象及其机理;(iii)在重负荷情况下,邻近多根与电压不稳定问题的关联。由于最优潮流能够把系统的安全性和经济性融为一体,并能够提供用于提高系统安全经济性能的决策依据;将成为现代能量管理系统的核心应用软件之一。当前无论在实践上还是在理论上,均有许多问题需待解决,特别是如何快速求解成千上万个变量的大规模非线性规划问题。

同时,本文还列举了几种新型的电力系统潮流算法,对比常用的牛顿-拉夫逊法,快速解耦法等在收敛性、实用性、扩展性等方面都有了较大改进。但无论在理论上还是在实践上,仍然还有许多问题需要解决。

随着各种新型算法的出现,能否将新型算法和传统算法有机结合、取长补短,使得配电系统潮流计算进一步发展和完善,这将是今后研究和探讨的立足点。

参考文献

[1]夏道止.电力系统分析.2版.中国电力出版社,

[2]诸骏伟.电力系统分析.上册.北京:水利电力出版社,

[3]赵晋泉,侯志俭,吴际舜.改进潮流计算牛顿算法有效性的对策研究.中国电机

工程学报,(12),70-75.

[4]郝玉国,刘广一,于尔镫.一种基于Karmarkar内点法的潮流计算算法.中国电机

工程学报,1996,16(6),410—412.

[5]王守相,刘玉田.电力系统潮流计算研究现状.山东电力技术,1996(5):8-12

[6]秦景,牛卢璐,路一平.电力系统潮流计算的最新进展.河北建筑工程学院学

报,26(4):61-64.

[7]钟世霞,袁荣湘,内点法在电力系统中的应用评述.高电压技术, 2005, 31

[8]阳育德,韦化.基于L1范数和现代内点理论的电力系统潮流计算.广西大学学报,

2007, 32: 6

[9]罗日成,李卫国.电力系统潮流计算的符号分析方法.电网技术, 2005, 29: 10

简介几种潮流计算

简介几种潮流计算 电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算,下面简单介绍三种潮流计算方法。 一、基于多口逆向矩阵的并行潮流计算方法 多口逆向矩阵方法是求解线性方程组的普通并行方法,它只是修改了串行方法的几个部分,并且非常适用于从串行到并行的编程。该方法已用于一些电力系统并行分析方法,比如说机电暂态稳定分析和小信号稳定性,并且并行效率高。基于多口逆向矩阵方法,本文提出了一种并行牛顿潮流算法。对一个划分几个网络的大型互联系统模型的仿真结果表明这种并行算法是正确的并且效率很高。 关键词:并行潮流计算,串行潮流计算,多口逆向矩阵方法,线性方程组,电力系统分析 随着电力系统规模的扩大,尤其是区域互联网络,人们要求速度更快效率更高的功率计算,传统的串行计算越来越难满足要求,特别是对实时控制。作为电力系统的基本计算,它的效率的提高会使其他为基础的计算速度都得到提高。因为传统串行计算变的越来越难满足要求,并行计算成为提高潮流计算效率的需要。潮流计算的主要步骤是求解稀疏线性方程组,因此对并行方法的研究主要集中在线性方程组的并行求解。根据不同的实现方案,并行算法分为多因子方法、稀疏向量方法等等。多口逆向矩阵方法在各种问题中是一种求解线性方程组的通用方法。在这篇论文中,通过最常见的电力系统中的节点电压方程来说明这种方法。多口逆向矩阵法不需要在矩阵中集中调整边界点,我们根据子网的密度把矩阵分裂并且把边界节点集中在顶部,整个网络的节点电压方程组如下: 消去上矩阵中对应子网的部分,只保留边界部分。经过网络分割,边界矩阵TT Y 注入电流向量T I 被分为主控制网和各个子网。设定主控制网矩阵为 TT Y ,子网i 的为 TTi Y 。注入电流矩阵分割为子网i 为 Ti I ,即 () 31 0∑=+=k i TTi TT TT Y Y Y () 41 ∑== k i Ti T I I

潮流计算作业A4

电力系统潮流计算综述 学院:电气工程学院 专业:电力系统及其自动化 学号:s 姓名:张雪

摘要 电力系统潮流计算是电力系统分析中最基本的一项计算。本文对电力系统潮流计算进行了综述。首先简单回顾了潮流计算的发展历史,对当前基于计算机的各种潮流算法的原理及其优缺点,作了简要介绍和比较,并介绍了它们采用的一些特别技术及程序设计技巧;接着简要分析了三种新型的潮流计算方法的计算原理及优缺点,它们分别是基于人工智能的潮流计算方法、基于L1范数和现代内点理论的电力系统潮流计算方法、基于符号分析的潮流计算方法等。除此之外还介绍了配电系统潮流计算算法。 关键词:电力系统;潮流计算;综述;新型潮流计算方法;配电系统 1 概述 电力系统潮流计算是研究电力系统稳态运行的一项基本运算。它根据给定系统的网络结构及运行条件来确定整个系统的运行状态:主要是各节点电压(幅值和相角),网络中功率分布及功率损耗等。它既是对电力系统规划设计和运行方式的合理性、可靠性及经济性进行定量分析的依据,又是电力系统静态和暂态稳定计算的基础。潮流计算经历了一个由手工,利用交、直流计算台到应用数字电子计算机的发展过程。现在的潮流算法都以计算机的应用为前提。1956年ward 等人编制成实用的计算机潮流计算程序,标志着电子计算机开始在电力系统潮流计算中应用。基于导纳矩阵的高斯—塞德尔法是电力系统中最早得到应用的潮流计算方法。因它对病态条件(所谓具有病态条件的系统是指:重负荷系统;包含有负电抗支路的系统;具有较长辐射型线路的系统;长线路与短线路接在同一节点,且其长度比值又很大的系统;或平衡节点位于网络远端的系统)特别敏感,又发展了基于阻抗阵的高斯—塞德尔法,但此法中阻抗阵是满阵占大量内存,而限制了其应用。1961年VanNes等人提出用牛顿法求解系统潮流问题,经后人的不断改进,而得到广泛应用并出现了多种变型以满足不同的需要,如快速解耦法、直流法、保留非线性算法等。同时,60年代初开始出现运用非线性规划的最优潮流算法。60年代末Dom-8mel和Tinney提出最优潮流的简化梯度法,70年代有人提出海森矩阵法,80年代SunDl提出最优潮流牛顿算法,还可把解耦技术应用于最优潮流,从而形成解耦型最优潮流牛顿算法,还可把解祸技术应用于最优潮流,从而形成解耦型最优潮流牛顿算法。随着直流输电技术的发展,交直流联合电力系统的潮流计算方法相应出现。另外,其它各种潮流算法如最小化潮流算法、随机潮流算法等也不断涌现。至于用于特殊用途的潮流算法如谐波潮流、适于低压配电网的潮流算法也得到了较快的发展。 潮流算法多种多样,但一般要满足四个基本要求:(i)可靠收敛;(ii)计算速度

潮流计算系统

潮流计算系统是根据电网的结构和参数以及系统的运行状态,运用负荷点吸收和电源点发出的有功和无功功率(PQ节点)、电压控制点的电压幅值和有功功率(PV节点)、平衡点的电压幅值和相角(Vq节点)值,来计算电网中的功率、电压、电流的分布以及各元件的功率损耗、电压损耗的过程。 潮流计算主要用于研究系统运行中:负荷变化和网络结构改变会不会危及系统安全,系统各母线电压是否在允许范围之内,系统各元件(线路、变压器等)是否过负荷,对可能出现的过负荷,事先应采取哪些预防措施,检验所提的规划方案是否满足各种运行方式的要求。另外潮流计算是系统分析计算的基础,为稳定计算提供初始运行方式。短路计算也需要以不同的潮流方式做支持。 本系统可以很直观的将电网中的潮流流向,各元件的损耗在图形中显示出来,还可以输出全网损耗表、潮流计算结果表、各元件潮流损失明细表以及各种分析报表,为我们的日常工作提供可靠的理论依据。

软件功能及特点 1. 软件功能实现智能化。 图形分层显示。只需输入变电站名称,变压器及母线名称自动生成,如有多台变压器,系统将自动给出其编号。 导线名称根据变电站名称自动生成;变电站内最高电压等级母线的颜色自动赋予该变电站;母线颜色自动赋予与其相连的导线。 图形中各设备的参数自动和图形保存在一起,方便在多台计算机上操作。图形从一台计算机复制到另外一台计算机时,如果本系统数据库中没有某型号设备的名牌参数,系统自动从图形中提取该型号设备的名牌参数,并保存到本系统数据库中,保证计算能顺利进行。 变压器能够自动分辨与其三侧相连母线的电压等级。 根据导线和变压器开关、刀闸的开、闭状态,系统自动分析此设备是否带电并给出相应的状态,并用相应的颜色标识。 1.智能动态显示有功和无功的真实潮流流向。 2. 可实现大图的分页打印,可以把全网图、变电站结构图打印成册,打印效果精确细腻。 3. 元件库和程序分离,操作者可以根据习惯自行定义。 4. 增加单独绘制图形模板功能,可绘制出变电站、母线、间隔等结构图形模板,再次增加此类图形时,可直接从模板中提取,大大提高工作效率。 5. 采用热点吸附技术。绘图时能够自动寻找热点并与其连接。 6.方便高效的图形输入平台,自动拓扑分析,图模自动转换。 7.可以输入名牌值、有名值或标幺值,也可以混合输入。 8.可以分片、分组进行计算,分片、分组显示计算结果潮流图,可通过打印机、绘图仪输出。 9.数据可以通过图形直接录入。也可以通过电子表格到入数据库。 10. 计算结果可以进行分压、分片、分组统计,可以得到变压器、导线、等元器件的详细损失情况。 11.各种输出报表均可导出Excel格式文件,方便进行数据的二次处理。 12.图形导航功能,便于整图的查找和定位。

电力系统潮流计算课程设计报告

课程设计报告 学生姓名:学号: 学院:电气工程学院 班级: 题目: 电力系统潮流计算 职称: 副教授 指导教师:李翠萍职称: 副教授 2014年 01月10日

1 潮流计算的目的与意义 潮流计算的目的:已知电网的接线方式与参数及运行条件,计算电力系统稳态运行各母线电压、个支路电流与功率及网损。对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。潮流计算还可以为继电保护和自动装置定整计算、电力系统故障计算和稳定计算等提供原始数据。 潮流计算的意义: (1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。 (2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。 (3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。 (4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。 2 潮流计算数学模型 1.变压器的数学模型: 变压器忽略对地支路等值电路:

2.输电线的数学模型: π型等值电路: 3 数值方法与计算流程 利用牛顿拉夫逊法进行求解,用MATLAB 软件编程,可以求解系统潮流分 布根据题目的不同要求对参数进行调整,通过调节变压器变比和发电厂的电压,求解出合理的潮流分布,最后用matpower 进行潮流分析,将两者进行比较。 牛顿—拉夫逊法 1、牛顿—拉夫逊法概要 首先对一般的牛顿—拉夫逊法作一简单的说明。已知一个变量X 函数为: 0)(=X f 到此方程时,由适当的近似值) 0(X 出发,根据: ,......)2,1() ()() ()() () 1(='-=+n X f X f X X n n n n 反复进行计算,当) (n X 满足适当的收敛条件就是上面方程的根。这样的方 法就是所谓的牛顿—拉夫逊法。 这一方法还可以做下面的解释,设第n 次迭代得到的解语真值之差,即) (n X 的误差为ε时,则: 0)()(=+εn X f 把)() (ε+n X f 在) (n X 附近对ε用泰勒级数展开 0......)(! 2)()()()(2 )() () (=+''+ '+=+n n n n X f X f X f X f εεε 上式省略去2ε以后部分 0)()()()(≈'+n n X f X f ε

潮流计算(matlab)实例计算

潮流例题:根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。 2.在给定的电力网络上画出等值电路图。 3.运用计算机进行潮流计算。 4.编写设计说明书。 一、设计原理 1.牛顿-拉夫逊原理 牛顿迭代法是取x0 之后,在这个基础上,找到比x0 更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新

的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。 牛顿—拉夫逊迭代法的一般步骤: (1)形成各节点导纳矩阵Y。 (2)设个节点电压的初始值U和相角初始值e 还有迭代次数初值为0。 (3)计算各个节点的功率不平衡量。 (4)根据收敛条件判断是否满足,若不满足则向下进行。 (5)计算雅可比矩阵中的各元素。 (6)修正方程式个节点电压 (7)利用新值自第(3)步开始进入下一次迭代,直至达到精度退出循环。 (8)计算平衡节点输出功率和各线路功率 2.网络节点的优化 1)静态地按最少出线支路数编号 这种方法由称为静态优化法。在编号以前。首先统计电力网络个节点的出线支路数,然后,按出线支路数有少到多的节点顺序编号。当由n 个节点的出线支路相同时,则可以按任意次序对这n 个节点进行编号。这种编号方法的根据是导纳矩阵中,出线支路数最少的节点所对应的行中非零元素也2)动态地按增加出线支路数最少编号在上述的方法中,各节点的出线支路数是按原始网络统计出来的,在编号过程中认为固定不变的,事实上,在节点消去过程中,每消去一个节点以后,与该节点相连的各节点的出线支路数将发生变化(增加,减少或保持不变)。因此,如果每消去一个节点后,立即修正尚未编号节点的出线支路数,然后选其中支路数最少的一个节点进行编号,就可以预期得到更好的效果,动态按最少出线支路数编号方法的特点就是按出线最少原则编号时考虑了消去过程中各节点出线支路数目的变动情况。 3.MATLAB编程应用 Matlab 是“Matrix Laboratory”的缩写,主要包括:一般数值分析,矩阵运算、数字信号处理、建模、系统控制、优化和图形显示等应用程序。由于使用Matlab 编程运算与人进行科学计算的思路和表达方式完全一致,所以不像学习高级语言那样难于掌握,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美的图形拷贝,所以它的确为一高效的科研助手。 二、设计内容 1.设计流程图

电力系统潮流计算实验报告

1. 手算过程 已知: 节点1:PQ 节点, s(1)= -0.5000-j0.3500 节点2:PV 节点, p(2)=0.4000 v(2)=1.0500 节点3:平衡节点,U(3)=1.0000∠0.0000 网络的连接图: 0.0500+j0.2000 1 0.0500+j0.2000 2 3 1)计算节点导纳矩阵 由2000.00500.012j Z += ? 71.418.112j y -=; 2000.00500.013j Z += ? 71.418.113j y -=; ∴导纳矩阵中的各元素: 42.936.271.418.171.418.1131211j j j y y Y -=-+-=+=; 71.418.11212j y Y +-=-=; 71.418.11313j y Y +-=-=; =21Y 71.418.11212j y Y +-=-=; 71.418.12122j y Y -==; 002323j y Y +=-=; =31Y 71.418.11313j y Y +-=-=; =32Y 002323j y Y +=-=; 71.418.13133j y Y -==; ∴形成导纳矩阵B Y : ?? ?? ? ?????-++-+-+-+-+--=71.418.10071.418.10071.418.171.418.171.418.171.418.142.936.2j j j j j j j j j Y B 2)计算各PQ 、PV 节点功率的不平衡量,及PV 节点电压的不平衡量: 取:000.0000.1)0(1)0(1)0(1j jf e U +=+= 000.0000.1)0(2) 0(2)0(2j jf e U +=+= 节点3是平衡节点,保持000.0000.1333j jf e U +=+=为定值。 ()()[] ∑==++-=n j j j ij j ij i j ij j ij i i e B f G f f B e G e P 1 )0()0()0()0()0()0() 0(;

电力系统分析潮流计算例题

电力系统的潮流计算 西安交通大学自动化学院 2012.10 3.1 电网结构如图3—11所示,其额定电压为10KV 。已知各节点的负荷功率及参数: MVA j S )2.03.0(2 +=, MVA j S )3.05.0(3+=, MVA j S )15.02.0(4+= Ω+=)4.22.1(12j Z ,Ω+=)0.20.1(23j Z ,Ω+=)0.35.1(24j Z 试求电压和功率分布。 解:(1)先假设各节点电压均为额定电压,求线路始端功率。 0068.00034.0)21(103.05.0)(2 2223232232323j j jX R V Q P S N +=++=++=?0019.00009.0)35.1(10 15.02.0)(2 2 224242242424j j jX R V Q P S N +=++=++=?

则: 3068.05034.023323j S S S +=?+= 1519.02009.024424j S S S +=?+= 6587.00043.122423' 12 j S S S S +=++= 又 0346 .00173.0)4.22.1(106587.00043.1)(2 2 212122'12'1212j j jX R V Q P S N +=++=++=? 故: 6933.00216.112'1212 j S S S +=?+= (2) 再用已知的线路始端电压kV V 5.101 =及上述求得的线路始端功率 12 S ,求出线 路 各 点 电 压 。

kV V X Q R P V 2752.05 .104.26933.02.10216.1)(11212121212=?+?=+=? kV V V V 2248.101212=?-≈ kV V V V kV V X Q R P V 1508.100740.0) (24242 2424242424=?-≈?=+=? kV V V V kV V X Q R P V 1156.101092.0) (23232 2323232323=?-≈?=+=? (3)根据上述求得的线路各点电压,重新计算各线路的功率损耗和线路始端功率。 0066.00033.0)21(12.103.05.02 2 223j j S +=++=? 0018.00009.0)35.1(15 .1015.02.02 2 224j j S +=++=? 故 3066.05033.023323j S S S +=?+= 1518.02009.024424j S S S +=?+= 则 6584.00042.122423' 12 j S S S S +=++= 又 0331.00166.0)4.22.1(22 .106584.00042.12 2 212j j S +=++=? 从而可得线路始端功率 6915.00208.112 j S +=

潮流计算的相关问题2011

§4.5牛顿-拉夫逊法计算潮流有关问题 一、初值、收敛性和多值解 1.初值:初值选择不好,比较大,破坏了牛顿 法的基础,不收敛。选择的原则。 2.收敛性:牛顿-拉夫逊法具有平方收敛特性,高斯-塞德尔法、PQ 分解法为一阶收敛特性。 X Δ

3.多值解 对于非线性方程组,解的可能性有: ?有实际意义的解 ?有解,但在实际中无意义 (PV节点或平衡节点的无功功率超过允许值,平衡节点 的有功功率超过允许值;节点的电压过高或过低) 对策:调整运行参数,PV节点、PQ节点相互转化 ?无解,或无实数解 给定的网络结构和运行方式不合理;PV节点数目过少 对策:调整运行方式,增加PV节点 z问题很复杂,至今尚未很好解决

二、稀疏矩阵技术 1.稀疏矩阵表示法 ?节点导纳矩阵:高度稀疏的N阶复数对称方阵。因此记录矩阵的下三角。 用数组表示 数组1:记录矩阵对角元素的数值; 数组2:记录矩阵非对角元素的数值(按列存储); 数组3:记录矩阵非对角元素的行号; 数组4:记录矩阵非对角元素的按行排的位置数;

?雅可比矩阵:高度稀疏的2N阶实数方阵,其形式对称但数值不对称。其稀疏程度与节点导纳矩阵相同,可根据节点导纳矩阵形成。

2.高斯消去法 求解牛顿-拉夫逊法潮流计算的修正方程,可以采用矩阵求逆的方法。但是由于潮流计算的雅可比矩阵通常是一个高度稀疏的矩阵,其逆阵则是一个满矩阵,因此用求逆的方法会增加额外的存储单元和计算工作量。而用高斯消去法则可以保持方程组原有的稀疏性,可以大大减少计算所需的内存和时间。

3.节点的优化编号 ?静态优化法:按静态联结支路数的多少编号。 统计好网络中各节点联结的支路数后,按联结支路数的多少,由少到多,顺序编号。 ?半动态优化法:按动态联结支路数的多少编号。 先只编一个联结支路数最小的节点号,并立即将其消去;再编消去第一个节点后联结支路数最小的节点号,再立即将其消去……依此类推。 ?动态优化法:按动态增加支路数的多少编号。 不首先进行节点编号,而是寻找消去后出现的新支路数最少的节点,并为其编号,且立即将其消去; 然后再寻找第二个消去后出现的新支路数最少的节 点并为其编号,再立即将其消去……依此类推。

潮流计算问答题

1.什么是潮流计算?潮流计算的主要作用有哪些? 潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。 对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。潮流计算还可以为继电保护和自动装置整定计算、电力系统故障计算和稳定计算等提供原始数据。 2.潮流计算有哪些待求量、已知量? (已知量: 电力系统网络结构、参数; 决定系统运行状态的边界条件 待求量:系统稳态运行状态 例如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等)通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。 待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。 3.潮流计算节点分成哪几类?分类根据是什么? (分成三类:PQ节点、PV节点和平衡节点,分类依据是给定变量的不同) PV节点(电压控制母线):有功功率Pi和电压幅值Ui为给定。这种类型节点相当于发电机母线节点,或者相当于一个装有调相机或静止补偿器的变电所母线。 PQ节点:注入有功功率Pi和无功功率Qi是给定的。相当于实际电力系统中的一个负荷节点,或有功和无功功率给定的发电机母线。 平衡节点:用来平衡全电网的功率。平衡节点的电压幅值Ui和相角δi是给定的,通常以它的相角为参考点,即取其电压相角为零。 一个独立的电力网中只设一个平衡节点。 4.教材牛顿-拉夫逊法及有功-无功分解法是基于何种电路方程?可否采用其它类型方程? 基于节点电压方程,还可以采用回路电流方程和割集电压方程等。但是后两者不常用。

第3章作业答案电力系统潮流计算(已修订)复习过程

第三章 电力系统的潮流计算 3-1 电力系统潮流计算就是对给定的系统运行条件确定系统的运行状态。系 统运行条件是指发电机组发出的有功功率和无功功率(或极端电压),负荷的有 功功率和无功功率等。运行状态是指系统中所有母线(或称节点)电压的幅值和 相位,所有线路的功率分布和功率损耗等。 3-2 电压降落是指元件首末端两点电压的相量差。 电压损耗是两点间电压绝对值之差。当两点电压之间的相角差不大时, 可以近似地认为电压损耗等于电压降落的纵分量。 电压偏移是指网络中某点的实际电压同网络该处的额定电压之差。电压 偏移可以用kV 表示,也可以用额定电压的百分数表示。 电压偏移= %100?-N N V V V 功率损耗包括电流通过元件的电阻和等值电抗时产生的功率损耗和电压 施加于元件的对地等值导纳时产生的损耗。 输电效率是是线路末端输出的有功功率2P 与线路首端输入的有功功率 1P 之比。 输电效率= %1001 2 ?P P 3-3 网络元件的电压降落可以表示为 ()? ? ? ? ? +=+=-2221V V I jX R V V δ? 式中,?2V ?和? 2V δ分别称为电压降落的纵分量和横分量。 从电压降落的公式可见,不论从元件的哪一端计算,电压降落的纵、横分量计算公式的结构都是一样的,元件两端的电压幅值差主要有电压降落的纵分量决定,电压的相角差则由横分量决定。在高压输电线路中,电抗要远远大于电阻,即R X ??,作为极端的情况,令0=R ,便得 V QX V /=?,V PX V /=δ 上式说明,在纯电抗元件中,电压降落的纵分量是因传送无功功率而产生的,而电压降落的横分量则是因为传送有功功率产生的。换句话说,元件两端存在电压幅值差是传送无功功率的条件,存在电压相角差则是传送有功功率的条件。 3-4 求解已知首端电压和末端功率潮流计算问题的思路是,将该问题转化成 已知同侧电压和功率的潮流计算问题。

潮流计算报告

一、系统结构图: 二、网络参数:、支路参数:1网络装机导线的技术参数电压支路容量类型b等级1xr编号(Ω)(Ω) (MW) 11)(kV () 1-2 13.6 125.5 67.85 52.24 130.5 1-3 8.321 100 环 74.99 3-5 128.8 10.2 220 网28.36 8.5 105.4 2-3 51.45 7.579 129.6 1-4 2.78 1 3.84 4-5 125.31 ——4 2 ——1-2

2、节点参数: 4+2i 0 2 辐6+3.2i 3 0 射3+1.44i 4 0 网4+3.2i 5 0 2+1.1i 6 :三、潮流计算流程图

四、matlab程序: clear;输入所需的额定电压%请输入'Un:'); Un=input(PQ=[无功有功 %节点电压 Un 0 0Un 4 2 Un 6 3.2Un 3 1.44Un 4 3.2. Un 2 1.1 ];FT=[末端%首端 4 33 26 55 22 1];RX=[% R X 4 83 64 41 2 2 4]; 节点数%NN=size(PQ,1); 支路数数NB=size(FT,1); %初始电压相量%V V=PQ(:,1); maxd=1k=1 maxd>0.0001while k=k+1;每一次迭代各节点的注入有功和无功相同 PQ2=PQ; % PL=0.0; i=1:NB for前推始节点号% kf=FT(i,1); 前推终节点号% kt=FT(i,2); A平方计算沿线电流 / x=(PQ2(kf,2)^2+PQ2(kf,3)^2)/V(kf)/V(kf);% /MW 计算线路有功损耗 losss(i,1)=RX(i,1)*x; %/MW 计算线路无功损耗 losss(i,2)=RX(i,2)*x; %/MW RX(i,1)*R%计算支路首端有功 PQ1(i,1)=PQ2(kf,2)+RX(i,1)*x; /MW RX(i,2)*X%计算沿支路的无功 PQ1(i,2)=PQ2(kf,3)+RX(i,2)*x; PQ2(kt,2)= PQ2(kt,2)+PQ1(i,1); %用PQ1去修正支路末端节点的有功P 单MW位PQ2(kt,3)= PQ2(kt,3)+PQ1(i,2); %用PQ1去修正支路末端节点的有功Q 单Mvar位end angle(1)=0.0; i=NB:-1:1for回代始节点号 kf=FT(i,2); %回代终节点号

(完整word版)9节点电力系统潮流计算

电力系统分析课程设计 设计题目9节点电力网络潮流计算 指导教师 院(系、部)电气与控制工程学院 专业班级 学号 姓名 日期

电气工程系课程设计标准评分模板

目录 1 PSASP软件简介 (1) 1.1 PSASP平台的主要功能和特点 (1) 1.2 PSASP的平台组成 (2) 2 牛顿拉夫逊潮流计算简介 (3) 2.1 牛顿—拉夫逊法概要 (3) 2.2 直角坐标下的牛顿—拉夫逊潮流计算 (5) 2.3 牛顿—拉夫逊潮流计算的方法 (6) 3 九节点系统单线图及元件数据 (7) 3.1 九节点系统单线图 (7) 3.2 系统各项元件的数据 (8) 4 潮流计算的结果 (10) 4.1 潮流计算后的单线图 (10) 4.2 潮流计算结果输出表格 (10) 5 结论 (14)

电力系统分析课程设计任务书9节点系统单线图如下: 基本数据如下:

表3 两绕组变压器数据 负荷数据

1 PSASP软件简介 “电力系统分析综合程序”(Power System Analysis Software Package,PSASP)是一套历史悠久、功能强大、使用方便的电力系统分析程序,是高度集成和开发具有我国自主知识产权的大型软件包。 基于电网基础数据库、固定模型库以及用户自定义模型库的支持,PSASP可进行电力系统(输电、供电和配电系统)的各种计算分析,目前包括十多个计算机模块,PSASP的计算功能还在不断发展、完善和扩充。 为了便于用户使用以及程序功能扩充,在PSASP7.0中设计和开发了图模一体化支持平台,应用该平台可以方便地建立电网分析的各种数据,绘制所需要的各种电网图形(单线图、地理位置接线图、厂站主接线图等);该平台服务于PSASP 的各种计算,在此之外可以进行各种分析计算,并输出各种计算结果。 1.1PSASP平台的主要功能和特点 PSASP图模一体化支持平台的主要功能和特点可概括为: 1. 图模支持平台具备MDI多文档操作界面,是一个单线图图形绘制、元件数据录入编辑、各种计算功能、结果显示、报表和曲线输出的集成环境。用户可以方便地建立电网数据、绘制电网图形、惊醒各种分析计算。人机交互界面全部汉化,界面良好,操作方便。 2. 真正的实现了图模一体化。可边绘图边建数据,也可以在数据已知的情况下进行图形自动快速绘制;图形、数据自动对应,所见即所得。 3. 应用该平台可以绘制各种电网图形,包括单线图、地理位置接线图、厂站主接线图等。 ●所有图形独立于各种分析计算,并为各计算模块所共享; ●可在图形上进行各种计算操作,并在图上显示各种计算结果; ●同一系统可对应多套单线图,多层子图嵌套; ●单线图上可细化到厂站主接线结构;

潮流计算报告教材

一、系统结构图: 二、网络参数: 网络 类型 支路 编号 电压 等级 (kV) 装机 容量 (MW) 导线的技术参数 1 r(Ω) 1 x(Ω)1 b () 环网1-2 220 100 13.6 125.5 67.85 1-3 8.321 130.5 52.24 3-5 10.2 128.8 74.99 2-3 8.5 105.4 28.36 1-4 7.579 129.6 51.45 4-5 13.84 125.31 2.78 辐射网1-2 ———— 2 4 ——2-3 3 6 3-4 4 8 2-5 1 2 5-6 4 4 节点类型节点编 号 发电功 率(MW) 负荷视在功率 1 0 未知(平衡节点)

环网2 100 0(PV节点) 3 0 15+9.4i 4 0 27+6i 5 0 35.5+25.5i 辐射网1 0 未知(平衡节点) 2 0 4+2i 3 0 6+3.2i 4 0 3+1.44i 5 0 4+3.2i 6 0 2+1.1i

四、matlab程序: clear; Un=input('请输入Un:'); %输入所需的额定电压PQ=[ %节点电压有功无功 Un 0 0 Un 4 2 Un 6 3.2 Un 3 1.44 Un 4 3.2 Un 2 1.1 ]; FT=[ %首端末端 4 3 3 2

6 5 5 2 2 1 ]; RX=[ % R X 4 8 3 6 4 4 1 2 2 4 ]; NN=size(PQ,1); %节点数 NB=size(FT,1); %支路数数 V=PQ(:,1); %V初始电压相量 maxd=1 k=1 while maxd>0.0001 k=k+1; PQ2=PQ; %每一次迭代各节点的注入有功和无功相同 PL=0.0; for i=1:NB kf=FT(i,1); %前推始节点号 kt=FT(i,2); %前推终节点号 x=(PQ2(kf,2)^2+PQ2(kf,3)^2)/V(kf)/V(kf);%计算沿线电流 /平方A losss(i,1)=RX(i,1)*x; %计算线路有功损耗 /MW losss(i,2)=RX(i,2)*x; %计算线路无功损耗/MW PQ1(i,1)=PQ2(kf,2)+RX(i,1)*x; %计算支路首端有功/MW RX(i,1)*R PQ1(i,2)=PQ2(kf,3)+RX(i,2)*x; %计算沿支路的无功/MW RX(i,2)*X PQ2(kt,2)= PQ2(kt,2)+PQ1(i,1); %用PQ1去修正支路末端节点的有功P 单位MW PQ2(kt,3)= PQ2(kt,3)+PQ1(i,2); %用PQ1去修正支路末端节点的有功Q 单位Mvar end angle(1)=0.0; for i=NB:-1:1 kf=FT(i,2); %回代始节点号 kt=FT(i,1); %回代终节点号 dv1=(PQ1(i,1)*RX(i,1)+PQ1(i,2)*RX(i,2))/V(kf); %计算支路电压损耗的纵分量dv1 dv2=(PQ1(i,1)*RX(i,2)-PQ1(i,2)*RX(i,1))/V(kf); %计算支路电压损耗的横分量dv2

简单辐射型网络潮流计算

家里蹲大学 电力系统稳态课程设计 题目名称:电力系统潮流计算 系别:物理与电气工程系 专业:电气工程及其自动化 学号: 姓名: qq 2316670882 指导老师:要仿真文件联系我 日期: 2014年6月3日

电力系统稳态课程设计任务书 主要内容: 一、课程设计目的 1.掌握电力系统潮流计算的基本原理; 2.掌握并能熟练运用PWS 仿真软件; 3.采用PWS 软件,做出系统接线图的潮流计算仿真结果; 二、课程设计任务 110KV 系统结线如图所示,图1中,发电厂A 装有额定功率为25+j18的发电机一台,满载运行,除供应发电机电压负荷12+j10MV A ,余下均通过两台7SF -1000/110型变压器输入系统。变压器变比为121/6.3KV 。 图1 系统结线图 变电所I 装设有两台7SF -16000/110型变压器,变比为115.5/11KV ,有如下试验数据: K P =86KW; K U %=10.5 0P =23.5KW; 0 I %=0.9 变电所II 装设有一台7SF -10000/11型变压器,变比为110/10KV ,有如下试验数据: K P =59KW; K U %=10.5 0P =16.5KW; 0I %=1.0 发电厂A 装设的两台7SF -10000/11型变压器的试验数据与变电所II 的变压器相同。 各变电所负荷、线路长度和所选导线均已示于图1。设图中与等值系统S 连接处母线电压为116KV ,试求各变电所和发电厂低压母线线电压。

基本要求: 1、按学校规定的格式编写设计论文。 2、论文主要内容有: ①课题名称。 ②设计任务和要求。 ③手算潮流和PWS的应用以及仿真结果。 ④收获体会、存在问题和进一步的改进意见等。 参考资料: [1] 何仰赞、温增银.电力系统分析[M]. 华中科技大学出版社2010.3 [2] 西安交通大学等.电力系统计算[M].北京:水利电力出版社,1993.12 [3] 陈衍.电力系统稳态分析[M].北京:水利电力出版社,2004.1 [4] 李光琦.电力系统暂态分析[M].北京:水利电力出版社,2002.5 [5] 于永源,杨绮雯. 电力系统分析(第二版)[M]. 北京:中国电力出版社,2004.3

电力系统分析潮流计算大作业

电力系统分析潮流计算大作业(源程序及实验报告)

源程序如下: 采用直角坐标系的牛顿-拉夫逊迭代 function chaoliujisuan() m=3; %m=PQ节点个数 v=1;%v=PV节点个数 P=[-0.8055 -0.18 0]; %P=PQ节点的P值 Q=[-0.5320 -0.12 0]; %Q=PQ节点的Q值 PP=[0.5];%PP=PV节点的P值 V=[1.0];%V=PV节点的U值 E=[1 1 1 1.0 1.0]'; %E=PQ,PV,Vθ节点e的初值 F=[0 0 0 0 0]'; %F=PQ,PV,Vθ节点f的初值 G=[ 6.3110 -3.5587 -2.7523 0 0; -3.5587 8.5587 -5 0 0; -2.7523 -5 7.7523 0 0; 0 0 0 0 0; 0 0 0 0 0 ]; B=[ -20.4022 11.3879 9.1743 0 0; 11.3879 -31.00937 15 4.9889 0; 9.1743 15 -28.7757 0 4.9889; 0 4.9889 0 5.2493 0; 0 0 4.9889 0 -5.2493 ]; Y=G+j*B; X=[]; %X=△X n=m+v+1;%总的节点数 FX=ones(2*n-2,1);%F(x)矩阵 F1=zeros(n-1,n-1);%F(x)导数矩阵 a=0;%记录迭代次数 EF=zeros(n-1,n-1);%最后的节点电压矩阵 while max(FX)>=10^(-5) for i=1:m %PQ节点 FX(i)=P(i);%△P FX(n+i-1)=Q(i);%△Q for w=1:n FX(i)= FX(i)-E(i)*G(i,w)*E(w)+E(i)*B(i,w)*F(w)-F(i)*G(i,w)*F(w)-F(i)*B(i,w)*E(w); %△P FX(n+i-1)=FX(n+i-1)-F(i)*G(i,w)*E(w)+F(i)*B(i,w)*F(w)+E(i)*G(i,w)*F(w)+E(i)*B(i ,w)*E(w); %△Q end

电力系统潮流计算方法分析

电力系统潮流分析 —基于牛拉法和保留非线性的随机潮流 , 姓名:*** 学号:***

1 潮流算法简介 常规潮流计算 常规的潮流计算是在确定的状态下。即:通过已知运行条件(比如节点功率或网络结构等)得到系统的运行状态(比如所有节点的电压值与相角、所有支路上的功率分布和损耗等)。 常规潮流算法中的一种普遍采用的方法是牛顿-拉夫逊法。当初始值和方程的精确解足够接近时,该方法可以在很短时间内收敛。下面简要介绍该方法。 牛顿拉夫逊方法原理 对于非线性代数方程组式(1-1),在待求量x 初次的估计值(0)x 附近,用泰勒级数(忽略二阶和以上的高阶项)表示它,可获得如式(1-2)的线性化变换后的方程组,该方程组被称为修正方程组。'()f x 是()f x 对于x 的一阶偏导数矩阵,这个矩阵便是重要的雅可比矩阵J 。 12(,,,)01,2, ,i n f x x x i n == (1-1) (0)'(0)(0)()()0f x f x x +?= (1-2) ' 由修正方程式可求出经过第一次迭代之后的修正量(0)x ?,并用修正量(0)x ?与估计值(0) x 之和,表示修正后的估计值(1)x ,表示如下(1-4)。 (0)'(0)1(0)[()]()x f x f x -?=- (1-3) (1)(0)(0)x x x =+? (1-4) 重复上述步骤。第k 次的迭代公式为: '()()()()()k k k f x x f x ?=- (1-5) (1)()()k k k x x x +=+? (1-6) 当采用直角坐标系解决潮流方程,此时待解电压和导纳如下式: i i i ij ij ij V e jf Y G jB =+=+ (1-7) 假设系统的网络中一共设有n 个节点,平衡节点的电压是已知的,平衡节点表示如下。 n n n V e jf =+ (1-8) }

psasp潮流计算实验说明-2014

PSASP 潮流计算实验 一、实验目的 理解电力系统分析中潮流计算的相关概念,掌握用PSASP 软件对系统潮流进行计算的过程。学会在文本方式下和图形方式下的对潮流计算结果进行分析。 二、预习要求 复习《电力系统分析》中有关潮流计算的内容,了解有关潮流计算的功能,理解常用潮流计算方法,了解PQ 、PV 和V θ(平衡节点,在PSASP 中称为Slack 节点)的设置。 三、实验内容 (一) PSASP 潮流计算概述 潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。 PSASP 潮流计算的流程和结构如下图所示: 潮流计算 各种计算公共部分 图形方式 文本方式

以一个图所示9节点系统为例,计算其在常规、规划两种运行方式下的潮流。规划运行方式即在常规运行方式下,其中接于一条母线(STNB-230)处的负荷增加,对原有电网进行改造后的运行方式,具体方法为:在母线GEN3-230和STNB-230之间增加一回输电线,增加发电机3的出力及其出口变压器的容量,新增或改造的元件如下图虚线所示。 (二)数据准备 1. 指定数据目录及基准容量 双击PSASP图标,弹出PSASP封面后,按任意键,即进入PSASP主画面:

在该画面中,要完成的工作如下: (1)指定数据目录 第一次可通过“创建数据目录”按钮,建立新目录,如:F:\CLJS。以后可通过“选择数据目录”按钮,选择该目录。 (2)给定系统基准容量 系统基准容量项中,键入该系统基准容量,如100MVA。建立了数据之后,该数不要轻易改动。 2. 录入系统潮流计算数据 基础数据(系统参数)如下:

电力系统潮流计算

电力系统潮流计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

电力系统 课程设计题目: 电力系统潮流计算 院系名称:电气工程学院 专业班级:电气F1206班 学生姓名: 学号: 指导教师:张孝远 1 2 节点的分类 (5) 3 计算方法简介 (6) 牛顿—拉夫逊法原理 (6) 牛顿—拉夫逊法概要 (6) 牛顿法的框图及求解过程 (8) MATLAB简介 (9) 4 潮流分布计算 (10)

系统的一次接线图 (10) 参数计算 (10) 丰大及枯大下地潮流分布情况 (14) 该地区变压器的有功潮流分布数据 (15) 重、过载负荷元件统计表 (17) 5 设计心得 (17) 参考文献 (18) 附录:程序 (19) 原始资料 一、系统接线图见附件1。 二、系统中包含发电厂、变电站、及其间的联络线路。500kV变电站以外的系统以一个等值发电机代替。各元件的参数见附件2。 设计任务 1、手动画出该系统的电气一次接线图,建立实际网络和模拟网络之间的联系。 2、根据已有资料,先手算出各元件的参数,后再用Matlab表格核算出各元件的参数。 3、潮流计算 1)对两种不同运行方式进行潮流计算,注意110kV电网开环运行。 2)注意将电压调整到合理的范围 110kV母线电压控制在106kV~117kV之间; 220kV母线电压控制在220 kV~242kV之间。 附件一:

72 水电站2 水电站1 30 3x40 C 20+8 B 2x8 A 2x31.5 D 4x7.5 水电站5 E 2x10 90+120 H 12.5+31.5 F G 1x31.5 水电站3 24 L 2x150 火电厂 1x50 M 110kV线路220kV线路课程设计地理接线示意图 110kV变电站220kV变电站牵引站火电厂水电站500kV变电站

相关主题
文本预览
相关文档 最新文档