当前位置:文档之家› 滑动轴承性能对震动的产生主要原因

滑动轴承性能对震动的产生主要原因

滑动轴承性能对震动的产生主要原因
滑动轴承性能对震动的产生主要原因

滑动轴承性能对震动的产生主要原因

一般来说,轴承中的滚动轴承本身不产生噪音。通常感觉到的轴承噪音事实上是轴承直接或间接地与周围结构产生振动

的声音效应。

这就是为什么许多时候噪音问题可被视为涉及到整个滑

动轴承应用的振动问题。因加载滚动体数量变化而产生的激振当一个径向负荷加载于某个轴承时,其承载负荷的滚动体数量在运行中会稍有变化,即:2-3-2-3....这引起了负荷方向的偏移。由此产生的振动是不可避免的,但可通过轴向预加载来减轻,加载于所有滚动体(不适用于轴承中的圆柱滚子轴承)。

部件的波度在轴承圈与轴承座或传动轴之间密配合的情

况下,轴承圈有可能与相邻部件的外形相配合而变形。如果出现变形,在运行中便可能产生振动。因此,把轴承座和传动轴进行机加工到所需的公差很重要。

局部损坏由于操作或安装错误,小部分轴承滚道和滚动体可能会受损。在运行中,滚过受损的TIMKEN轴承部件会产生特定的振动频率。振动频率分析可识别出受损的轴承部件。应用场合中的振动行为在许多应用中,滑动轴承的刚度与周围结构的刚度相同。由于这个特点,只要正确地选择轴承(包括预

负荷和游隙)及其在应用中的配置,就有可能减低应用中的振动。

1.摩擦相容性

轴承轴径与轴瓦直接接触时避免发作粘附和构成边境光滑的性能。影响摩擦副摩擦相容性的资料要素是:

(1)成副资料冶金上构成合金的难易水平。

(2)资料与光滑剂的亲和才能。

(3)成副资料在无光滑状态下的摩擦因数。

(4)资料的微观组织。

(5)资料的热导率。

(6)资料外表能的大小和氧化膜的特性。

2.钳入性

资料允许光滑剂中外来硬质颗粒钳入而避免刮伤或(和)磨粒磨损的才能。对金属资料而言,硬度低和弹性模量低者,钳入性就好,而非金属资料则不一定,例如碳石墨,弹性模量较低,但钳入性不好。滑动轴承通常用较软资料与较硬资料构成摩擦幅,普通用较软资料做轴瓦。

3.磨合性

轴承在轴径与轴瓦的磨合过程中,减小轴径与轴瓦加工误差、同轴度误差、外表粗糙度参数值,使接触平均,从而降低摩擦力、磨损率的才能。

4.摩擦顺应性

资料靠表层的弹塑性变形补偿滑动摩擦外表初始配合不良和轴的挠曲性能。弹性模量低的资料顺应性较好。

5.耐磨性

成副资料抵御磨损的才能。在规则的磨损条件下,用磨损率或磨损度、磨损量的倒数来表示耐磨性。

6.抗疲倦性

在循环载荷下资料抵御疲倦毁坏的才能。在运用温度下,轴瓦资料的强度、硬度、抗冲击强度和组织平均性对立疲倦性是非常重要的。磨合性、钳入性好的资料,通常抗疲倦性差。

7.耐蚀性

资料抵御腐蚀的才能。光滑油在大气中运用时将逐步氧化,产生酸性物质,而且在大多数光滑油中还含有极压添加剂,它们都会腐蚀轴承资料,因而,滑动轴承资料需求具备耐蚀性。

8.耐气蚀性

固体相关于液体运动的状态下,当液体中的气泡在固体外表左近决裂时,产生部分冲击高压或部分高温,将招致气蚀磨损。资料抵御气蚀磨损的才能称为耐气蚀性。通常,铜铅合金、锡基外球面轴承合金和铝锌硅系合金的耐气蚀性较好。

9.抗压强度

滑动轴承接受单向载荷而不被挤坏或尺寸不变化的才能。

滑动轴承性能对震动的产生主要原因

滑动轴承性能对震动的产生主要原因 一般来说,轴承中的滚动轴承本身不产生噪音。通常感觉到的轴承噪音事实上是轴承直接或间接地与周围结构产生振动 的声音效应。 这就是为什么许多时候噪音问题可被视为涉及到整个滑 动轴承应用的振动问题。因加载滚动体数量变化而产生的激振当一个径向负荷加载于某个轴承时,其承载负荷的滚动体数量在运行中会稍有变化,即:2-3-2-3....这引起了负荷方向的偏移。由此产生的振动是不可避免的,但可通过轴向预加载来减轻,加载于所有滚动体(不适用于轴承中的圆柱滚子轴承)。 部件的波度在轴承圈与轴承座或传动轴之间密配合的情 况下,轴承圈有可能与相邻部件的外形相配合而变形。如果出现变形,在运行中便可能产生振动。因此,把轴承座和传动轴进行机加工到所需的公差很重要。 局部损坏由于操作或安装错误,小部分轴承滚道和滚动体可能会受损。在运行中,滚过受损的TIMKEN轴承部件会产生特定的振动频率。振动频率分析可识别出受损的轴承部件。应用场合中的振动行为在许多应用中,滑动轴承的刚度与周围结构的刚度相同。由于这个特点,只要正确地选择轴承(包括预

负荷和游隙)及其在应用中的配置,就有可能减低应用中的振动。 1.摩擦相容性 轴承轴径与轴瓦直接接触时避免发作粘附和构成边境光滑的性能。影响摩擦副摩擦相容性的资料要素是: (1)成副资料冶金上构成合金的难易水平。 (2)资料与光滑剂的亲和才能。 (3)成副资料在无光滑状态下的摩擦因数。 (4)资料的微观组织。 (5)资料的热导率。 (6)资料外表能的大小和氧化膜的特性。 2.钳入性 资料允许光滑剂中外来硬质颗粒钳入而避免刮伤或(和)磨粒磨损的才能。对金属资料而言,硬度低和弹性模量低者,钳入性就好,而非金属资料则不一定,例如碳石墨,弹性模量较低,但钳入性不好。滑动轴承通常用较软资料与较硬资料构成摩擦幅,普通用较软资料做轴瓦。 3.磨合性 轴承在轴径与轴瓦的磨合过程中,减小轴径与轴瓦加工误差、同轴度误差、外表粗糙度参数值,使接触平均,从而降低摩擦力、磨损率的才能。

滑动轴承概述

轴承支承轴及轴上零件,保证轴的旋转精度。根据轴承工作的摩擦性质,可分为滑动轴承和滚动轴承。滑动轴承具有工作平稳、无噪音、径向尺寸小、耐冲击和承载能力大等优点。而谈动轴承是标准零件,成批量生产成本低,安装方便,广泛应用。对于初学者来讲,谈动轴承的类型选择;寿命计算;组合设计是比较难掌握。因此,滚动轴承的寿命计算和组合设计是本章讨论的重点。 §11-1 滑动轴承概述 一、滑动轴承的类型 滑动轴承按其承受载荷的方向分为: (1)径向滑动轴承,它主要承受径向载荷。 (2)止推滑动轴承,它只承受轴向载荷。 滑动轴承按摩擦(润滑)状态可分为液体摩擦(润滑)轴承和非液体摩擦(润滑)轴承。 (1)液体摩擦轴承(完全液体润滑轴承)液体摩擦轴承的原理是在轴颈与轴瓦的 摩擦面间有充足的润滑油,润滑油的厚度较大,将轴颈和轴瓦表面完全隔开。因而摩擦系数很小,一般摩擦系数=0.001-0.008。由于始终能保持稳定的液体润滑状态。这种轴承适用于高速、高精度和重载等场合。 (2)非液体摩擦轴承(不完全液体润滑轴承) 非液体摩擦轴承依靠吸附于轴和轴承孔表面的极薄油膜,单不能完全将两摩擦表面隔开, 有一部分表面直接接触。因而摩擦系数大,=0.05?0.5。如果润滑油完全流失,将会出现干摩擦。剧烈摩擦、磨损,甚至发生胶合破坏。 二、潸动轴承的特点 优点:(1)承载能力高;(2)工作平稳可靠、噪声低;(3)径向尺寸小;(4)精度高;(5)流体涧滑时,摩擦、磨损较小;(6)油膜有一定的吸振能力 缺点:(1)非流体摩擦滑动轴承、摩擦较大,磨损严重。(2)流体摩擦滑动轴承在起动、行车、载荷、转速比较大的情况下难于实现流体摩擦;(3)流体摩擦、滑动轴承设计、制造、维护费用较高。 §11-2 滑动轴承的结构和材料 一、径向滑动轴承 1.整体式滑动轴承 整体式滑动轴承结构如图所示,由轴承座1和轴承衬套2组成,轴承座上部有油孔,整体衬套有油沟,分别用以加油和引油,进行润滑。这种轴承结构简单,价格低廉,但轴的装拆不方便,磨损后轴承的径向间隙无法调整。使用于轻载低速或间歇工作的场合。 2.对开式滑动轴承

滑动轴承

第八章滑动轴承 8.1 重点、难点分析 本章的重点内容是滑动轴承轴瓦的材料及选用原则;非液体摩擦滑动轴承的设计准则及设计计算;液体动力润滑径向滑动轴承的设计计算。难点是液体动力润滑径向滑动轴承的设计计算及参数选择。 8.1.1 轴瓦材料及其应用 对轴瓦材料性能的要求:具有良好的减摩性、耐磨性和咬粘性;具有良好的摩擦顺应性、嵌入性和磨合性;具有足够的强度和抗腐蚀的能力和良好的导热性、工艺性、经济性等。 常用轴瓦材料:金属材料、多孔质金属材料和非金属材料。其中常用的金属材料为轴承合金、铜合金、铸铁等。 8.1.2 非液体摩擦滑动轴承的设计计算 对于工作要求不高、转速较低、载荷不大、难于维护等条件下的工作的滑动轴承,往往设计成非液体摩擦滑动轴承。这些轴承常采用润滑脂、油绳或滴油润滑,由于轴承得不到足够的润滑剂,故无法形成完全的承载油膜,工作状态为边界润滑或混合摩擦润滑。 非液体摩擦轴承的承载能力和使用寿命取决于轴承材料的减摩耐磨性、机械强度以及边界膜的强度。这种轴承的主要失效形式是磨料磨损和胶合;在变载荷作用下,轴承还可能发生疲劳破坏。 因此,非液体摩擦滑动轴承可靠工作的最低要求是确保边界润滑油膜不遭到破坏。为了保证这个条件,设计计算准则必须要求: p≤[p],pv≤[pv],v≤[v] 限制轴承的压强p,是为了保证润滑油不被过大的压力挤出,使轴瓦产生过度磨损;限制轴承的pv值,是为了限制轴承的温升,从而保证油膜不破裂,因为pv值是与摩擦功率损耗成正比的;在p及pv值经验算都符合要求的情况下,由于轴发生弯曲或不同心等引起轴承边缘局部压强相当高,当滑动速度高时,局部区域的pv值可能超出许用值,所以在p较小的情况下还应该限制轴颈的圆周速度v。 8.1.3液体动力润滑径向滑动轴承设计计算 液体动力润滑的基本方程和形成液体动力润滑(即形成动压油膜)的条件已在第一章给出,这里不再累述。 1.径向滑动轴承形成动压油膜的过程 径向滑动轴承形成动压油膜的过程可分为三个阶段: (1)起动前阶段,见图8-1a;

滚动轴承和滑动轴承的特点和区别

滚动轴承和滑动轴承的特点和区别

滑动轴承具有以下特点。 1、寿命长,适于高速。 2、能承受冲击和振动载荷。 3、运转精度高,工作平衡,无噪音。 4、结构简单,装拆方便。 5、承载能力大,可用于重载场合。 6、非液体摩擦滑动轴承,摩擦损失大;液体摩擦滑动轴承,摩擦损失与滚动轴承相 差不多,但设计、制造润滑及维护要求较高。 滚动轴承的组成、类型及特点 14.2.1 滚动轴承的组成 滚动轴承一般由内圈、外圈、滚动体和保持架组成。内圈装在轴颈上,外圈装在机座或零件的轴承孔内。多数情况下,外圈不转动,内圈与轴一起转动。(动画演示)当内外圈之间相对旋转时,滚动体沿着滚道滚动。保持架使滚动体均匀分布在滚道上,并减少滚动体 之间的碰撞和磨损。 运动动画 拆装动画拆装 拆装 滚动轴承的基本结构 常见的滚动体有6种形状,如图所示: 滚动轴承的内外圈和滚动体应具有较高的硬度和接触疲劳强度、良好的耐磨性和冲击韧性。一般用特殊轴承钢制造,常用材料有GCrl5、GCrl5SiMn、 GCr6、GCr9等,经热处理

后硬度可达60-65HRC。滚动轴承的工作表面必须经磨削抛光,以提高其接触疲劳强度。保持架多用低碳钢板通过冲压成形方法制造,也可采用有色金属或塑料等材料。为适应某些特殊要求,有些滚动轴承还要附加其他特殊元件或采用特殊结构,如轴承无内圈或外圈、带有防尘密封结构或在外圈上加止动环等。滚动轴承具有摩擦阻力小、启动灵敏、效率高、旋转精度高、润滑简便和装拆方便等优点,被广泛应用于各种机器和机构中。滚动轴承为标准零部件,由轴承厂批量生产,设计者可以根据需要直接选用。 14.2.2 滚动轴承的类型及特点 根据滚动体的形状,滚动轴承分为球轴承与滚子轴承。按照滚动轴承所能承受的主要负荷方向,又可分为向心轴承(主要承受径向载荷)、推力轴承(承受轴向载荷)、向心推力轴承(能同时承受径向载荷和轴向载荷)。 1.调心球轴承1000(实物) 2.调心滚子轴承2000(实物) 3.圆锥滚子轴承3000(实物) 4.双列深沟球轴承4000(实物) 5.推力球轴承5000(实物) 6.深沟球轴承6000(实物) 7.角接触球轴承7000(实物) 8.推力圆柱滚子轴承8000(实物) 9.圆柱滚子轴承N(实物) 二者比较 滚动轴承 在滚动摩擦下工作的轴承。滚动轴承使用维护方便,工作可靠,起动性能好,在中等速度下承载能力较高。与滑动轴承比较,滚动轴承的径向尺寸较大,减振能力较差,高速时

滑动轴承计算

滑动轴承计算

第十七章滑动轴承 基本要求及重点、难点 滑动轴承的结构、类型、特点及轴瓦材料与结构。非液体摩擦轴承的计算。液体动压形成原理及基本方程,液体动压径向滑动轴承的计算要点。多油楔动压轴承简介。润滑剂与润滑装置。 基本要求: 1) 了解滑动轴承的类型、特点及其应用。 2) 掌握各类滑动轴承的结构特点。 3) 了解对轴瓦材料的基本要求和常用轴瓦材料,了解轴瓦结构。 4) 掌握非液体摩擦轴承的设计计算准则及其物理意义。 5) 掌握液体动压润滑的基本概念、基本方程和油楔承载机理。 6) 了解液体摩擦动压径向润滑轴承的计算要点(工作过程、压力曲线及需要进行哪些计算)。 7) 了解多油楔轴承等其他动压轴承的工作原理、特点及应用。 8) 了解滑动轴承采用的润滑剂与润滑装置。 重点: 1) 轴瓦材料及其应用。 2) 非液体摩擦滑动轴承的设计准则与方法。

3) 液体动压润滑的基本方程及形成液体动压润滑的必要条件。 难点: 液体动压润滑的基本方程及形成液体动压润滑 的必要条件。 主要内容: 一:非液体润滑轴承的设计计算。 二:形成动压油膜的必要条件。 三:流体动压向心滑动轴承的设计计算方法,参数选择 §17-1概述: 滑动轴承是支撑轴承的零件或部件,轴颈与轴瓦面接触,属滑动摩擦。 一 分类: 1. 按承载方向 径向轴承(向心轴承。普通轴承)只受. 推力轴承: 只受 组合轴承: ,. 2. 按润滑状态 液体润滑: 摩擦表面被一流 体膜分开(1.5—2.0以上)表面间 摩擦为液体分子间的摩擦 。例如汽轮机的主轴。 r F a F a F r F m

非液体润滑:处于边界摩擦及混 合摩擦状态下工 作的轴承为非液 体润滑轴承。 关于摩擦干:不加任何润滑剂。 边界:表面被吸附的边界膜隔开,摩 擦性质不取决于流体粘度,与 边界膜的表面的吸附性质有 关。 液体:表面被液体隔开,摩擦性质取 决于流体内分子间粘性阻力。 混合:处于上述的混合状态. 相应的润滑状态称边界、液 体、混合、润滑。 3.液体润滑按流体膜形成原理分:

滚动轴承与滑动轴承性能及优缺点应用对比

滚动轴承与滑动轴承性能及优缺点应用对比 滚动轴承与滑动轴承相比,具有下列优点: 1.滚动轴承的摩擦系数比滑动轴承小,传动效率高。一般滑动轴承的摩擦系数为0.08-0.12,而滚动轴承的摩擦系数仅为 0.001-0.005; 2.滚动轴承已实现标准化、系列化、通用化,适于大批量生产和供应,使用和维修十分方便; 3.滚动轴承用轴承钢制造,并经过热处理,因此,滚动轴承不仅具有较高的机械性能和较长的使用寿命,而且可以节省制造滑动轴承所用的价格较为昂贵的有色金属; 4.滚动轴承内部间隙很小,各零件的加工精度较高,因此,运转精度较高。同时,可以通过预加负荷的方法使轴承的刚性增加。这对于精密机械是非常重要的; 5.某些滚动轴承可同时承受径向负荷和轴向负荷,因此,可以简化轴承支座的结构; 6.由于滚动轴承传动效率高,发热量少,因此,可以减少润滑油的消耗,润滑维护较为省事; 7.滚动轴承可以方便地应用于空间任何方位的铀上。

但是,一切事物都是一分为二的,滚动轴承也有一定的缺点,主要是: 1.滚动轴承承受负荷的能力比同样体积的滑动轴承小得多,因此,滚动轴承的径向尺寸大。所以,在承受大负荷的场合和要求径向尺寸小、结构要求紧凑的场合〈如内燃机曲轴轴承),多采用滑动轴承; 2.滚动轴承振动和噪声较大,特别是在使用后期尤为显著,因此,对精密度要求很高、又不许有振动的场合,滚动轴承难于胜任,一般选用滑动轴承的效果更佳。 3.滚动轴承对金属屑等异物特别敏感,轴承内一旦进入异物,就会产生断续地较大振动和噪声,亦会引起早期损坏。此外,滚动轴承因金属夹杂质等也易发生早期损坏的可能性。即使不发生早期损坏,滚动轴承的寿命也有一定的限度。总之,滚动轴承的寿命较滑动轴承短些。 可是,滚动轴承与滑动轴承相比较,各有优缺点,各占有一定的适用场合,因此,两者不能完全互相取代,并且各自向一定的方向发展,扩大自己的领域。但是,由于滚动轴承的突出优点,颇有后来者居上的趋势。目前,滚动轴承已发展成为机械的主要支承型式,应用愈来愈广泛。

滚动轴承与滑动轴承相比具有的优点

滚动轴承与滑动轴承相比具有的优点 滚动轴承与滑动轴承相比,具有下列优点: 1.滚动轴承的摩擦系数比滑动轴承小,传动效率高。普通滑动轴承的摩擦系数为0.08-0.12,而滚动轴承的摩擦系数仅为0.001-0.005; 2.滚动轴承已完成规范化、系列化、通用化,适于大批量消费和供给,运用和维修非常方便; 3.滚动轴承用轴承钢制造,并经过暖处置,因而,滚动轴承不只具有较高的机械功能和较长的运用寿命,而且可以节省制造滑动轴承所用的价钱较为昂贵的有色金属; 4.滚动轴承外部间隙很小,各零件的加工精度较高,因而,运转精度较高。同时,可以经过预加负荷的办法使轴承的刚性添加。这关于精细机械是十分重要的; 5.某些滚动轴承可同时接受径向负荷和轴向负荷,因而,可以简化轴承支座的构造; 6.由于滚动轴承传动效率高,发暖量少,因而,可以增加光滑油的耗费,光滑维护较为省事; 7.滚动轴承可以方便地使用于空间任何方位的铀上。 但是,一切事物都是一分为二的,滚动轴承也有一定的缺陷,次要是: 1.滚动轴承接受负荷的才能比异样体积的滑动轴承小得多,因而,滚动轴承的径向尺寸大。所以,在接受大负荷的场所和要求径向尺寸小、构造要求紧凑的场所〈如内燃机曲轴轴承),多采用滑动轴承; 2.滚动轴承振动和噪声较大,特别是在运用前期尤为明显,因而,对精细度要求很高、又不许有振动的场所,滚动轴承难于胜任,普通选用滑动轴承的效果更佳。 3.滚动轴承对金属屑等异物特别敏感,轴承内一旦进入异物,就会发生断续地较大振动和噪声,亦会惹起晚期损坏。此外,滚动轴承因金属夹杂质等也易发作晚期损坏的能够性。即便不发作晚期损坏,滚动轴承的寿命也有一定的限制。总之,滚动轴承的寿命较滑动轴承短些。 可是,滚动轴承与滑动轴承相比拟,各有优缺陷,各占有一定的适用场所,因而,两者不能完全相互取代,并且各自向一定的方向开展,扩展本人的范畴。但是,由于滚动轴承的突出优点,颇有后来者居上的趋向。目前,滚动轴承已开展成为机械的次要支承型式,使用愈来愈普遍。 滚动轴承与滑动轴承优缺点比较 2009年12月12日 by skf大使 与滑动轴承相比,滚动轴承的优点与滑动轴承相比,滚动轴承的缺点 1、一般条件下,滚动轴承的效率和液体动力润滑轴承相当,但较混合润滑轴承要高一些;承受冲击载荷能力较差; 2、径向游隙比较小,向心角接触轴承可用预紧可用预紧力消除游隙,运转精度高;高速重载载荷下轴承寿命较低;重载载荷下轴承寿命较低; 3、对于同尺寸的轴径,滚动轴承的宽度比滑动轴承小,可使机器的轴向结构紧凑;可以简化轴承支座的结构;振动及噪声较大; 4、大多数滚动轴承能同时受径向和轴向载荷,故轴承组合结构简单;径向尺寸比滑动轴承;向尺寸比滑动轴承;

滚动轴承的振动机理与信号特征

滚动轴承的振动机理与信号特征 滚动轴承的振动可由外部振源引起,也可由轴承本身的结构特点及缺陷引起。此外,润滑剂在轴承运转时产生的流体动力也可以是振动(噪声)源。上述振源施加于轴承零件及附近的结构件上时都会激励起振动。 一、滚动轴承振动的基本参数 1.滚动轴承的典型结构 滚动轴承的典型结构如图1所示,它由内圈、外圈、滚动体和保持架四部分组成。 图1 滚动轴承的典型结构 图示滚动轴承的几何参数主要有: 轴承节径D:轴承滚动体中心所在的圆的直径 滚动体直径d:滚动体的平均直径 内圈滚道半径r1:内圈滚道的平均半径 外圈滚道半径r2:外圈滚道的平均半径 接触角α:滚动体受力方向与内外滚道垂直线的夹角 滚动体个数Z:滚珠或滚珠的数目 2.滚动轴承的特征频率 为分析轴承各部运动参数,先做如下假设:

(1)滚道与滚动体之间无相对滑动; (2)承受径向、轴向载荷时各部分无变形; (3)内圈滚道回转频率为fi; (4)外圈滚道回转频率为fO; (5)保持架回转频率(即滚动体公转频率为fc)。 参见图1,则滚动轴承工作时各点的转动速度如下: 内滑道上一点的速度为:V i=2πr1f i=πf i(D-dcosa) 外滑道上一点的速度为:V O=2πr2f O=πf O(D+dcosa) 保持架上一点的速度为:V c=1/2(V i+V O)=πf c D 由此可得保持架的旋转频率(即滚动体的公转频率)为: 从固定在保持架上的动坐标系来看,滚动体与内圈作无滑动滚动,它的回转频率之比与d/2r1成反比。由此可得滚动体相对于保持架的回转频率(即滚动体的自转频率,滚动体通过内滚道或外滚道的频率)fbc 根据滚动轴承的实际工作情况,定义滚动轴承内、外圈的相对转动频率为 一般情况下,滚动轴承外圈固定,内圈旋转,即: 同时考虑到滚动轴承有Z个滚动体,则滚动轴承的特征频率如下:滚动体在外圈滚道上的通过频率zfoc为:

圆柱滚子轴承异常振动噪声的消除措施(精)

圆柱滚子轴承异常振动噪声的消除措施方法圆柱滚子轴承主要应用于大中型电动机、机车车辆、机床主轴、内燃机、发电机、减速箱以及起重运输机械等,应用十分广泛。圆柱滚子轴承异常振动噪声的消除措施主要有以下几个方面: 1、严格控制进厂轴承的质量和防止轴承锈蚀,轴承在进厂之前,要进行相应的检验,除进行外观尺寸的检查外,还要对轴承用一起进行振动检测,检测方法是采用冲击脉冲法进行诊断,其原理是当两个不平的表面撞击时,就会产生冲击波,即冲击脉冲,这个脉冲的强弱直接反映了撞击的猛烈程度。根据这个原理,如果通过检测轴承内滚珠或滚柱与滚道的撞击程度,也就可以了解轴承的工作状态,七类轴承,低的冲击脉冲值客观的反映了轴承的良好的工作状态,而当测得较高的冲击脉冲值时,说明轴承处于不良好的工作状况。一般的用户对于轴承的保存期不太注意,实际上,普通的轴承涂的防锈油有效期只有一年,如果超过期限,不进行重新防锈处理,就有可能会生锈,如果轴承滚珠或滚柱以及滚道锈蚀,一定会引起异常振动噪声,因此,对轴承的保存管理一定要注意轴承的出品期和防锈有效期,做到定期检查。 2、严格控制清洁度,电机航扼要有许多企业不重视清洁,大多数企业没有专门的清洗设备,靠手工吹、扫或随意的进行清洗,导致电机在一个不干净的条件下装配,即影响电动机的内表观质量,又使轴承产生异常。为而来进行控制清洁度,在电动机装配时,要对装配的零部件进行清洗,清洗干净才能进行装配。 3、严格控制轴承室以及轴承台内外径公差,经过数据表明,多数的轴承外圈均为减差,为降低轴承的异常振动噪声,轴承室内径的公差设计值一般取J6或JS6为宜,这样可以保证轴承与轴承室为过渡配合,并保证轴承室公差尽量取中间公差。 4、改进轴承的装配工艺,安装轴承时,可以根据轴承类型和尺寸选择机械、加热或液压等方法进行。但在人恶化情况下,都不可以直接敲击轴承圈、保持架、滚动轴或密封件。要保证轴承的正常使用,不易变形等事故发生。(众悦精密轴承整理提供)

滚动轴承和滑动轴承的特点和区别

滚动轴承和滑动轴承的特点和区别 滑动轴承具有以下特点。 1、寿命长,适于高速。 2、能承受冲击和振动载荷。 3、运转精度高,工作平衡,无噪音。 4、结构简单,装拆方便。 5、承载能力大,可用于重载场合。 6、非液体摩擦滑动轴承,摩擦损失大;液体摩擦滑动轴承,摩擦损失与滚动轴承 相差不多,但设计、制造润滑及维护要求较高。 滚动轴承的组成、类型及特点 14.2.1 滚动轴承的组成 滚动轴承一般由内圈、外圈、滚动体和保持架组成。内圈装在轴颈上,外圈装在机座或零件的轴承孔内。多数情况下,外圈不转动,内圈与轴一起转动。(动画演示)当内外圈之间相对旋转时,滚动体沿着滚道滚动。保持架使滚动体均匀分布在 滚道上,并减少滚动体之间的碰撞和磨损

运动动画 拆装动画拆装 拆装 滚动轴承的基本结构 常见的滚动体有 6 种形状,如图所示: 滚动轴承的内外圈和滚动体应具有较高的硬度和接触疲劳强度、良好的耐磨性和冲击韧性。一般用特殊轴承钢制造,常用材料有GCrl5、GCrl5SiMn、GCr6、GCr9等,经热处理后硬度可达60-65HRC滚动轴承的工作表面必须经磨削抛光,以提高其接触疲劳强度。保持架多用低碳钢板通过冲压成形方法制造,也可采用有色金属或塑料等材料。为适应某些特殊要求,有些滚动轴承还要附加其他特殊元件或采用特殊结构,如轴承无内圈或外圈、带有防尘密封结构或在外圈上加止动环等。滚动轴承具有摩擦阻力小、启动灵敏、效率高、旋转精度高、润滑简便和装拆方便等优点,被广泛应用于各种机器和机构中。滚动轴承为标准零部件,由轴承厂批量生产, 设计者可以根据需要直接选用

14.2.2 滚动轴承的类型及特点 根据滚动体的形状,滚动轴承分为球轴承与滚子轴承。按照滚动轴承所能承受的主要负荷方向,又可分为向心轴承(主要承受径向载荷)、推力轴承(承受轴向载荷)、向心推力轴承(能同时承受径向载荷和轴向载荷)。 1. 调心球轴承1000(实物) 2. 调心滚子轴承2000(实物) 3. 圆锥滚子轴承3000(实物) 4. 双列深沟球轴承4000(实物) 5. 推力球轴承5000(实物) 6. 深沟球轴承6000(实物) 7. 角接触球轴承7000(实物) 8. 推力圆柱滚子轴承8000(实物)

滑动轴承概述

轴承 轴承支承轴及轴上零件,保证轴的旋转精度。根据轴承工作的摩擦性质,可分为滑动轴承和滚动轴承。滑动轴承具有工作平稳、无噪音、径向尺寸小、耐冲击和承载能力大等优点。而滚动轴承是标准零件,成批量生产成本低,安装方便,广泛应用。对于初学者来讲,滚动轴承的类型选择;寿命计算;组合设计是比较难掌握。因此,滚动轴承的寿命计算和组合设计是本章讨论的重点。 §11—1 滑动轴承概述 一、滑动轴承的类型 滑动轴承按其承受载荷的方向分为: (1)径向滑动轴承,它主要承受径向载荷。 (2)止推滑动轴承,它只承受轴向载荷。 滑动轴承按摩擦(润滑)状态可分为液体摩擦(润滑)轴承和非液体摩擦(润滑)轴承。 (1)液体摩擦轴承(完全液体润滑轴承)液体摩擦轴承的原理是在轴颈与轴瓦的摩擦面间有充足的润滑油,润滑油的厚度较大,将轴颈和轴瓦表面完全隔开。因而摩擦系数很小,一般摩擦系数=0.001~0.008。由于始终能保持稳定的液体润滑状态。这种轴承适用于高速、高精度和重载等场合。 (2)非液体摩擦轴承(不完全液体润滑轴承) 非液体摩擦轴承依靠吸附于轴和轴承孔表面的极薄油膜,单不能完全将两摩擦表面隔开,有一部分表面直接接触。因而摩擦系数大,=0.05~0.5。如果润滑油完全流失,将会出现干摩擦。剧烈摩擦、磨损,甚至发生胶合破坏。 二、滑动轴承的特点 优点:(1)承载能力高;(2)工作平稳可靠、噪声低;(3)径向尺寸小;(4)精 度高;(5)流体润滑时,摩擦、磨损较小;(6)油膜有一定的吸振能力 缺点:(1)非流体摩擦滑动轴承、摩擦较大,磨损严重。(2)流体摩擦滑动轴承在 起动、行车、载荷、转速比较大的情况下难于实现流体摩擦;(3)流体摩擦、滑动轴承设计、制造、维护费用较高。 §11—2 滑动轴承的结构和材料 一、径向滑动轴承 1.整体式滑动轴承 整体式滑动轴承结构如图所示,由轴承座1和轴承衬套2组成,轴承座上部有油孔,整体衬套内有油沟,分别用以加油和引油,进行润滑。这种轴承结构简单,价格低廉,但轴的装拆不方便,磨损后轴承的径向间隙无法调整。使用于轻载低速或间歇工作的场合。 2.对开式滑动轴承

滚动轴承简介

滚动轴承单元 一概述 将运转的轴与轴座之间的滑动摩擦变为滚动摩擦,从而减少摩擦损失的一种精密的机械元件,叫滚动轴承(rolling bearing)。滚动轴承一般由外圈,内圈,滚动体和保持架组成。其中内圈的作用是与轴相配合并与轴一起旋转,外圈作用是与轴承座相配合,起支撑作用,滚动体是借助于保持架均匀的将滚动体分布在内圈和外圈之间,其形状大小和数量直接影响着滚动轴承的使用性能和寿命,保持架能使滚动体均匀分布,防止滚动体脱落,引导滚动体旋转起润滑作用。 滚动轴承使用维护方便,工作可靠,起动性能好,在中等速度下承载能力较高。与滑动轴承比较,滚动轴承的径向尺寸较大,减振能力较差,高速时寿命低,声响较大。滚动轴承中的向心轴承(主要承受径向力)通常由内圈、外圈、滚动体和滚动体保持架4部分组成。内圈紧套在轴颈上并与轴一起旋转,外圈装在轴承座孔中。在内圈的外周和外圈的内周上均制有滚道。当内外圈相对转动时,滚动体即在内外圈的滚道上滚动,它们由保持架隔开,避免相互摩擦。推力轴承分紧圈和活圈两部分。紧圈与轴套紧,活圈支承在轴承座上。套圈和滚动体通常采用强度高、耐磨性好的滚动轴承钢制造,淬火后表面硬度应达到HRC60~65。保持架多用软钢冲压制成,也可以采用铜合金夹布胶木或塑料等制造。 二滚动轴承的基本特点 优点 1 摩擦阻力小,功率消耗小,机械效率高,易起动. 2、尺寸标准化,具有互换性,便于安装拆卸,维修方便. 3、结构紧凑,重量轻,轴向尺寸更为缩小. 4、精度高,转速高,磨损小,使用寿命长. 5、部分轴承具有自动调新的性能. 6、适用于大批量生产,质量稳定可靠,生产效率高. 自行车的前轴、中轴和后轴上都装有滚动承轴。 缺点 1、噪音大. 2、轴承座的结构比较复杂. 3、成本较高. 三滚动轴承的分类 1.按滚动轴承结构类型分类 轴承按其所能承受的载荷方向或公称接触角的不同,分为: 向心轴承----主要用于承受径向载荷的滚动轴承,其公称接触角从0到45。按公称接触角不同,又分为:径向接触轴承----公称接触角为0的向心轴承:向心角接触轴承----公称接触角大于0到45的向心轴承。

关于滑动轴承技术问答详解版

滑动轴承 工作时轴承和轴颈的支承面间形成直接或间接滑动摩擦的轴承,称为滑动轴承(图14-1a)。 滑动轴承工作表面的摩擦状态有非液体摩擦和液体摩擦之分。图14-1b、图14-1c是轴承摩擦表面的局部放大图,如图14-1b所示,摩擦表面不能被润滑油完全隔开的轴承称为非液体摩擦滑动轴承。这种轴承的摩擦表面容易磨损,但结构简单,制造精度要求较低,用于一般转速,载荷不大或精度要求不高的场合。摩擦表面完全被润滑油隔开的轴承称为液体摩擦滑动轴承,如图14-1c所示。这种轴承与轴表面不直接接触,因此避免了磨损。液体摩擦滑动轴承制造成本高,多用于高速、精度要求较高或低速、重载的场合。 a 滑动轴承原理图 b非液体摩擦状态 c 液体摩擦状态 图14-1滑动轴承的摩擦状态 根据轴承所能承受的载荷方向不同,滑动轴承可分为向心滑动轴承和推力滑动轴承。向心滑动轴承用于承受径向载荷;推力滑动轴承用于承受轴向载荷。 14—1滑动轴承的结构形式与特点

1.整体式滑动轴承是在机体上、箱体上或整体的轴承座上直接镗出轴承孔,并在孔内镶入轴套,如图14-2所示,安装时用螺栓联接在机架上。这种轴承结构形式较多,大都已标准化。它的优点是结构简单、成本低;缺点是轴颈只能从端部装入,安装和维修不便,而且轴承磨损后不能调整间隙,只能更换轴套,所以只能用在轻载、低速及间歇性工作的机器上。 图14-2整体式向心滑动轴承 2.剖分式滑动轴承(对开式滑动轴承)如图14-3所示,它由轴承座、轴承盖、剖分式轴瓦等组成。在轴承座和轴承盖的剖分面上制有阶梯形的定位止口,便于安装时对心。还可在剖分面间放置调整垫片,以便安装或磨损时调整轴承间隙。轴承剖分面最好与载荷方向近于垂直。一般剖分面是水平的或倾斜45°角,以适应不同径向载荷方向的要求。这种轴承装拆方便,又能调整间隙,克服了整体式轴承的缺点,得到了广泛的应用

滚动轴承的振动信号特征分析报告

南昌航空大学实验报告 课程名称:数字信号处理 实验名称:滚动轴承的振动信号特征分析实验时间: 2013年5月14日 班级: 100421 学号: 10042134 姓名:吴涌涛 成绩:

滚动轴承的振动信号特征分析 一、实验目的 利用《数字信号处理》课程中学习的序列运算、周期信号知识、DFT 知识,对给定的正常轴承数据、内圈故障轴承数据、外圈故障轴承数据、滚珠故障轴承数据进行时域特征或频域特征提取和分析,找出能区分四种状态(滚动轴承的外圈故障、内圈故障、滚珠故障和正常状态)的特征。 二、实验原理 振动机理分析:机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。 振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。 幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。 相位:振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。 在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。速度又与能量和功率有关,并决定动量的大小。 提取振动信号的幅域、时域、频域、时频域特征,根据特征进行故

障有无、故障类型和故障程度三个层次的判断。 三、 实验内容 Step1、使用importdata ()函数导入振动数据。 Step2、把大量数据分割成周期为单元的数据,分割方法为: 设振动信号为{x k }(k =1,2,3,…,n )采样频率为f s ,传动轴的转动速率为V r 。 采样间隔为: 1 s t f ?= (1) 旋转频率为: 60 r r V f = (2) 传动轴的转动周期为: 1 r T f = (3) 由式(1)和(3)可推出振动信号一个周期内采样点数N : 1 1s r r s f f T N t f f = ==? (4) 由式(2)可得到传动轴的转动基频f r =29.95Hz ,再由式(3)可得到一个周期内采样点数N=400.67,取N =400。 Step3、提取振动信号的特征,分析方法包括: 1、时域统计分析指标(波形指标(Shape Factor)、峰值指标(Crest Factor)、脉冲指标(Impulse Factor)、裕度指标(Clearance Factor)、峭度指标(KurtosisValue) )等,相关计算公式如下: (1)波形指标: P f X WK X = (5) 其中,P X 为峰值,X 为均值。p X 计算公式如下:

轴承噪声的产生原因和控制办法

轴承噪声的产生原因和控制办法 轴承的振动噪声,是考核轴承综合质量的主要指标之一。轴承噪声不仅直接影响主机的性能,而且过大的噪声还会对操作者造成噪声疲劳。随着我国机械工业的高速发展,提供低噪声的轴承,是轴承行业的一项重要任务,也是我公司的努力方向。1.产生原因: 噪声来源主要有以下几种。一种是轴承的结构形式、套圈壁厚、原始游隙、保持架形状、滚动体数量等固有因素所引起。另一种是因轴承零件制造时所产生的种种缺陷(如套圈和滚动体波纹、内圈滚道宽度不一致、保持架底高变动量超差、成品清洁度不好、滚道磕碰伤、中外径斜面磕碰以及残磁超标等)。 2.应对措施: (1)对设计方案进一步研究,力求设计更合理。 (2)加强对车加工产品质量的控制,特别是对小挡边宽度的控制,确保滚道宽度的一致性。从现在起,车加工产品的滚道宽度作为一个必检项目,从严进行控制,确保滚道宽度符合产品图的要求。 (3)加强对保持架质量的控制,对没有光饰的保持架或虽光饰但毛刺很大的保持架,坚决拒收。对保持架底高变动量超标的保持架也坚决拒收。 (4)加强工序间产品质量的控制,杜绝滚道磕碰伤,最大限度

地降低滚动面(内外圈滚道和滚子表面)的振纹,降低波纹度。 (5)加强工艺研究,提高产品的加工工艺水平,特别是内圈壁厚差的控制要符合要求。 (6)加强对设备的维护和保养,确保关键设备的加工能力和质量,确保关键设备的能力保障系数Cpk≥1.33。 (7)提高操作工的技能,提高他们调整机床的操作技能,使产品的加工精度有一个质的飞跃。 (8)配备应有的工位器具,减少运输过程中的磕碰伤,尽量减少产品返工,减少装卸次数。加强转运过程中的管理,做到轻拿轻放,杜绝人为磕碰。 (9)提高成品的清洁度,首先从提高零件清洁度开始,清洗剂和清洗煤油要按规定定期更换。 各单位要加强管理,树立“质量第一”思想。头脑中始终牢记质量是企业的生存之本,立足之根,发展之源。质量就是效益,没有质量,企业就没有效益,质量是企业追求的永恒主题,时刻抓牢质量这根弦。各单位主管是质量的第一责任人,质量的好坏,主要取决于部门主管的思想认识。部门主管重视,产品质量就好;部门主管不重视,或者重视不够,产品质量就不可能好。我们一定要花大力气,积极引导全体员工,切实把提高产品质量放在事关企业生存和发展的战略高度上来,确保产品质量的稳定合格。

轴承结构对振动与噪音的影响

轴承结构对振动与噪音的影响 1.滚道声 滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:a.噪声、振动具有随机性;b.振动频率在1kHz以上;c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;d.当径向游隙增大时,声压级急剧增加;e.轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大;f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。 滚道声产生源在于受到载荷后的套圈固有振动所致。由于套圈和滚动体的弹性接触构成非线性振动系统。当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。 2.落体滚动声 该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:a.脂润滑时易产生,油润滑时不易产生。当用劣质润滑脂时更易产生。b.冬季常常发生。c.对于只作用径向载荷且径向游隙较大时也易产生。d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。e.可能是连续声亦可能是断续声。f.该强迫振动常激发外圈的二阶、三阶弯曲固有振动,

《滑动轴承设计》word文档

滑动轴承的设计准则,是根据其工作方式及特点确定的。对于非流体摩擦状态的滑动轴承,或称混和摩擦状态滑动轴承,保证其轴瓦材料的使用性能是主要任务;对于流体润滑轴承,设计重点则主要集中在如何在给定的工况下,构造具有合理几何特征的轴颈和轴瓦,使之能在工作过程中依赖流体内部的静动压力承载。 1.非流体润滑状态滑动轴承的设计准则 对于非流体润滑、混和润滑和固体润滑状态工作的滑动轴承,常用限制性计算条件来保证其使用功能。此设计条件也可作为流体润滑轴承的初步设计计算条件。 (1)轴承承载面平均压强的设计计算 由于过大的表面压强将对材料表面强度构成威胁,并会加速轴承的磨损,因此在设计中应满足: 其中:P——轴承承载面上压强,MPa;F——轴承载荷,N;A——轴承承载面积,mm2;[P]——轴承材料的许用压强,MPa。 对于径向轴承,一般只能承担径向载荷: 其中:F——轴承径向载荷,N;D——轴承直径,mm;B——轴承宽度,mm。DB是承载面在F方向上的投影面积。 推力轴承一般仅能承担轴向载荷,对于环形瓦推力轴承: 其中:F——轴承轴向载荷,N;D2、D1——轴承承载环面外径、内径,mm。 (2) 轴承摩擦热效应的限制性计算 滑动轴承工作时,其摩擦效应引起温度升高,摩擦热量的产生与单位面积上的摩擦功耗成正比,而轴承承载面压强p与速度v的乘积通常用来表征滑动轴承的摩擦功耗,称为pv值。滑动轴承设计中,用 限制pv值的办法,控制其工作温升,其设计准则为: 其中:P——轴承承载面上压强,MPa;对于径向和推力轴承;V——轴承承载面平均速度,m/s;[Pv}——轴承许用Pv值。

其中:D——轴承平均直径,0.001m;n——轴颈与轴瓦的相对转速,。这样,上式也可写为: (3) 轴承最大滑动速度的条件性计算 非液体摩擦状态工作的滑动轴承,其工作表面相互接触,当相对滑动速度很高时,其工作表面磨损加速,此项计算对于轻载高速轴承尤为重要。设计准则为: 其中:v——轴承承载面最大线速度,m/s;[v]——轴承许用线速度。 (4) 滑动轴承的几何参数 滑动轴承的轴颈和轴瓦间的间隙大小,对滑动轴承的工作性能有显著影响,滑动轴承的间隙大小用相对间隙ψ来表示: 其中:C——轴承半径间隙,即轴瓦与轴颈的半径差,mm;r——轴承半径,mm。轴承间隙较大时,轴承承载力和运转精度下降,摩擦较小,温升较低;轴承间隙较小时,轴承运转精度较高,承载力较高,但摩擦功耗及温升较大。滑动轴承设计时,ψ常在0.004~0.012范围取值。 滑动轴承的径向尺寸和宽度尺寸的比值称为宽径比B/D,有时写成L/D,轴承宽度较小时,会使润滑剂易沿轴向泄漏,不易保持于承载区,因此滑动轴承的宽径比不易过小,常推荐在0.5~1.5间选取。径向轴承径向配合推荐优先选用H9/d9和H8/f7及D9/h9和F8/h7。 2. 流体润滑状态滑动轴承的设计 流体润滑状态润滑轴承是指在稳定运转时,其轴颈与轴瓦被润滑剂完全分隔,工作于无相互接触工作状态的滑动轴承。 (1) 滑动轴承形成流体动力润滑的条件 实现流体润滑主要有两种方式,一是静压方式,即将流体直接泵入承载区承载;二是动压方式,即利用轴承相对运动表面的特殊形状及运动条件形成的压力承载。通常状态下,动压轴承的设计和工艺条件应满足如下几方面的要求,才可使流体润滑的实现成为可能。 条件1:滑动轴承相对运动表面间在承载区可以构成锲形空间,且其运动将使该区域中的流体从宽阔处流向狭窄处;即从大口流向小口;或使承载区体积有减小的趋势。 条件2:有充足的流体供给,且其具有一定的粘度;

轴承支承长度及间距对船舶轴系振动特性影响参考文本

轴承支承长度及间距对船舶轴系振动特性影响参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

轴承支承长度及间距对船舶轴系振动特 性影响参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 本文主要对轴承的支承长度以及间距对于船舶轴系振 动的特性进行相应的分析,发现在不同位置处,以及不同 的支承长度对船舶的轴系的固有振动的影响,并且经过计 算,不同位置轴承的变化对于船舶轴系固有振动的影响都 不同。其中对于船舶轴系的振动的影响最大的是船舶前后 艉架轴承和船舶艉管轴承,并且这些轴承所工作的环境都 是十分的恶劣,在运行的过程中会发生很大的变化。 在船舶的轴承的正常的运作中,轴承的支承的面积是 随之改变的,所以必须要对轴承的长度对于轴系振动的影 响进行相应的研究,并且要根据一些条件,来对相应的轴 系进行调整,以此来避开共振所产生的危害。主要是对船

舶的轴系的后艉架轴承和船舶艉管轴承进行相应的变化,并且要计算不同条件下的轴系的固有的频率,根据不同的轴系之间的间距变化来对分析。 传播轴系轴承数学模型及轴系动力学方程 1.1.船舶轴系轴承数学模型 船舶的轴系轴承主要是典型的液体动压径向滑动轴承,主要的方程式为:1/r2·α/αθ(h3/μ·α/αθ)+α/αθ(h3/μ·α/αz)=αβα/αθ+12(ycosθ+xsinθ) 在这个公式中,当瓦面是圆形的时候,可以利用e与e θ来表示对于速度的扰动,这是可以将以上的公式变化为:1/r2·α/αθ(h3/μ·α/αθ)+α/αθ(h3/μ·α/αz)=αβα/αθ+12(ecosθ+eφsinθ) 这时,在公式之中,可以看出油膜的厚度是h,油膜的压力则是为p,而μ则是润滑油的动力粘度,z为主要的轴向的坐标,这时,要以c为轴承的半径,以L为轴承的长

滑动轴承作业

滑动轴承 学号 一 选择题 1. 宽径比d B /是设计滑动轴承时首先要确定的重要参数之一,通常取 d B / 。 A. 1~10 B.0.1~1 C. 0.3~1.5 D. 3~5 2. 下列材料中 不能作为滑动轴承轴瓦或轴承衬的材料。 A. ZSnSb11Cu6 B. HT200 C. GCr15 D. ZCuPb30 3. 在非液体润滑滑动轴承中,限制p 值的主要目的是 。 A. 防止出现过大的摩擦阻力矩 B. 防止轴承衬材料发生塑性变形 C. 防止轴承衬材料过度磨损 D. 防止轴承衬材料因压力过大而过度发热 4. 不是静压滑动轴承的特点。 A. 起动力矩小 B. 对轴承材料要求高 C. 供油系统复杂 D. 高、低速运转性能均好 5. 设计液体动压径向滑动轴承时,若通过热平衡计算发现轴承温升过高,下列改进措施中,有效的是 。 A. 增大轴承宽径比 B. 减小供油量 C. 增大相对间隙 D. 换用粘度较高的油 6. 含油轴承是采用 制成的。 A. 塑料 B. 石墨 C 铜合金 D. 多孔质金属 7. 液体摩擦动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增加 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增加 8. 径向滑动轴承的直径增大1倍,长径比不变,载荷不变,则轴承的压强p 变为原来的 倍。 A. 2 B. 1/2 C. 1/4 D. 4 9. 液体动压径向滑动轴承在正常工作时,轴心位置1O 、轴承孔中心位置O 及轴承中的油压分布应如图12-1的 所示。

图12-1 A. (a) B. (b) C. (c) D. (d) 10. 动压液体摩擦径向滑动轴承设计中,为了减小温升,应在保证承载能力的前提下适当 。 A. 增大相对间隙ψ,增大宽径比d B B. 减小ψ,减小d B C. 增大ψ,减小d B D. 减小ψ,增大d B 11. 动压滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴径和轴承表面之间有相对滑动 D. 润滑油温度不超过50C ο 12. 在 情况下,滑动轴承润滑油的黏度不应选得较高。 A. 重载 B. 工作温度高 C. 高速 13. 与滚动轴承相比较,下述各点中, 不能作为滑动轴承的优点。 A. 径向尺寸小 B. 启动容易 C. 运转平稳,噪声低 D. 可用于高速情况下 14. 滑动轴承轴瓦上的油沟不应开在 。 A. 油膜承载区 B. 油膜非承载区 C. 轴瓦剖面上 15. 计算滑动轴承的最小油膜厚度m in h ,其目的是 。 A. 验算轴承是否获得液体摩擦 B. 汁算轴承的部摩擦力 C. 计算轴承的耗油量 D. 计算轴承的发热量 16. 设计动压径向滑动轴承时,若轴承宽径比取得较大,则 。 A. 端泄流量大,承载能力低,温升高 B. 端泄流量大,承载能力低,温升低 C. 端泄流量小,承载能力高,温升低 D. 端泄流量小,承载能力高,温升高 17. 双向运转的液体润滑推力轴承中,止推盘工作面应做成题图12-2 所示的形状。

相关主题
文本预览
相关文档 最新文档