当前位置:文档之家› 圆锥曲线中的热点问题(总结的非常好)

圆锥曲线中的热点问题(总结的非常好)

圆锥曲线中的热点问题(总结的非常好)
圆锥曲线中的热点问题(总结的非常好)

第3讲圆锥曲线中的热点问题

【高考考情解读】 1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中.

1.直线与圆锥曲线的位置关系

(1)直线与椭圆的位置关系的判定方法:

将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.

(2)直线与双曲线的位置关系的判定方法:

将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).

①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,

直线与双曲线相离.

②若a=0时,直线与渐近线平行,与双曲线有一个交点.

(3)直线与抛物线的位置关系的判定方法:

将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).

①当a≠0时,用Δ判定,方法同上.

②当a=0时,直线与抛物线的对称轴平行,只有一个交点.

2.有关弦长问题

有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.

(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2

|x2-x1|或|P1P2|=1+1

k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:

|x2-x1|=(x1+x2)2-4x1x2,

|y2-y1|=(y1+y2)2-4y1y2.

(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用两点间距离公式). 3. 弦的中点问题

有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.

考点一 圆锥曲线的弦长及中点问题

例1 已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为6

3

,右焦点(22,0),斜率为1的直线l

与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (1)求椭圆G 的方程; (2)求△P AB 的面积.

解 (1)由已知得c =22,c a =6

3.

解得a =23,又b 2=a 2-c 2=4. 所以椭圆G 的方程为x 212+y 2

4=1.

(2)设直线l 的方程为y =x +m . 由?????

y =x +m ,x 212+y 24

=1.

得4x 2+6mx +3m 2-12=0.①

设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1

因为AB 是等腰△P AB 的底边, 所以PE ⊥AB .

所以PE 的斜率k =2-

m

4

-3+

3m 4=-1.

解得m =2.

此时方程①为4x 2+12x =0. 解得x 1=-3,x 2=0. 所以y 1=-1,y 2=2. 所以|AB |=3 2.

此时,点P (-3,2)到直线AB :

x -y +2=0的距离d =|-3-2+2|2=32

2,

所以△P AB 的面积S =12|AB |·d =9

2

.

解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方

程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.

椭圆x 2

2

+y 2=1的弦被点????12,12平分,则这条弦所在的直线方程是____________. 答案 2x +4y -3=0

解析 设弦的两个端点为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=1,y 1+y 2=1.

∵A ,B 在椭圆上,∴x 212+y 21=1,x 222+y 2

2=1.

(x 1+x 2)(x 1-x 2)

2+(y 1+y 2)(y 1-y 2)=0,

y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2)

=-1

2,

即直线AB 的斜率为-1

2

.

∴直线AB 的方程为y -12=-1

2????x -12, 即2x +4y -3=0.

考点二 圆锥曲线中的定值、定点问题

例2 已知椭圆C :x 2a 2+y 2b 2=1经过点(0,3),离心率为1

2

,直线l 经过椭圆C 的右焦点F

交椭圆于A 、B 两点,点A 、F 、B 在直线x =4上的射影依次为D 、K 、E . (1)求椭圆C 的方程;

(2)若直线l 交y 轴于点M ,且MA →=λAF →,MB →=μBF →

,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,说明理由;

(3)连接AE 、BD ,试探索当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

(1)待定系数法;(2)用直线的斜率为参数建立直线方程,代入椭圆方程消y 后

可得点A ,B 的横坐标的关系式,然后根据向量关系式MA →=λAF →,MB →=μBF →

把λ,μ用点A ,B 的横坐标表示出来,只要证明λ+μ的值与直线的斜率k 无关即证明了其为定值,否则就不是定值;(3)先根据直线l 的斜率不存在时的特殊情况,看两条直线AE ,BD 的

交点坐标,如果直线AE ,BD 相交于定点的话,这个特殊位置时的交点就是这个定点,这样只要证明直线AE ,BD 都经过这个定点即证明了两直线相交于定点,否则两直线就不相交于定点.

解 (1)依题意得b =3,e =c a =1

2,a 2=b 2+c 2,

∴a =2,c =1,∴椭圆C 的方程为x 24+y 2

3

=1.

(2)因直线l 与y 轴相交,故斜率存在,设直线l 方程为 y =k (x -1),求得l 与y 轴交于M (0,-k ),

又F 坐标为(1,0),设l 交椭圆于A (x 1,y 1),B (x 2,y 2), 由?????

y =k (x -1),x 24+y 23

=1,

消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0, ∴x 1+x 2=8k 2

3+4k 2,x 1x 2=4k 2-123+4k 2

又由MA →=λAF →

,∴(x 1,y 1+k )=λ(1-x 1,-y 1), ∴λ=x 11-x 1,同理μ=x 2

1-x 2

∴λ+μ=x 11-x 1+x 2

1-x 2=x 1+x 2-2x 1x 21-(x 1+x 2)+x 1x 2

=8k 2

3+4k 2-2(4k 2-12)3+4k 21-8k

2

3+4k 2+4k 2-123+4k

2

=-83. 所以当直线l 的倾斜角变化时,直线λ+μ的值为定值-83

.

(3)当直线l 斜率不存在时,直线l ⊥x 轴,则ABED 为矩形,由对称性知,AE 与BD 相交于FK 的中点N ????

52,0, 猜想,当直线l 的倾斜角变化时, AE 与BD 相交于定点N ????52,0, 证明:由(2)知A (x 1,y 1),B (x 2,y 2),

∴D (4,y 1),E (4,y 2),当直线l 的倾斜角变化时,首先证直线 AE 过定点????52,0,

∵l AE :y -y 2=y 2-y 14-x 1

(x -4),

当x =5

2时,y =y 2+y 2-y 14-x 1·????-32

=2(4-x 1)·y 2-3(y 2-y 1)

2(4-x 1)

=2(4-x 1)·k (x 2-1)-3k (x 2-x 1)

2(4-x 1)

-8k -2kx 1x 2+5k (x 1+x 2)

2(4-x 1)

=-8k (3+4k 2)-2k (4k 2-12)+5k ·8k 22(4-x 1)·(3+4k 2)=0.

∴点N ????

52,0在直线l AE 上.

同理可证,点N ????52,0也在直线l BD 上.

∴当直线l 的倾斜角变化时,直线AE 与BD 相交于定点????52,0.

(1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要

解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.

(2)由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).

(2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.

(1)求动圆圆心的轨迹C 的方程;

(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.

(1)解 如图,设动圆圆心为O 1(x ,y ),由题意,得|O 1A |=|O 1M |, 当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中 点,

∴|O 1M |=x 2+42, 又|O 1A |=(x -4)2+y 2, ∴(x -4)2+y 2=x 2+42, 化简得y 2=8x (x ≠0).

又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .

(2)证明 由题意,设直线l 的方程为y =kx +b (k ≠0), P (x 1,y 1),Q (x 2,y 2),

将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.

由根与系数的关系得,x 1+x 2=8-2bk

k 2,

① x 1x 2=b 2

k

2,

因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2

x 2+1,

即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0

将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,

∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 考点三 圆锥曲线中的最值范围问题

例3 (2013·浙江)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2

b

2=1(a >b >0)

的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点 P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭 圆C 1于另一点D . (1)求椭圆C 1的方程;

(2)求△ABD 面积取最大值时直线l 1的方程.

解 (1)由题意得?

????

b =1,

a =2.

所以椭圆C 1的方程为x 24+y 2

=1.

(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4, 故点O 到直线l 1的距离 d =

1

k 2+1

, 所以|AB |=24-d 2

=2

4k 2+3

k 2+1

.

又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.

由?

????

x +ky +k =0,x 2+4y 2

=4. 消去y ,整理得(4+k 2)x 2+8kx =0, 故x 0=-8k 4+k 2.

所以|PD |=8k 2+1

4+k 2

.

设△ABD 的面积为S ,则S =1

2·|AB |·|PD |

=84k 2+34+k 2,

所以S =

32

4k 2

+3+134k 2+3

≤32

2

4k 2

+3·13

4k 2

+3

1613

13

, 当且仅当k =

±

10

2

时取等号. 所以所求直线l 1的方程为y =

±

10

2

x -1. 求最值及参数范围的方法有两种:①根据题目给出的已知条件列出一个关于参

数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域.

已知椭圆C 1与抛物线C 2的焦点均在x 轴上且C 1的中心和C 2的顶点均为坐

标原点O ,从每条曲线上的各取两个点,其坐标如下表所示:

(1)求C 1,C 2(2)过点A (m,0)作倾斜角为π

6的直线l 交椭圆C 1于C ,D 两点,且椭圆C 1的左焦点F 在以

线段CD 为直径的圆的外部,求m 的取值范围.

解 (1)先判断出(-6,0)在椭圆上,进而断定点(1,-3)和(4,-6)在抛物线上,故(3,1)在椭圆上,所以椭圆C 1的方程为x 26+y 2

2=1,抛物线C 2的方程为y 2=9x .

(2)设C (x 1,y 1),D (x 2,y 2),直线l 的方程为y =

3

3

(x -m ),

由???

y =33(x -m )x 2

6+y

2

2=1,

消去y 整理得2x 2-2mx +m 2-6=0, 由Δ>0得Δ=4m 2-8(m 2-6)>0, 即-23

而x 1x 2=m 2-6

2,x 1+x 2=m ,

故y 1y 2=

33(x 1-m )·3

3

(x 2-m ) =1

3[x 1x 2-m (x 1+x 2)+m 2] =m 2-66

.

欲使左焦点F 在以线段CD 为直径的圆的外部, 则FC →·FD →>0,

又F (-2,0),即FC →·FD →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+y 1y 2+4>0. 整理得m (m +3)>0, 即m <-3或m >0.②

由①②可得m 的取值范围是(-23,-3)∪(0,23).

1. 求轨迹与轨迹方程的注意事项

(1)求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变.

(2)求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解(即轨迹上的某些点未能用所求的方程表示).检验方法:研究运动中的特殊情形或极端情形. 2. 定点、定值问题的处理方法

定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明.对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果.

3. 圆锥曲线的最值与范围问题的常见求法

(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;

(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;

②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;

③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.

设直线l :y =k (x +1)与椭圆x 2+3y 2=a 2(a >0)相交于A 、B 两个不同的点,与x 轴相交于点C ,记O 为坐标原点. (1)证明:a 2

>3k 21+3k 2

(2)若AC →=2CB →

,求△OAB 的面积取得最大值时的椭圆方程. (1)证明 依题意,直线l 显然不平行于坐标轴, 故y =k (x +1)可化为x =1

k

y -1.

将x =1

k y -1代入x 2+3y 2=a 2,消去x ,

得????3+1k 2y 2-2y

k

+1-a 2=0,

由直线l 与椭圆相交于两个不同的点,得 Δ=4k 2-4????1k 2+3(1-a 2)>0, 整理得????1k 2+3a 2

>3, 即a 2

>3k 2

1+3k 2

.

(2)解 设A (x 1,y 1),B (x 2,y 2)由①, 得y 1+y 2=2k

1+3k 2

因为AC →=2CB →

,得y 1=-2y 2,

代入上式,得y 2=-2k

1+3k 2

.

于是,△OAB 的面积S =12|OC |·|y 1-y 2|=3

2|y 2|

3|k |1+3k 2≤3|k |23|k |=3

2

. 其中,上式取等号的条件是3k 2=1,即k =±3

3.

由y 2=-2k 1+3k 2,可得y 2=±3

3. 将k =33,y 2=-33及k =-3

3

, y 2=

3

3

这两组值分别代入①, 均可解出a 2=5.

所以,△OAB 的面积取得最大值的椭圆方程是x 2+3y 2=5.

(推荐时间:70分钟)

一、选择题

1. 已知方程x 2k +1+y 2

3-k

=1(k ∈R )表示焦点在x 轴上的椭圆,则k 的取值范围是 ( )

A .k <1或k >3

B .1

C .k >1

D .k <3

答案 B

解析 若椭圆焦点在x 轴上,则????

?

k +1>03-k >0k +1>3-k ,

解得1

2. △ABC 的顶点A (-5,0)、B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹

方程是

( )

A.x 29-y 2

16

=1

B.x 216-y 2

9

=1 C.x 29-y 2

16

=1(x >3)

D.x 216-y 2

9

=1(x >4)

答案 C

解析 如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.

根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线 的右支,方程为x 29-y 2

16

=1(x >3).

3. 设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半

径的圆和抛物线的准线相交,则y 0的取值范围是

( )

A .(0,2)

B .[0,2]

C .(2,+∞)

D .[2,+∞)

答案 C

解析 依题意得:F (0,2),准线方程为y =-2,

又∵以F 为圆心,|FM |为半径的圆和抛物线的准线相交,且|FM |=|y 0+2|, ∴|FM |>4,即|y 0+2|>4, 又y 0≥0,∴y 0>2.

4. 若点O 和点F 分别为椭圆x 24+y 23

=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP

的最大值为

( )

A .2

B .3

C .6

D .8 答案 C

解析 设P (x 0,y 0),则

x 204+y 2

03=1,即y 2

0=3-3x 204

, 又因为F (-1,0),

所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3 =1

4

(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →

∈[2,6], 所以(OP →·FP →)max =6.

5. 已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线在

第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1·e 2的取值范围是

( )

A .(0,+∞)

B .(1

3

,+∞)

C .(1

5,+∞)

D .(1

9

,+∞)

答案 B

解析 设椭圆与双曲线的半焦距为c , PF 1=r 1,PF 2=r 2. 由题意知r 1=10,r 2=2c , 且r 1>r 2,2r 2>r 1, ∴2c <10,2c +2c >10, ∴52

c

2<4, ∴e 2=2c 2a 双=2c r 1-r 2=2c 10-2c =c 5-c ;

e 1=

2c 2a 椭=2c r 1+r 2=2c 10+2c =c 5+c

. ∴e 1·e 2=c 225-c 2=125

c 2-1>1

3. 二、填空题

6. 直线y =kx +1与椭圆x 25+y 2

m

=1恒有公共点,则m 的取值范围是________.

答案 m ≥1且m ≠5

解析 ∵方程x 25+y 2

m =1表示椭圆,

∴m >0且m ≠5.

∵直线y =kx +1恒过(0,1)点, ∴要使直线与椭圆总有公共点,应有: 025+12

m

≤1,m ≥1, ∴m 的取值范围是m ≥1且m ≠5.

7. 设F 1、F 2为椭圆x 24

+y 2

=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,

当四边形PF 1QF 2面积最大时,PF →1·PF →

2的值等于________. 答案 -2

解析 易知当P ,Q 分别在椭圆短轴端点时,四边形PF 1QF 2面积最大. 此时,F 1(-3,0),F 2(3,0),不妨设P (0,1), ∴PF →1=(-3,-1),PF →

2=(3,-1), ∴PF →1·PF →2=-2.

8. 已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴

的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为________. 答案

52

2

-1 解析 过点P 作抛物线的准线的垂线,垂足为A ,交y 轴于B ,由抛物线方程为y 2=4x 得焦点F 的坐标为(1,0),准线为x =-1,则由抛物线的定义可得 d 1+d 2=|P A |-|AB |+d 2=|PF |-1+d 2, |PF |+d 2大于或等于焦点F 点P 到直线l , 即|PF |+d 2的最小值为|1-0+4|2=52

2,

所以d 1+d 2的最小值为52

2

-1.

9. (2013·安徽)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得

∠ACB 为直角,则a 的取值范围为________. 答案 [1,+∞)

解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,

由?

????

y =x 2

x 2+(y -a )2

=a 得y 2+(1-2a )y +a 2-a =0. 即(y -a )[y -(a -1)]=0,由已知?

????

a >0a -1≥0,解得a ≥1.

三、解答题

10.已知直线x -2y +2=0经过椭圆C :x 2a 2+y 2

b

2=1(a >b >0)的左顶点A 和上顶点D ,椭圆C

的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线l :x =10

3分

别交于M ,N 两点. (1)求椭圆C 的方程;

(2)求线段MN 的长度的最小值.

解 (1)如图,由题意得椭圆C 的左顶点为A (-2,0),上顶点为 D (0,1),即a =2,b =1. 故椭圆C 的方程为x 24

+y 2

=1.

(2)直线AS 的斜率显然存在且不为0,

设直线AS 的方程为y =k (x +2)(k >0),解得M (103,16k

3),且将直线方程代入椭圆C 的方

程,

得(1+4k 2)x 2+16k 2x +16k 2-4=0.

设S (x 1,y 1),由根与系数的关系得(-2)·x 1=16k 2-4

1+4k 2.

由此得x 1=2-8k 21+4k 2,y 1=4k 1+4k 2,即S (2-8k 21+4k 2,4k

1+4k 2). 又B (2,0),则直线BS 的方程为y =-1

4k (x -2),

联立直线BS 与l 的方程解得N (103,-1

3k ).

∴|MN |=????16k 3+13k =16k 3+1

3k ≥2

16k 3·13k =8

3

. 当且仅当16k 3=13k ,即k =14时等号成立,故当k =14时,线段MN 的长度的最小值为8

3.

11.在平面直角坐标系中,点P (x ,y )为动点,已知点A (2,0),B (-2,0),直线P A 与

PB 的斜率之积为-1

2

.

(1)求动点P 的轨迹E 的方程;

(2)过点F (1,0)的直线l 交曲线E 于M ,N 两点,设点N 关于x 轴的对称点为Q (M 、Q 不重合),求证:直线MQ 过x 轴上一定点. (1)解 由题知:y x +2·y x -2=-1

2.

化简得x 22

+y 2

=1(y ≠0).

(2)证明 方法一 设M (x 1,y 1),N (x 2,y 2),Q (x 2,-y 2), l :x =my +1,代入x 22+y 2

=1(y ≠0)整理得

(m 2+2)y 2+2my -1=0. y 1+y 2=-2m m 2+2,y 1y 2=-1

m 2+2,

MQ 的方程为y -y 1=y 1+y 2

x 1-x 2(x -x 1),

令y =0,

得x =x 1+y 1(x 2-x 1)

y 1+y 2

=my 1+1+my 1(y 2-y 1)y 1+y 2=2my 1y 2

y 1+y 2+1=2.

∴直线MQ 过定点(2,0).

方法二 设M (x 1,y 1),N (x 2,y 2),Q (x 2,-y 2), l :y =k (x -1),代入x 22

+y 2

=1(y ≠0)整理得

(1+2k 2)x 2-4k 2x +2k 2-2=0, x 1+x 2=4k 2

1+2k 2,x 1x 2=2k 2-21+2k 2,

MQ 的方程为y -y 1=y 1+y 2

x 1-x 2(x -x 1),

令y =0,得x =x 1+y 1(x 2-x 1)

y 1+y 2

=x 1+k (x 1-1)(x 2-x 1)k (x 1+x 2-2)

2x 1x 2-(x 1+x 2)

x 1+x 2-2

=2.

∴直线MQ 过定点(2,0).

12.(2013·课标全国Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外

切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;

(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB |.

解 (1)设圆P 的半径为r , 则|PM |=1+r ,|PN |=3-r , ∴|PM |+|PN |=4>|MN |,

∴P 的轨迹是以M 、N 为焦点的椭圆,左顶点除外, 且2a =4,2c =2,∴a =2,c =1, ∴b 2=a 2-c 2=3.

∴P 的轨迹曲线C 的方程为x 24+y 2

3=1(x =-2).

(2)由(1)知:2r =(|PM |-|PN |)+2≤|MN |+2=4, ∴圆P 的最大半径为r =2.此时P 的坐标为(2,0). 圆P 的方程为(x -2)2+y 2=4. ①当l 的方程为x =0时,|AB |=23, ②设l 的方程为y =kx +b (k ∈R ), ?????

|-k +b |1+k 2=1|2k +b |1+k 2

=2

解之得:????? k =24b =2或?????

k =-24b =-2. ∴l 的方程为y =

24x +2,y =-2

4

x - 2. 联立方程???

x 24+y 2

3

=1y =2

4x +

2

化简:7x 2+8x -8=0

∴x 1+x 2=-87,x 1x 2=-8

7

∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2=18

7

.

人教版九年级数学上册第二十二章二次函数 知识点总结

右对称地描点画图 .一般我们选取的五点为:顶点、与 y 轴的交点 0 ,c 、以及 . c - , ? ? 2a ? . 2a 时, y 随 x 的增大而减小;当 2a 时, y 随 x 的增大而增大; 第二十二章 二次函数 一、二次函数的有关概念: 1、二次函数的定义: 一般地,形如 y = ax 2 + bx + c ( a ,b ,c 是常数,a ≠ 0 )的函数,叫做二次函数。 2、二次函数解析式的表示方法 (1) 一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 ); (2) 顶点式: y = a ( x - h )2 + k ( a , h , k 为常数, a ≠ 0 ); (3)两根式:y = a ( x - x 1 )(x - x 2 )( a ≠ 0 ,x 1 ,x 2 是抛物线与 x 轴两交点的横坐标) 二、二次函数 y = ax 2 + bx + c 图象的画法 1.基本方法:描点法 注 : 五 点 绘 图 法 。 利 用 配 方 法 将 二 次 函 数 y = ax 2 + bx + c 化 为 顶 点 式 y = a ( x - h )2 + k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左 ( ) (0 , ) 关于对称轴对称的点 (2h ,c ) 、与 x 轴的交点 (x 1 ,0) ,(x 2 ,0)(若与 x 轴没有 交点,则取两组关于对称轴对称的点). 2.画草图 抓住以下几点:开口方向,对称轴,顶点,与 x 轴的交点,与 y 轴的 交点. 三、二次函数的图像和性质 1.二次函数 y = ax 2 + bx + c 的性质 ( 1 ) . 当 a > 0 时,抛物线开口向上,对称轴为 ? b 4ac - b 2 ? 4a x =- b 2a ,顶点坐标为 当 x <- b b x >- 当 x =- b 4a c - b 2 2a 时, y 有最小值 4a . ( 2 ) . 当 a < 0 时,抛物线开口向下,对称轴为 x =- b 2a ,顶点坐标为

2019-2020学年高中物理 第05章 曲线运动章末总结(讲)(提升版)(含解析)新人教版必修2.doc

2019-2020学年高中物理第05章曲线运动章末总结(讲)(提升版) (含解析)新人教版必修2 ★知识网络

※知识点一、运动的合成与分解 一、研究曲线运动的基本方法 利用运动的合成与分解研究曲线运动的思维流程:(欲知)曲线运动规律――→ 等效 分解 (只需研究)两直线运动规律――→ 等效 合成 (得知)曲线运动规律。 二、运动的合成与分解 1.合运动与正交的两个分运动的关系 (1)s=x2+y2——(合运动位移等于分运动位移的矢量和) (2)v=v21+v22——(合运动速度等于分运动速度的矢量和) (3)t=t1=t2——(合运动与分运动具有等时性和同时性) 2.小船渡河问题的分析 小船渡河过程中,随水漂流和划行这两个分运动互不干扰,各自独立而且具有等时性。 (1)渡河时间最短问题:只要分运动时间最短,则合运动时间最短,即船头垂直指向对岸渡河 时间最短,t min=d v船 。 (2)航程最短问题:要使合位移最小。当v水v船时,船不能垂直到达河岸,但仍存在最短航程,当v船与v合垂直时,航程最短。 3.关联物体速度的分解 在运动过程中,绳、杆等有长度的物体,其两端点的速度通常是不一样的,但两端点的速度是有联系的,我们称之为“关联”速度,解决“关联”速度问题的关键两点:一是物体的实际运动是合运动,分速度的方向要按实际运动效果确定;二是沿杆(或绳)方向的分速度大小相等。特别提醒: 关联物体运动的分解

1.常见问题:物体斜拉绳或绳斜拉物体,如图所示。 2.规律:由于绳不可伸长,绳两端所连物体的速度沿着绳方向的分速度大小相同。 3.速度分解方法:图甲中小车向右运动,拉绳的结果一方面使滑轮右侧绳变长,另一方面使绳绕滑轮转动。由此可确定车的速度应分解为沿绳和垂直于绳的两个分速度。甲、乙两图的速度分解如图所示。 【典型例题】 【例题1】如图所示,以速度v沿竖直杆匀速下滑的物体A用轻绳通过定滑轮拉物体B,当绳与水平面夹角为θ时,物体B的速度为( ) A.v B. v sin θ C.v cos θD.v sin θ 【答案】D 【解析】将A的速度分解为沿绳子方向和垂直于绳子方向,根据平行四边形定则得, v B=v sin θ,故D正确。 【针对训练】 如图所示,杆AB沿墙滑下,当杆与水平面的夹角为α,B端的滑动速度为v B时,求A端的滑动速度v A。

圆锥曲线常用结论

圆锥曲线常用结论 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线常用结论(自己选择) 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是 以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、 P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一 点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点, 连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

九年上第二十二章 二次函数全章知识点总结

二次函数 二次函数的定义:一般地,形如 ()0,,2≠++=a c b a c bx ax y 是常数的函数,叫做二次函数,x 是 自变量,c b a ,,分别是函数解析式的二次项系数、一次项系数和常数项。 开口方向:二次函数c bx ax y ++=2图像是一条抛物线,二次项系数()0≠a a 决定二次函数图像的开口方向,当0>a ,二次函数图像开口向上,当0a ,a 越大,抛物线的开口越小。 在直角坐标系中画出二次函数2 2 1x y -=,2x y -=,22x y -=的 图像,观察图像可知三个二次函数图像的顶点坐标,对称轴都相同,开口大小逐渐减小。规律:0

相反的。0>a ,当a b x 2-<时,y 随x 的增大而减小,当a b x 2- >时,y 随x 的增大而增大。0时,y 随x 的增大而减小。 二次函数的顶点:二次函数对称轴与二次函数图像的交点便是二 次函数的顶点。二次函数的顶点坐标是???? ??--a b ac a b 44,22,当 0>a 时,二次函数的顶点是图像的最低点。0a 时,二次函数取得最小值 a b ac 442-,无最大值。当0a 时,二次函数取得最小值a b ac 442 -,最大值是21,y y 中的较大者。当0

人教版高中物理必修2《第五章曲线运动》章末总结教案

人教版高中物理必修2 《第五章曲线运动》章末总结★知识网络

【教学过程】 ★重难点一、运动的合成与分解★ 一、研究曲线运动的基本方法 利用运动的合成与分解研究曲线运动的思维流程:(欲知)曲线运动规律――→ 等效 分解 (只需研究)两直线运动规律――→ 等效 合成 (得知)曲线运动规律。 二、运动的合成与分解 1.合运动与正交的两个分运动的关系 (1)s=x2+y2——(合运动位移等于分运动位移的矢量和) (2)v=v21+v22——(合运动速度等于分运动速度的矢量和) (3)t=t1=t2——(合运动与分运动具有等时性和同时性) 2.小船渡河问题的分析 小船渡河过程中,随水漂流和划行这两个分运动互不干扰,各自独立而且具有等时性。 (1)渡河时间最短问题:只要分运动时间最短,则合运动时间最短,即船头垂直指向对岸渡河时间最短, t min=d v船。 (2)航程最短问题:要使合位移最小。当v水 v船时,船不能垂直到达河岸,但仍存在最短航程,当v船与v合垂直时,航程最短。 3.关联物体速度的分解 在运动过程中,绳、杆等有长度的物体,其两端点的速度通常是不一样的,但两端点的速度是有联系的,我们称之为“关联”速度,解决“关联”速度问题的关键两点:一是物体的实际运动是合运动,分速度的方向要按实际运动效果确定;二是沿杆(或绳)方向的分速度大小相等。

特别提醒: 关联物体运动的分解 1.常见问题:物体斜拉绳或绳斜拉物体,如图所示。 2.规律:由于绳不可伸长,绳两端所连物体的速度沿着绳方向的分速度大小相同。 3.速度分解方法:图甲中小车向右运动,拉绳的结果一方面使滑轮右侧绳变长,另一方面使绳绕滑轮转动。由此可确定车的速度应分解为沿绳和垂直于绳的两个分速度。甲、乙两图的速度分解如图所示。 【典型例题】小船匀速横渡一条河流,宽200m,当船头垂直对岸方向航行时,从出发点经时间400s到达正对岸下游120m处,求: (1)水流的速度; (2)若船头保持与河岸成某个角度向上游航行,使船航行的轨迹垂直于岸,则船从出发点到达正对岸所需要的时间. 【答案】(1)(2) 【解析】根据分运动与合运动的等时性,即可求解水流的速度;根据运动学公式,求得船在静水中速度,当船的合速度垂直河岸时,依据矢量的合成法则,求得合速度大小,从而求得到达正对岸的时间. (1)当船头垂直对岸方向航行时,从出发点经时间400s到达正对岸下游120m处,将运动分解成水流方向与垂直水流方向,再依据分运动与合运动具有等时性,那么设水流速度为 (2)由题意可知,设船在静水中速度为v c,则有: 当船头保持与河岸成某个角度向上游航行,使船航行轨迹垂直于岸,则合速度大小 因此船从出发点到达正对岸所需要的时间

圆锥曲线的综合问题(答案版)讲课教案

圆锥曲线的综合问题 【考纲要求】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即?? ?==++0 ),(0y x F c By Ax ,消去y 后得02 =++c bx ax (1)当0≠a 时,设方程02 =++c bx ax 的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交;Δ=0?直线与圆锥曲线C 相切;Δ<0?直线与圆锥曲线C 无公共点. (2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算 设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB | =1+k 2 |x 1-x 2|=]4))[(1(212212x x x x k -++=a k ? ? +2 1=1+1 k 2·|y 1-y 2|. (抛物线的焦点弦长|AB |=x 1+x 2+p =2p sin 2 θ ,θ为弦AB 所在直线的倾斜角). 3、一种方法 点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

人教版九年级数学上册第二十二章二次函数知识点总结

第二十二章 二次函数 一、二次函数的有关概念: 1、二次函数的定义: 一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 2、二次函数解析式的表示方法 (1) 一般式: 2 y ax bx c =++(a ,b ,c 为常数,0a ≠); (2) 顶点式: 2()y a x h k =-+(a ,h ,k 为常数,0a ≠); (3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 二、二次函数 2 y ax bx c =++图象的画法 1.基本方法:描点法 注:五点绘图法。利用配方法将二次函数 2 y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左 右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点( ) 0c ,、以及 ()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有 交点,则取两组关于对称轴对称的点). 2.画草图 抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 三、二次函数的图像和性质 1.二次函数 2 y ax bx c =++的性质 (1). 当0a >时,抛物线开口向上,对称轴为 2b x a =- ,顶点坐标为 2424b ac b a a ?? -- ???,. 当 2b x a <- 时,y 随x 的增大而减小;当2b x a >- 时,y 随x 的增大而增大; 当 2b x a =- 时,y 有最小值244ac b a -.

高中物理必修二知识点总结:第五章曲线运动(人教版)

高中物理必修二知识点总结:第五章曲线运动(人教版)这一章是在前边几章的学习基础之上,研究一种更为复杂的运动方式:曲线运动。这也是运动学中更为重要的一部分内容,本章的重难点就在于抛体运动、圆周运动。 考试的要求: Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。 Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。 要求Ⅱ:曲线运动、抛体运动、圆周运动。 知识构建: 新知归纳: 一、曲线运动 ●曲线运动 1、定义:物体的运动轨迹不是直线的运动称为曲线运动。 2.物体做曲线运动的条件 (1)当物体所受合力的方向跟它的速度方向不在同一直线上时,这个合力总能产生一个改变速度方向的效果,物体就一定做曲线运动。 (2)当物体做曲线运动时,它的合力所产生的加速度的方向与速度方向也不在同一直线上。 (3)物体的运动状态是由其受力条件及初始运动状态共同确定的. 2、曲线运动的特点:质点在某一点的速度方向,就是通过该点的曲线的切线方向.质点的速度方向时刻在改变,所以曲线运动一定是变速运动。 物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度

变化时物体做变加速运动)。 3、曲线运动的速度方向 (1)在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线切线的方向。 (2)曲线运动的速度方向时刻改变,无论速度的大小变或不变,运动的速度总是变化的,故曲线运动是一种变速运动。 4、曲线运动的轨迹:作曲线运动的物体,其轨迹向合外力所指向的一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总是向圆心弯曲等。 ●曲线运动常见的类型: (1)a=0:匀速直线运动或静止。 (2)a 恒定:性质为匀变速运动,分为:①v 、a 同向,匀加速直线运动;②v 、a 反向,匀减速直线运动;③v 、a 成角度,匀变速曲线运动(轨迹在v 、a 之间,和速度v 的方向相切,方向逐渐向a 的方向接近,但不可能达到。) (3)a 变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时间变化。 二、质点在平面内的运动 ●合运动和分运动 当物体实际发生的运动较复杂时,我们可将其等效为同时参与几个简单的运动,前者——实际发生的运动称作合运动,后者则称作物体实际运动的分运动. ●运动的合成和分解 已知分运动求合运动,叫做运动的合成;已知合运动求分运动,叫做运动的分解,这种双向的等效操作过程,是研究复杂运动的重要万法. 1、合运动与分运动的关系:等时性;独立性;等效性。 2、运动的合成与分解的法则:平行四边形定则 3、分解原则:根据运动的实际效果分解,物体的实际运动为合运动。 其运动规律为: (1)水平方向:a x =0,v x =v 0,x=v 0t 。 (2)竖直方向:a y =g ,v y =gt ,y=gt 2/2。 (3)合运动:a=g ,22y x t v v v +=,22y x s +=。v t 与v 0方向夹角为θ,tan θ=gt/v 0,s 与x 方向夹角为α,tan α=gt/2v 0. 平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定,即g h t 2= ,与v 0无关。水平射程s=v 0g h 2. ●运动的合成和分解的应用 (1)进行运动的合成与分解,就是对描述运动的各物理量如位移、速度、加速度等矢量用平行四边形定则求和或求差.运动的合成与分解遵循如下原理:

圆锥曲线中弦长问题的解决策略

圆锥曲线中弦长问题的解决策略 张秀梅 张建强 弦长问题在高考题及模拟题中经常出现,从理论上讲,利用弦长公式 a k x x k AB /1||1||2212?+=-+=就能解决问题。但实际中,除个别简单题(本文从略) 外,直接利用弦长公式会使问题变得非常繁琐。本文试图对此进行系统的总结,给出不同类型题目的解决策略。 一、两线段相等 类型I 有相同端点的不共线线段 例1、(2204,北京西城区二模) 已知定点)4,2(--A ,过点A 做倾斜角为? 45的直线L ,交抛物线)0(22>=p px y 于A 、 B 两点,且|||||| AC BC AB 、、成等比数列 (1)求抛物线方程; (2)问(1)中抛物线上是否存在D ,使得|||| DC DB =成立?若存在,求出D 的坐标。 策略分析:由于D 、B 、C 三点不共线,要使得|||| DC DB =成立,只需取BC 中点P ,满足BC DP ⊥。 由于这种类型题目的常见性与基础性,我们再举一个例子作为练习: 例2、(2005,孝感二模) 已知)2()2(),,1(),0,(b a b a y b x a -⊥+== (1)求点P(x,y)的轨迹方程C ; (2)若直线L :b kx y +=(0≠k )与曲线C 交与AB 两点,D(0,-1),且有||||BD AD =,试求b 的取值范围。 类型II 共线线段 例3、直线L 与x 轴不垂直,与抛物线22+=x y 交于AB 两点,与椭圆2222=+y x 交于CD 两点, 与x 轴交于点M )0,(0x ,且|||| BD AC =,求0x 的取值范围。 策略分析:不妨设A ),(11y x 在B ),(22y x 下方,C ),(33y x 在D ),(44y x 下方,由于ABCD 共线,要使 ||||BD AC =,只需4213x x x x -=-,即4321x x x x ==+,结合韦达定理可得结果。 二、三线段相等 类型I 正三角形 例 4、(2003,北京春招) 已知动圆过定点P(1,0)且与定直线L :x=-1相切,点C 在L 上 (1)求动圆圆心的轨迹M 的方程;

第二十二章 二次函数 知识点总结

第二十二章二次函数知识点总结 【考点一】二次函数的概念和图像 1、二次函数的定义:一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 其中,)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数 的性质 (3)|a|越大,抛物线的开口越小 3、 4、二次函数的图像 (1) (2) 5、求抛物线的顶点、对称轴的方法 (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以连线的垂直平分线是抛物 线的对称轴,对称轴与抛物线的交点是顶点。 6、二次函数图像的画法——五点法 (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

附:几种特殊的二次函数的图像特征如下: 【考点二】二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3) 【考点三】二次函数的最值 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当a b x 2- =时,a b a c y 442-=最值 。抛物线开口向上,顶点处取得最小值;开口向下,顶点处取得最大值。 如果自变量的取值范围是21x x x ≤≤,那么,首先要看a b 2- 是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=a b 2-时,a b a c y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内 的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=22 2最大,当1x x =时, c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大, 当2x x =时,c bx ax y ++=222最小。

曲线运动知识点详细归纳

第四章曲线运动 第一模块:曲线运动、运动的合成和分解 『夯实基础知识』 ■考点一、曲线运动 1、定义:运动轨迹为曲线的运动。 2、物体做曲线运动的方向: 做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。 3、曲线运动的性质 由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。 由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。 4、物体做曲线运动的条件 (1)物体做一般曲线运动的条件 物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。 (2)物体做平抛运动的条件 物体只受重力,初速度方向为水平方向。 可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。 (3)物体做圆周运动的条件 物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内) 总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。 5、分类 ⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。 ⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。 ■考点二、运动的合成与分解 1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。 2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3、合运动与分运动的关系: ⑴运动的等效性(合运动和分运动是等效替代关系,不能并存); ⑵等时性:合运动所需时间和对应的每个分运动时间相等 ⑶独立性:一个物体可以同时参与几个不同的分运动,物体在任何一个方向的运动,都按其本身的规律进行,不会因为其它方向的运动是否存在而受到影响。

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

圆锥曲线经典结论总结(教师版)

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

人教版初中数学第二十二章二次函数知识点汇总

第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.1 二次函数 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 22.1.2 二次函数2 y ax =的图象和性质 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小. 例1.若抛物线y=ax 2经过P (1, ﹣2),则它也经过 ( ) A .(2,1) B .(﹣1,2) C .(1,2) D .(﹣1,﹣2) 【答案】 【解析】 试题解析:∵抛物线y=ax 2经过点P (1,-2), ∴x=-1时的函数值也是-2, 即它也经过点(-1,-2). 故选D . 考点:二次函数图象上点的坐标特征. 例2.若点(2,-1)在抛物线2 y ax =上,那么,当x=2时,y=_________

【解析】 试题分析:先把(2,-1)直接代入2 y ax =即可得到解析式,再把x=2代入即可. 由题意得14-=a ,41-=a ,则2 4 1x y -=, 当2=x 时,.144 1-=?-=y 考点:本题考查的是二次函数 点评:解答本题的关键是掌握二次函数图象上的点适合这个二次函数的关系式. 2. 2y ax c =+的性质: 上加下减. 例1.若抛物线 y=ax 2+c 经过点P (l ,-2),则它也经过 ( ) A .P 1(-1,-2 ) B .P 2(-l , 2 ) C .P 3( l , 2) D .P 4(2, 1) 【答案】A 【解析】 试题分析:因为抛物线y=ax 2+c 经过点P (l ,-2),且对称轴是y 轴,所以点P (l ,-2)的对称点是(-1,-2),所以P 1(-1,-2)在抛物线上,故选:A. 考点:抛物线的性质. 例2.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】 试题分析:∵函数y=ax+b 经过(1,3),(0,﹣2), ∴a b 3b 2+=??=-?,解得a 5b 2=??=-? . ∴a ﹣b=5+2=7.

圆锥曲线三种弦长问题

圆锥曲线三种弦长问题的探究 一、一般弦长计算问题: 例1、已知椭圆()22 22:10x y C a b a b +=>>,直线1:1x y l a b -=被椭圆C 截得的弦长为 且e = ,过椭圆C 2l 被椭圆C 截的弦长AB , ⑴求椭圆的方程;⑵弦AB 的长度. 思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由1l 被椭圆C 截得的弦长为2 2 8a b +=,………① 又e =,即2223c a =,所以22 3a b =………………………….② 联立①②得2 2 6,2a b ==,所以所求的椭圆的方程为22 162 x y +=. ⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:)2y x =-, 代入椭圆C 的方程,化简得,2 51860x x -+= 由韦达定理知,1212186 ,55 x x x x +== 从而12x x -= = , 由弦长公式,得12AB x =-== , 即弦AB 点评:本题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数22,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式。 二、中点弦长问题: 例2、过点()4,1P 作抛物线2 8y x =的弦AB ,恰被点P 平分,求AB 的所在直线方程及弦 AB 的长度。 思路分析:因为所求弦通过定点P ,所以弦AB 所在直线方程关键是求出斜率k ,有P 是弦 的中点,所以可用作差或韦达定理求得,然后套用弦长公式可求解弦长. 解法1:设以P 为中点的弦AB 端点坐标为()()1122,,,A x y B x y , 则有22 11228,8y x y x ==,两式相减,得()()()1212128y y y y x x -+=-

九年级数学上册 第1章 二次函数章末总结提升练习 (新版)浙教版

章末总结提升 第1课时(见A 本11页) , 探究点 1 二次函数的对称性) 【例1】 xx·临沂 足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(t 0 1 2 3 4 5 6 7 … h 8 14 18 20 20 18 14 … 下列结论:①足球距离地面的最大高度为20 m ;②足球飞行路线的对称轴是直线t =4.5;③足球被踢出9 s 时落地;④足球被踢出1.5 s 时,距离地面的高度是11 m .其中正确结论的个数是( B ) A .1 B .2 C .3 D .4 变式 在直角坐标系中,抛物线y =mx 2 -2mx -2(m≠0)与y 轴交于点A ,其对称轴与x 轴交于点B. (1)若该抛物线在2<x <3这一段位于直线AB 的下方,并且在3<x <4这一段位于直线 AB 的上方,则该抛物线的解析式为__y =2x 2 -4x -2__. (2)抛物线的图象在-1

第五章曲线运动知识点总结教学内容

曲线运动知识点总结 一、曲线运动 1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。 2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°) 性质:变速运动 3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。 4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。 若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大; 当0°<θ<180°,速度增大; 当θ=90°,速度大小不变。 5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。 6、关于运动的合成与分解 (1)合运动与分运动 定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。那几个运动叫做这个实际运动的分运动. 特征:① 等时性;② 独立性;③ 等效性;④ 同一性。 (2)运动的合成与分解的几种情况: ①两个任意角度的匀速直线运动的合运动为匀速直线运动。 ②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。 ③两个匀变速直线运动合成时,当合速度与合加速度共线时,合运动为匀变速直线运动;当合速度与合加速度不共线时,合运动为曲线运动。 二、小船过河问题 1、渡河时间最少:无论船速与水速谁大谁小,均是船头与河岸垂直,渡河时间min d t v =船 ,合速度方向沿v 合的方向。 2、位移最小: ①若v v >船水,船头偏向上游,使得合速度垂直于河岸,船头偏上上游的角度为cos v v θ= 水船 ,最小位移为 min l d =。 ②若v v <船水,则无论船的航向如何,总是被水冲向下游,则当船速与合速度垂直时渡河位移最小,船头偏向上游的角度为cos v v θ= 船水 ,过河最小位移为min cos v d l d v θ= =水船 。 三、抛体运动 1、平抛运动定义:将物体以一定的初速度沿水平方向抛出,且物体只在重力作用下(不计空气阻力)所做的运动,叫做平抛运动。平抛运动的性质是匀变速曲线运动,加速度为g 。 类平抛:物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。 2、平抛运动可分解为水平方向的匀速直线运动和竖直方向的初速度为零的匀加速直线运动(自由落体)。 水平方向(x ) 竖直方向(y ) ①速度 0x v v = y v gt = 合速度:t v = ②位移 0x v t = 2 12 y gt = 合位移: x = 0tan 2y gt x v α== ※3、重要结论: y x 0 gt tan θv v v ==

相关主题
文本预览
相关文档 最新文档