当前位置:文档之家› 污水处理构筑物的计算

污水处理构筑物的计算

污水处理构筑物的计算
污水处理构筑物的计算

3 污水处理构筑物的计算

3.1细格栅

3.1.1设计说明

格栅系由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等。以减轻后续处理构筑物的处理负荷,并保证其正常运行。

格栅的进出水水质见表3-1所示。

表3-1 格栅进出水水质

水质指标BOD5COD SS

进水6400 13000 2000

去除率0 0 10%

出水6400 13000 1800

3.1.2设计计算

本工艺采用矩形断面调节池前细格栅一道,采用机械清渣。

(1)栅前水深的确定

式中,Q——设计流量,设计中取为0.0289m3/s;

h——栅前水深,m;

v1——栅前渠道水流流速,设计中取为0.6m/s。

(2)细格栅的栅条间隙数

式中,n——格栅栅条间隙数,个;

Q——设计流量,m3/s;

α——格栅倾角,(o);

b——格栅栅条间隙,m;

h——格栅栅前水深,m;

v——格栅过栅流速,m/s。

过栅流速采用为0.7m/s,Q=0.0289m3/s,栅条间隙b=0.01m,栅前水深为0.16m,格栅安装倾角α=60o,则

个,取为个。

(3)格栅槽有效宽度(B)

式中,B——格栅槽有效宽度,m;

S——每根格栅条的宽度,m。

设计中采用Φ10mm圆钢为栅条,即取S=0.01m,则

,取为。

(4)进水渠道渐宽部分的长度

设进水渠道宽B1=0.25m,渐宽部分展开角=20o,此时进水渠道内的流速为:

,在~范围之内,符合要求。

则,进水渠道渐宽部分长度:

(5)出水渠道的渐窄部分的长度

(6)过栅水头损失

式中,h1——水头损失,m;

β——格栅条的阻力系数,栅条断面为锐边矩形断面β=2.42;

k——格栅受污物堵塞时的水头损失增大系数,一般采用k=3。

(7)槽后明渠的总高度

式中,H——槽后明渠的总高度,m;

h2——明渠超高,m,设计中取h2=0.3m。

(8)格栅槽总长度

式中,L——格栅槽总长度,m;

H1——格栅明渠的深度,m,H1=h+h2。

(9)每日栅渣量

式中,W——每日栅渣量,m3/d;

ω1——栅渣量,取ω1=0.1m3/103m3污水。

故采用机械清渣。

根据《给水排水设计手册》第9册,选用XWB-Ⅲ型背耙式格栅除污机。

表3-2 XWB-Ⅲ型背耙式格栅除污机性能

图3-1 格栅计算示意图

3.2调节池

3.2.1设计说明

(1)水量调节池实际是一座变水位的贮水池,进水一般为重力流,出水用泵提升。池中最高水位不高于进水管的设计高度,最低水位为死水位。

(2)调节池的形状宜为方形或圆形,以利于形成完全混合状态。长形池宜设多个进口和出口。

(3)调节池不具有废水处理的功能。

3.2.2设计计算

本设计水力停留时间取T=8h,设计流量Q=2500m3/d=104.2m3/h。

(1)调节池的尺寸

调节池体积:V=QT=104.2×8=833(m3)

取池子总高度H=5.5m,其中超高0.5m,有效水深h=5m,则池面积为

池长取16m,池宽取12m,则实际有效水深为

取超高0.5m,则调节池的实际池深H=4.3+0.5=4.8m

(2)潜污泵

调节池集水坑内设2台上海阳光泵业制造有限公司生产的QW系列无堵塞移动式潜污泵(1用1备),水泵的基本性能参数见表3-3。

表3-3 潜水排污泵性能

型号

流量

(m3/h)

扬程

(m)

转速

(r/min)

电动机功率

(kW)

效率

(%)

出口直径

(mm)

QW125-130

130 15 1460 11 62 125

(3)搅拌

为防止污水中悬浮物的沉积和使水质均匀,可采用水泵强制循环进行搅拌,也可以采用专用搅拌设备进行搅拌。

水泵强制循环搅拌,是在调节池底部设穿孔管,穿孔管与水泵压力水相连,用压力水进行搅拌。水泵强制循环搅拌的优点是不需要在池内安装其它专用搅拌设备,并可根据悬浮沉积的程度随时调节压力水循环的强度。其缺点是穿孔管容易堵塞,检修不方便,影响使用。目前工程上常用潜水搅拌机进行搅拌。

根据调节池的有效容积,搅拌功率一般按1m3污水4~8W选配搅拌设备。本工程取5W,调节池选配潜水搅拌机的总功率为2500×5=12.5(kW)。

选择5台晨容环保公司出产的QJB型潜水搅拌机(不锈钢),均匀安装在调节池内。

表3-4 潜水搅拌器电动机性能

型号功率

(kW) 电流

(A)

叶轮直径

(mm)

叶轮转速

(r/min)

重量

(kg)

QJB2.5/8-400/3-7408 2.5 9 400 740 70

3.3竖流沉淀池

3.3.1设计说明

竖流沉淀池是利用污水从沉淀池中心管流入,沿着中心管向下流动,经中心管下部的反射板折向上方流动,污水以流速v自下向上流动,污水中的颗粒以沉速u向下沉降,当u>v时颗粒开始下沉,u=v时颗粒悬浮污水中,u<v时,颗粒随污水流出。上升至沉淀池顶部的污水用设在沉淀池四周的锯齿形三角堰流入集水槽排出。竖流沉淀池由进水装置、中心管、出水装置、沉淀区、污泥斗及排泥装置组成。其进出水水质见表3-5所示。

表3-5 竖流沉淀池进出水水质

水质指标BOD5COD SS

进水6400 13000 1800

去除率25%20%50%

出水4800 10400 900

3.3.2设计计算

设计中取1座竖流沉淀池,设计流量。

(1)中心进水管面积与直径

式中,A0——沉淀池中心进水管面积(m2);

Q——设计流量(m3/s);

v0——中心进水管流速,设计取为0.03m/s。

d0——中心进水管直径(m)。

(2)中心进水管喇叭口与反射板之间的缝隙高度

式中,h3——中心进水管喇叭口与反射板之间的缝隙高度(m);

v1——污水从中心进水管喇叭口与反射板之间的缝隙流出速度(m/s),一般取为0.02 m/s~0.03m/s;

d1——喇叭口直径(m),一般采用。

设计中取,。

(3)沉淀池总面积及沉淀池直径

式中,A1——沉淀池的沉淀区面积(m2);

v——污水在沉淀池内上升流速(m/s);

D——沉淀池直径(m)。

设计中取,。

(4)沉淀池的有效沉淀高度,即中心管的高度

式中,h2——沉淀池有效水深(m);

t——沉淀时间,设计取为1.5h。

校核沉淀池径深比:D/h2=7.3/3.78=1.93<3,符合规范。

(5)污泥部分所需容积

式中,Q——污水流量(m3/s);

C1——进水悬浮物浓度(mg/L);

C2——出水悬浮物浓度(mg/L);

——污泥容重(t/m3),约为1;

p o——污泥含水率(%)。

设计中取T=1d,p0=97%

(6)污泥斗及污泥斗高度

污泥斗设在沉淀池的进水端,采用重力排泥,排泥管伸入污泥斗底部,为防止污泥斗底部积泥,污泥斗底部直径取为0.5m,污泥斗倾角取为600。

污泥斗高度

污泥斗容积

式中,V1——污泥斗容积(m3);

污水处理厂构筑物计算-格栅

4.2 工艺设计 污水处理厂设计处理能力Q=10000m 3/d 。依据正镶白旗明安图镇目前的经济发展水平和给排水现状等现实条件,污水处理主体构筑物分2组,每组处理能力5000m 3/d ,并联运行。一期建设1组,待条件成熟后续建另1组。 设计水量 总变化系数取Kz=11 .07 .2Q =1.58 污水的平均处理量为平Q =1d m /1034?=416.67h m /3=115.74L / s ;污水的最大处理量为d m Q /106.134max ?==658.33h m /3=182.87L / s ;时变化系数取K 时为1.6, 集水池 格栅 格栅设在处理构筑物之前,用于拦截水中较大的悬浮物和漂浮物,保证后续处理设施的正常运行。 粗格栅 格栅倾角资料 设计参数: 设计流量:Q 1=182.87 L/s; 过栅流速:v 1=0.80m/s; 栅条宽度:s=0.01m; 格栅间隙:e=20mm; 栅前部分长度0.5m ; 格栅倾角:α=60° 单位栅渣量W 1=0.05m 3栅渣/103m 3污水 数量:1台 设计计算

(1)确定格栅前水深,根据最优水力断面公式2 12 11v B Q =计算得栅前槽宽 m B 68.01=,则栅前水深m B h 34.02 68.021≈== (2)栅条间隙数49.318 .034.002.060sin 0.183sin 11≈????== ehv Q n α31.49 (取n=32) (3)栅槽有效宽度:B 2=s (n-1)+en=0.01×(32-1)+0.02×32=0.95m (4)进水渠道渐宽部分长度m B B L 38.020tan 20.68 0.95tan 21121=? -=-= α (其中α1为进水渠展开角) (5)栅槽与出水渠道连接处的渐窄部分长度m L L 19.02 38 .0212=== (6)过栅水头损失(h 1) 因栅条边为矩形截面,取k=3,则 m g k kh h v 810.060sin 81 .928.0)20.001.0(42.23sin 22 34 2 1=?????===αξ 其中: h 0:计算水头损失m k :系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 :阻力系数,与栅条断面形状有关, =β(s/e )4/3当为矩形断面时β=2.42 参考《污水处理厂工艺设计手册》,粗格栅水头损失一般为0.08-0.15m ,因此符合规定要求。 (7)栅后槽总高度(H ) 取栅前渠道超高h 2=0.3m ,则栅前槽总高度H 1=h+h 2=0.34+0.3=0.64m 栅后槽总高度H=h+h 1+h 2=0.34+0.081+0.3=0.72m (8)格栅总长度L=L 1+L 2+0.5+1.0+ H 1/tan α =0.38+0.19+0.5+1.0+0.64/tan60° =2.44m (9)每日栅渣量:用公式W= 1000 86400 1max ???总K W Q 计算,取W 1=0.05m 3/103m 3

城市污水处理厂设计计算

污水厂设计计算书 第一章 污水处理构筑物设计计算 一、粗格栅 1.设计流量Q=20000m 3/d ,选取流量系数K z =1.5则: 最大流量Q max =1.5×20000m 3/d=30000m 3/d =0.347m 3/s 2.栅条的间隙数(n ) 设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾 角α=60° 则:栅条间隙数85.449 .04.002.060sin 347.0sin 21=???== bhv Q n α(取n=45) 3.栅槽宽度(B) 设:栅条宽度s=0.01m 则:B=s (n-1)+bn=0.01×(45-1)+0.02×45=1.34m 4.进水渠道渐宽部分长度 设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0. 6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=?-=-=α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2) m L L 30.02 60.0212=== 6.过格栅的水头损失(h 1) 设:栅条断面为矩形断面,所以k 取3

则:m g v k kh h 102.060sin 81 .929.0)02.001.0(4.23sin 2234 201=?????===αε 其中ε=β(s/b )4/3 k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,m ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β 值代入β与ε关系式即可得到阻力系数ε的值 7.栅后槽总高度(H) 设:栅前渠道超高h 2=0.3m 则:栅前槽总高度H 1=h+h 2=0.4+0.3=0.7m 栅后槽总高度H=h+h 1+h 2=0.4+0.102+0.3=0.802m 8.格栅总长度(L) L=L 1+L 2+0.5+1.0+ H 1/tan α=0.6+0.3+0.5+1.0+0.7/tan60°=2.8 9. 每日栅渣量(W) 设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水 则:W=Q W 1=05.0105.130000100031max ??=??-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:

污水处理构筑物的计算

3 污水处理构筑物的计算 3.1细格栅 3.1.1设计说明 格栅系由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等。以减轻后续处理构筑物的处理负荷,并保证其正常运行。 格栅的进出水水质见表3-1所示。 表3-1 格栅进出水水质 水质指标BOD5COD SS 进水6400 13000 2000 去除率0 0 10% 出水6400 13000 1800 3.1.2设计计算 本工艺采用矩形断面调节池前细格栅一道,采用机械清渣。 (1)栅前水深的确定 式中,Q——设计流量,设计中取为0.0289m3/s; h——栅前水深,m; v1——栅前渠道水流流速,设计中取为0.6m/s。 (2)细格栅的栅条间隙数 式中,n——格栅栅条间隙数,个; Q——设计流量,m3/s; α——格栅倾角,(o); b——格栅栅条间隙,m; h——格栅栅前水深,m; v——格栅过栅流速,m/s。 过栅流速采用为0.7m/s,Q=0.0289m3/s,栅条间隙b=0.01m,栅前水深为0.16m,格栅安装倾角α=60o,则 个,取为个。 (3)格栅槽有效宽度(B)

式中,B——格栅槽有效宽度,m; S——每根格栅条的宽度,m。 设计中采用Φ10mm圆钢为栅条,即取S=0.01m,则 ,取为。 (4)进水渠道渐宽部分的长度 设进水渠道宽B1=0.25m,渐宽部分展开角=20o,此时进水渠道内的流速为: ,在~范围之内,符合要求。 则,进水渠道渐宽部分长度: (5)出水渠道的渐窄部分的长度 (6)过栅水头损失 式中,h1——水头损失,m; β——格栅条的阻力系数,栅条断面为锐边矩形断面β=2.42; k——格栅受污物堵塞时的水头损失增大系数,一般采用k=3。 (7)槽后明渠的总高度 式中,H——槽后明渠的总高度,m; h2——明渠超高,m,设计中取h2=0.3m。 (8)格栅槽总长度 式中,L——格栅槽总长度,m; H1——格栅明渠的深度,m,H1=h+h2。 (9)每日栅渣量 式中,W——每日栅渣量,m3/d; ω1——栅渣量,取ω1=0.1m3/103m3污水。

污水处理厂各构筑物的设计计算

第二章设计方案 城市污水处理厂的设计规模与进入处理厂的污水水质和水量有关,污水的水质和水量可以通过设计任务书的原始资料计算。 2.1厂址选择 在污水处理厂设计中,选定厂址是一个重要的环节,处理厂的位置对周围环境卫生、基建投资及运行管理等都有很大的影响。因此,在厂址的选择上应进行深入、详尽的技术比较。 厂址选择的一般原则为: 1、在城镇水体的下游; 2、便于处理后出水回用和安全排放; 3、便于污泥集中处理和处置; 4、在城镇夏季主导风向的下风向; 5、有良好的工程地质条件; 6、少拆迁,少占地,根据环境评价要求,有一定的卫生防护距离; 7、有扩建的可能; 8、厂区地形不应受洪涝灾害影响,防洪标准不应低于城镇防洪标准,有良好的排水条件; 9、有方便的交通、运输和水电条件。 由于该地夏季盛行东南风,冬季盛行西北风,所以,本设计的污水处理厂应建在城区的东北或者西南方向较好,最终可根据主干管的来向和排水的方便程度来确定厂区的位置。 2.2.2常用污水处理工艺 根据设计原则和设计要求,本工程拟比选出一个投资省、运行费用低、技术成熟、处理效果稳定可靠、运行管理方便、要求操作运转灵活、技术设备先进、成套性好、便于分期实施的处理工艺。 从进、出水水质要求来看,本工程对出水水质要求较高,要求达到一级A 标准,不但COD、BOD指标要求高,还要求脱氮除磷,所以需从出水水质要求来选择处理工艺。 1、A2/O工艺

A2/O脱氮除磷工艺(即厌氧-缺氧-好氧活性污泥法,亦称A-A-O工艺),它是在A p/O除磷工艺上增设了一个缺氧池,并将好氧池出流的部分混合液回流至缺氧池,具有同步脱氮除磷功能。其基本工艺流程如图1所示:进水内回流 回流污泥 剩余污泥 图1 A2/O工艺基本流程图 污水经预处理和一级处理后首先进入厌氧池,在厌氧池中的反应过程与A p/O生物除磷工艺中的厌氧池反应过程相同;在缺氧池中的反应过程与A n/O 生物脱氮工艺中的缺氧过程相同;在好氧池中的反应过程兼有A p/O生物除磷工艺和A n/O生物脱氮工艺中好氧池中的反应和作用。因此A2/O工艺可以达到同步去除有机物、硝化脱氮、除磷的功能。 A2/O工艺适用与对氮、磷排放指标都有严格要求的城市污水处理,其优缺点如下: 优点: (1)该工艺为最简单的同步脱氮除磷工艺,总的水力停留时间,总产占地面积少于其它的工艺。 (2)在厌氧的好氧交替运行条件下,丝状菌得不到大量增殖,无污泥膨胀之虞,SVI值一般均小于100。 (3)污泥中含磷浓度高,具有很高的肥效。

某工业废水处理工程设计(9页)

更多资料请访问(.....) 2006级环境工程课程设计 指导书 题目:某工业废水处理工程设计

系别:环境工程系_ 专业:环境工程 年级: 2 0 0 6级 设计指导书 一、确定废水处理工艺流程 在对工业废水的水质特点,生产过程以及废水的产生情况的调研基础上,参考典型工艺流程,通过方案比较,确定工艺流程。 在选取工艺流程过程中,要考虑污水的水质、水量特点,污水中污染物状况,可生化性,污水处理程度,经处理后污水的排放问题。这是污水处理工艺流程选定的主要依据,根据处理水的排放去向及国家或地方制定的污水各类排放标准,确定应去除的污染物及其处理程度,再选择处理方法。 二、构筑物的设计计算 (一)预处理系统构筑物的设计计算 预处理系统包括格栅、筛网、沉淀池等,预处理系统主要用于去除悬浮物和大的漂浮物等,减轻后续生物处理负担。根据废水特点设计预处理系统。 根据工业废水水质、水量变化大的特点,工业废水处理系统往往需要设置调节池,用于调节水质水量。

(二)、主体构筑物的设计计算 依据废水水质,选择相应的处理工艺。主体构筑物可以是物理处理、化学处理或生物处理,或三者的相互结合,以经济、新颖、处理效果满足出水排放要求为准。 (三)污泥处理构筑物的设计计算 污泥处理的基本问题是通过适当的技术措施,为污泥提供出路。对于预处理和生物处理过程中产生的污泥需要经过适当的处理,达到污泥的减量化。工业废水处理站,由于处理的水量较小,污泥产生量较少,污泥处理一般采用污泥浓缩或机械脱水,风干外运等方法。 机械脱水主要的方法是转筒离心机、板框压滤机、带式压滤机和真空过滤机。 板框压滤机一般为间歇操作,基建设备投资大,过滤能力也较低,但由于其泥饼的含固率高,滤液清澈,固体物质回收率高.调理药品消耗量少。对运输、进一步干燥或焚烧以及卫生填埋的污泥、可以降低运输费用,减少燃料消耗、降低填埋场用地。板框压滤机的选用,主要根据污泥量、过滤机的处理能力来确定所需过滤面积和压滤机的台数! 带式压滤机具有连续生产、机器制造容易、操作管理简单、附属设备较少等特点,从而使投资、劳动力、能源消耗和维护费用都较低,在国内外的污水脱水中得到广泛应用,在国内的发展尤其迅速,新建城市污水处理厂的脱水设备几乎都采用带式压滤机。但由于我国的合成有机聚合物价格昂贵,致使污泥带式压滤机的运行费用很高。带式压滤机是根据生产能力、污泥量来确定所需压滤机的宽度和台数。 转筒离心机具有处理量大、基建费用少、占地少、工作环境卫生、操作简单、自动化程度高等优点,特别重要的是可以不投加或少投加化学调理剂。其动力费用虽然较高,但总运行费用较低。是世界各国较多采用的机种.转筒离心机的选择是根据它的处埋能力,即每台机每小时处理污泥立方数,或每台机每小时处理干污泥千克数和每日需要处理的湿污泥立方数或干污泥千克数来决定。至少选择二至三台(其中一台备用)。 三、污水处理厂布置

污水处理厂高程计算

污水处理厂高程计算 Modified by JEEP on December 26th, 2020.

第三章高程计算一、水头损失计算 计算厂区内污水在处理流程中的水头损失,选最长的流程计算,结果见下表: 污水厂水头损失计算表 名称设计 流量 (L/s)管径 (mm) I (‰) V (m/s) 管长 (m) IL (m) Σξ Σξ g v 2 2 (m) Σh (m) 出厂管600 80 接触池 出水控 制井 出水控 制井至 二沉池 400 100 二沉池 二沉池 至流量 计井 400 10 流量计 井 氧化沟 氧化沟 至厌氧 池 400 12 厌氧池 厌氧池 至配水 井 151 450 15 配水井 配水井 至沉砂 池 301 600 60 沉砂池 细格栅 提升泵 房Σ=中格栅 进水井 ΣΣ= 二、高程确定 1.计算污水厂处神仙沟的设计水面标高

根据式设计资料,神仙沟自本镇西南方向流向东北方向,神仙沟沟底标高为,河床水位控制在-。 而污水厂厂址处的地坪标高基本上在左右(-),大于神仙沟最高水位(相对污水厂地面标高为)。污水经提升泵后自流排出,由于不设污水厂终点泵站,从而布置高程时,确保接触池的水面标高大于【即神仙沟最高水位(-++)=≈】,同时考虑挖土埋深。 2.各处理构筑物的高程确定 设计氧化沟处的地坪标高为(并作为相对标高±),按结构稳定的原则确定池底埋深,再计算出设计水面标高为,然后根据各处理构筑物的之间的水头损失,推求其它构筑物的设计水面标高。经过计算各污水处理构筑物的设计水面标高见下表。再根据各处理构筑物的水面标高、结构稳定的原理推求各构筑物地面标高及池底标高。具体结果见污水、污泥处理流程图。 各污水处理构筑物的设计水面标高及池底标高

污水处理厂各构筑物的设计计算

山东理工大学 《水污染控制工程》课程设计题目:孤岛新镇污水处理厂设计 学院:资环学院 专业班级:环本0803班 姓名:李聪聪 序号:27号 指导教师:尚贞晓 课程设计时间:2011年12月12日~2011年12月30号共3周

第一章设计任务及资料 1.1设计任务 孤岛新镇6.46万吨/日污水处理厂工艺设计。 1.2设计目的及意义 1.2.1设计目的 孤岛新镇位于山东省黄河入海口的原黄泛区内。东径118050'~118053',北纬37064'~37057',向北15公里为渤海湾。向东10公里临莱州,向南20公里为现黄河入海口,距东营市(胜利油田指挥部)约60公里,该镇地处黄河下游三角洲河道改流摆动地区内。 该镇附近区域为胜利油田所属的孤岛油田和两桩油田。地下蕴藏着丰富的石油资源。为了开发这些油田并考虑黄河下游三角洲的长远发展。胜利油田指挥部决定兴建孤岛新镇,使之成为孤岛油田和两桩油田的生活居住中心和生产指挥与科研中心,成为一个新型的社会主义现代化的综合石油城。根据该镇总体规划,该镇具有完备的社会基础和工程基础设施。有完备的城市交通、给水排水、供电、供暖、电信等设施,并考虑今后的发展与扩建的需要。 因此,为保护环境,防治水污染问题,建设城市污水治理工程势在必行。 1.2.2设计意义 设计是实现高等工科院校培养目标所不可缺少的教学环节,是教学计划中的一个有机组成部分,是培养学生综合运用所学的基础理论、基础知识以及分析解决实际问题能力的重要一环。它与其他教学环节紧密配合,相辅相成,在某种程度上是前面各个环节的继续、深化和发展。 我国城市污水处理相对于国外发达国家、起步较晚。近200年来,城市污水处理已从原始的自然处理、简单的一级处理发展到利用各种先进技术、深度处理污水,并回用。处理工艺也从传统活性污泥法、氧化沟工艺发展到A/O、A2/O、AB、SBR、 CASS等多种工艺,以达到不同的出水要求。虽然如此,我国的污水处理还是落后于许多国家。在我们大力引进国外先进技术、设备和经验的同时,必须结合我国发展,尤其是当地实际情况,探索适合我国实际的城市污水处理系统。 其次,做本设计可以使我得到很大的提高,可在不同程度上提高调查研究,查阅文献,收集资料和正确熟练使用工具书的能力,提高理论分析、制定设计

污水处理厂设计计算

某污水处理厂设计说明书 1.1 计算依据 1、工程概况 该城市污水处理厂服务面积为12.00km2,近期(2000年)规划人口10万人,远期(2020年)规划人口15.0万人。 2、水质计算依据 A.根据《室外排水设计规范》,生活污水水质指标为: COD Cr 60g/人d BOD5 30g/人d B.工业污染源,拟定为 COD Cr 500 mg/L BOD5 200 mg/L C.氨氮根据经验值确定为30 mg/L 3、水量数据计算依据: A.生活污水按人均生活污水排放量300L/人·d; B.生产废水量近期1.2×104m3/d,远期2.0×104m3/d考虑; C.公用建筑废水量排放系数近期按0.15,远期0.20考虑; D.处理厂处理系数按近期0.80,远期0.90考虑。 4、出水水质 根据该厂城镇环保规划,污水处理厂出水进入水体水质按照国家三类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为: COD Cr 100mg/L BOD5 30mg/L SS 30mg/L

NH3-N 10mg/L 1.2 污水量的确定 1、综合生活污水 近期综合生活污水 远期综合生活污水 2、工业污水 近期工业污水 远期工业污水 3、进水口混合污水量 处理厂处理系数按近期0.80,远期0.90考虑,由于工业废水必须完全去除,所以不考虑其处理系数。近期混合总污水量 取 远期混合总污水量 取 4、污水厂最大设计水量的计算 近期; ,取日变化系数;时变化系数;

。 远期; ,取日变化系数;时变化系数; 。 拟订该城市污水处理厂的最大设计水量为 1.3 污水水质的确定 近期取 取 远期取 取 则根据以上计算以及经验值确定污水厂的设计处理水质为: ,,

污水设计构筑物的计算

污水处理构筑物的设计计算 中格栅及泵房 格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物。本设计采用中细两道格栅。 1.1.1中格栅设计计算 1.设计参数: 最大流量:3max 150000 1.2 2.1/360024 Z Q Q K m s ?=?==? 栅前水深:0.4h m =, 栅前流速:10.9/v m s =(0.4/~0.9/m s m s ) 过栅流速20.9/v m s =(0.6/~1.0m s /m s ) 栅条宽度0.01S m =,格栅间隙宽度0.04b m = 格栅倾角060α= 2.设计计算: (1) 栅条间隙数:136n = ==根 设四座中格栅:1136 344 n ==根 (2)栅槽宽度:设栅条宽度0.01S m = ()()1110.013410.0434 1.69B S n bn m =-+=?-+?= (3)进水渠道渐宽部分长度:设进水渠道宽1 1.46B m =,渐宽部分展开角度20α= 110 1 1.69 1.46 0.872tan 2tan 20 B B l m α--=== 根据最优水力断面公式max 1 2.1 1.46440.90.4 Q B m vh == =?? (4)栅槽与出水渠道连接处的渐宽部分长度:120.870.4322 l l m === (5)通过格栅的水头损失: 02h K h ?=

220sin 2v h g ξα=,43 s b ξβ??=? ??? h 0 ───── 计算水头损失; g ───── 重力加速度; K ───── 格栅受污物堵塞使水头损失增大的倍数,一般取 3; ξ───── 阻力系数,其数值与格栅栅条的断面几何形状有关,对于锐边矩形断面,形状系数β = 2.42; 43 220.010.93 2.42sin 600.0410.0429.81h ?? =??? ?≈ ???? m (6)栅槽总高度:设栅前渠道超高20.3h m = 120.40.30.0410.741H h h h m =++=++= (7)栅槽总长度: 1 120.5 1.0tan H L L L α =++++ 0.40.3 0.870.430.5 1.0tan 60+=++++ 3m = (8)每日栅渣量:格栅间隙40mm 情况下,每31000m 污水产30.03m 。 max 186******** 2.10.03 4.54 10001000 1.2 Z Q W W K ??===?3/d m 30.2/m d > 所以宜采用机械清渣。 (9)格栅选择 选择XHG-1400回转格栅除污机,共4台。其技术参数见 下表。 表1-1-1 GH-1800链式旋转除污机技术参数 型号 电机功 率/kw 设备宽度/mm 设备总宽度/mm 栅条间隙/mm 安装角 度 HG-1800 1.5 1800 2090 40 60° 1.1.2 污水提升泵房 泵房形式取决于泵站性质,建设规模、选用的泵型与台数、进出水管渠的深度与方位、出水压力与接纳泵站出水的条件、施工方法、管理水平,以及地形、水文地质情况等诸多因素。

污水处理厂构筑物满水实验

目录 一、工程概况 (2) 二、编制依据 (2) 三、施工组织 (2) 四、实验前准备 (3) 五、水池满水试验 (4) 六、水池渗漏处理 (5) 七、试水期间安全技术要求 (6)

一、工程概况 XXXXXXXXX。 本工程具体内容见下表 二、编制依据 2.1、《给水排水构筑物工程施工及验收规范》GB50141-2008 《混凝土结构工程施工质量验收规范》GB50204-2015 《建筑地基基础工程施工质量验收规范》GB50202-2002 《混凝土结构工程施工规范》GB50666-2011 2.2、工程设计图纸 2.3、以往类似工程施工经验 三、施工组织 3.1、施工组织 在本工程中组织进行满水试验,本着对工程质量负责的态度,由项目经理组织、

协调,各工序相关管理人员积极配合,认真对待积累经验,指导构筑物的满水试验。 3.2、技术准备 组织技术人员根据各构筑物的实际情况,精心编制施工方案,严格按照设计要求和经审批通过的施工方案进行施工。 3.3、人员准备 满水试验工作组织机构: 组长: 副组长: 成员: 四、实验前准备 4.1、水池满水试验前的必备条件 水池满水试验是水工构筑物的主要功能性试验,满水试验前必须具备以下条件: (1) 、整个池壁及池底混凝土强度已达到设计要求。 (2) 、池内全部清理干净,池内内壁缺陷修补完毕。 (3) 、现浇钢筋混凝土池壁的防水层、防腐层施工之前。 (4) 、设计预留孔洞、预埋管口及进出水口等已做好临时封堵,且经验算能承受安全试验压力。 (5) 、池壁抗浮稳定性满足设计要求。 (6) 、试验用的充水、排水系统已准备就绪,经检查充水、排水闸门没有渗漏。 (7) 、试验各项保证安全措施已满足试验要求。 (8) 、满足设计的其他特殊要求。 (9) 、整个池体标高沉降观测没有变化。 4.2、水池满水试验的准备 (1)、选定好洁净、充足的水源,注水和放水系统设施及安全措施准备完毕。 (2)、有盖池体顶部的通气孔、人孔盖已安装完毕,必要的防护设施和照明等标志已配备齐全。 (3)、安装水位观测标尺;标定水位测针。 (4)、准备现场测定蒸发量的设备。一般采用严密不渗,直径 500mm,高 300mm的敞口钢板水箱,并安装好水位测针,注水深 200-300mm。将水箱固定在水池中。(5)、在池壁外测标号沉降观测标志,选定观测点,把测量数据记录好作为池体沉降

污水处理厂设计计算

} 某污水处理厂设计说明书 计算依据 1、工程概况 该城市污水处理厂服务面积为,近期(2000年)规划人口10万人,远期(2020年)规划人口万人。 2、水质计算依据 A.根据《室外排水设计规范》,生活污水水质指标为: COD Cr 60g/人d BOD5 30g/人d — B.工业污染源,拟定为 COD Cr 500 mg/L BOD5 200 mg/L C.氨氮根据经验值确定为30 mg/L 3、水量数据计算依据: A.生活污水按人均生活污水排放量300L/人·d; B.生产废水量近期×104m3/d,远期×104m3/d考虑; C.公用建筑废水量排放系数近期按,远期考虑; , D.处理厂处理系数按近期,远期考虑。 4、出水水质 根据该厂城镇环保规划,污水处理厂出水进入水体水质按照国家三类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为: COD Cr 100mg/L

BOD5 30mg/L SS 30mg/L NH3-N 10mg/L 污水量的确定 ¥ 1、综合生活污水 近期综合生活污水 远期综合生活污水 2、工业污水 近期工业污水 远期工业污水 3、进水口混合污水量 处理厂处理系数按近期,远期考虑,由于工业废水必须完全去除,所以不考虑其处理系数。& 近期混合总污水量 取 远期混合总污水量 取 4、污水厂最大设计水量的计算

近期; ,取日变化系数;时变化系数; 。 ; 远期; ,取日变化系数;时变化系数; 。 拟订该城市污水处理厂的最大设计水量为 污水水质的确定 近期取 取 /

远期取 取 则根据以上计算以及经验值确定污水厂的设计处理水质为: ,, ,, 考虑远期发展问题,结合《城镇污水处理厂污染物排放标准》(GB18918-2002),处理水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级标准(B)排放要求。 拟定出水水质指标为: 表1-1 进出水水质一览表 基本控制项目一级标准(B)进水水质去除率 % 序号 % 1COD80· 325 2BOD20150% 3` 20300% SS 4氨氮8[1]30、 % 5T-N204050% 6T-P) 350% 7pH6~97~8 ' 注:[1]取水温>12℃的控制指标8,水温≤12℃的控制指标15。 [2]基本控制项目单位为mg/L,PH除外。

污水处理主要构筑物表

主要构筑物说明 格栅池及集水池 污水经化粪池进入格栅池,通过格栅拦截体积较大的颗粒物和悬浮物,以防止堵塞后续处理工艺中各种设备。经格栅池污水自流进入调节池。 格栅采用机械格栅,倾斜安装在进水口处。 调节池 在正常情况下,瞬时排水水量和排水水质变化较大,在不经过调节处理,容易对后续处理系统造成较大的负荷冲击,从而影响后续系统的处理效果。因此设置该调节池,调节池的主要作用是收集来水,并对来水进行水质水量的均化处理,削减高峰负荷,减少水质水量的较大变化对后续系统的影响 水解酸化池 水解酸化是一个厌氧反应过程,由厌氧菌在缺氧的条件下对污水中的有机物进行厌氧消化,厌氧消化过程一般分为水解阶段、酸化阶段和产甲烷过程。而水解酸化过程就是将厌氧消化过程控制在水解和酸化阶段,该阶段的主要目的是将原废水中的非溶解性有机物降解为溶解性有机物,将其中难降解的有机物转变为易降解的有机物,提高废水的可生化性,以利用后续的生物接触氧化处理。同时利用或部分利用废水中的有机碳源作为电子供体,以好氧生化池回流的硝酸盐代

替分子氧作为电子受体,进行“无氧”呼吸,分解有机质并且将硝态氮还原成气态氨,完成反硝化反应,达到除氮的目的。并且对BOD、COD、SS等有较好的去除率。 生物接触氧化池 好氧生化反应是依靠好氧微生物分解有机污染物,使水质得到净化。本工程采用生物接触氧化法,在反应器内设置填料,微生物附着在填料表面,形成生物膜,经过充氧的污水与长满生物膜的填料相接触,有机污染物作为养料被微生物吸收分解,使水质得到净化。 在填料上微生物不断繁殖,生物膜逐渐增厚,当到达一定厚度时,氧已难以向生物膜内部扩散,深层好氧菌被抑制,形成厌氧层,生物膜开始脱落,老化的生物膜作为剩余污泥排出,填料上又生长出新的生物膜,使水质不断得到净化。 生物接触氧化池内生物固着量多,水流属于完全混合型,对水质水量的变化有较强的适应能力,不会产生污泥膨胀,运行管理方便,并且单位容积的生物量多,容积负荷较高。为了提高接触氧化处理单元的处理效果,生物接触氧化部分设置为两个接触氧化池串联运行,形成二级接触氧化处理系统。 选择生物接触氧化法作为好氧处理工艺是基于一下原因: (1)由于生物接触法兼备活性污泥和生物膜法的共同特点,因此具有优于一般活性污泥法的处理效率。 (2)生物接触氧化法的抗冲击性能良好,且系统启动速度快,在1~2天内即能取得明显效果。而其他活性污泥法需要更长的时间才能

污水处理厂课程设计

广州大学市政技术学院课程设计任务书课程设计名称:某城市污水处理厂设计 系部环境工程系 专业环境工程 班级12环管1班 姓名张锦超曾娟兰冯坚旭 指导教师杜馨 2014 年 6 月15 日

某城市污水处理厂设计 目录 1.绪论 1.1设计基础资料及任务 1.2设计根据 1.3设计资料的分析 2.污水处理厂的设计水量水质计算 3.污水处理的工艺选择 4.污水处理厂各构筑物的设计 4.1 格栅 --4.1.1粗格栅 --4.1.2泵后细格栅 4.2污水泵站 4.2.1选泵 4.3沉砂池设计计算 4.4氧化沟设计 4.5二沉池设计 4.6接触消毒池与加氯间 4.7污水厂的高程布置

1.绪论 1.1设计基础资料及任务 (一)城镇概况 A城镇北临B江,地处东南沿海,北回归线横贯市区中部,该市在经济发展的同时,城市基础设施的建设未能与经济协同发展,城市污水处理率仅为8.7%,大量的污水未经处理直接排入河流,使该城市的生态环境受到严重的破坏。为了把该城市建设成为经济繁荣、环境优美的现代化城市,筹建该市的污水处理厂已迫在眉睫。A城镇计划建设污水处理厂一座,并已获上级计委批准。 目前,污水处理厂规划服务人口为19万人,远期规划发展到25万人,其出水进入B江,B江属地面水Ⅲ类水体,要求排入的污水水质执行《污水综合排放标准》(GB18918-2002)中的一级标准中的B类标准,主要水质指标为:COD≤60mg/L,BOD5≤20mg/L,SS≤20mg/L,TN<20 mg/L,NH3-N≤15mg/L,TP≤1.0mg/L。 (二)工程设计规模: 1、污水量: 根据该市总体规划和排水现状,污水量如下: 1)生活污水量: 该市地处亚热带,由于气候和生活习惯,该市在国内一向属于排水量较高的地区。据统计和预测,该市近期水量230L/人?d;远期水量260L/人?d。 2)工业污水量: 市内工业企业的生活污水和生产污水总量1.8万m3/d。

污水处理厂设计计算书 (2)

第二篇设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max Q n bhv = 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

污水处理构筑物设计计算

。 污水厂设计计算书 第一章污水处理构筑物设计计算 一、泵前中格栅 1.设计参数: 设计流量Q=2.6×104m3/d=301L/s 栅前流速v1=0.7m/s,过栅流速v2=0.9m/s 栅条宽度s=0.01m,格栅间隙e=20mm 栅前部分长度0.5m,格栅倾角α=60° 单位栅渣量ω1=0.05m3栅渣/103m3污水 2.设计计算 (1)确定格栅前水深,根据最优水力断面公式 2 1 2 1 1 v B Q=计算得:栅前槽宽 m v Q B94 .0 7.0 301 .0 2 2 1 1 1 = ? =,则栅前水深m B h47 .0 2 94 .0 2 1= = = (2)栅条间隙数6.34 9.0 47 .0 02 .0 60 sin 301 .0 sin 2 1= ? ? ? = = ehv Q n α(取n=36) (3)栅槽有效宽度B=s(n-1)+en=0.01(36-1)+0.02×36=1.07m (4)进水渠道渐宽部分长度m B B L23 .0 20 tan 2 94 .0 07 .1 tan 2 1 1 1 = ? - = - = α (其中α1为进水渠展开角) (5)栅槽与出水渠道连接处的渐窄部分长度m L L12 .0 2 1 2 = = (6)过栅水头损失(h1)

因栅条边为矩形截面,取 k =3,则 m g v k kh h 103.060sin 81 .929.0)02.001.0(42.23sin 22 34 201=?????===αε 其中ε=β(s/e )4/3 h 0:计算水头损失 k :系数,格栅受污物堵塞后,水头损失增加倍数,取k=3 ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42 (7)栅后槽总高度(H ) 取栅前渠道超高h 2=0.3m ,则栅前槽总高度H 1=h+h 2=0.47+0.3=0.77m 栅后槽总高度H=h+h 1+h 2=0.47+0.103+0.3=0.87 (8)格栅总长度L=L 1+L 2+0.5+1.0+0.77/tan α =0.23+0.12+0.5+1.0+0.77/tan60° =2.29m (9)每日栅渣量ω=Q 平均日ω1= 05.0105 .1106.234 ??? =0.87m 3/d>0.2m 3/d (10)计算草图如下:

污水处理厂工艺的设计论文含计算数据

一、污水处理工艺选择与可行性分析 1、污水厂的设计规模 近期污水量为2×104 m 3/d ,远期污水量为4×104 m 3/d ,其中生活污水和工业废水所占比例约为6:4。污水厂主要处理构筑物拟分为二组,这样既可满足近期处理水量要求,又留有空地以二期扩建之用。 2、进出水水质 由于进水不但含有BOD 5,还含有大量的N ,P 所以不仅要求去除BOD 5 还应去除水中的N ,P 使其达到排放标准。 3、处理程度的计算 1. BOD5的去除率 %89.88%100180 20180=?-= η 2 .COD 的去除率 %88%100500 60500=?-= η 3.SS 的去除率 %24.95%100420 20420=?-= η 4.总氮的去除率

%67.66%10060 2060=?-= η 5.总磷的去除率 %80%1005 15=?-=η 4、 本工程采用生物脱氮除磷工艺的可行性 BOD 5:N :P 的比值是影响生物脱氮除磷的重要因素,氮和磷的去除率随着BOD 5/N 和BOD 5/P 比值的增加而增加。 理论上,BOD 5/N>2.86才能有效地进行脱氮,实际运行资料表明,BOD 5/N>3时才能使反硝化正常进行。在BOD 5/N=4~5时,氮的去除率大于50%,磷的去除率也可达60%左右。本工程BOD 5/N=3,可以满足生物脱氮的要求。 对于生物除磷工艺,要求BOD 5/P=33~100。本工程BOD 5/P 等于36,能满足生物脱氮除磷工艺对碳源的要求,由此本工艺采用生物脱氮除磷的工艺。 在脱氮方面,由脱氮除磷的机理可知,有机负荷是影响硝化反应的重要因素之一,在碳化与硝化合并处理工艺中,硝化菌所占的比例很小,约5%。一般认为处理系统的BOD 5负荷小于0.15kg BOD5/kgMLSS.d 时,处理系统的硝化反应才能正常进行。 根据所给定的污水水量及水质,参考目前国内外城市污水处理厂的设计及运转经验,对于生活污水占比例较大的城市污水而言,以下几种方法最具代表性:A 2/O 法、AB 法、生物滤池、循环式活性污泥法(改良SBR )、氧化沟法。 5、工艺比较及确定

污水处理厂设计与构筑物的选择

制革废水处理 污水处理厂设计时工艺及构筑物的选择 Choice of Technics and Buildings for Designing Sewage Treatment Plant 作者:许维河陈兴杰杨建军 Author: Xu Weihe Chen Xingjie Yang Jianjun 第一作者:许维河男1954年出生,单位:西安市自来水总公司职称:给排水工程师。地址:西安市环城西路南段甲字8号,邮编:710082 Prime author: Xu Weihe who was born in 1954. He is the vice mangaer and drainage engineer of Xi'an Water Suppy Co. Address: Xi'an N0.8 West Ring Road Post code: 710082 陈兴杰安徽金种子集团 Chen Xingjie:Anhui Golden Seeds Group. 杨建军西安绿水环保工程有限公司 Yang jianjun :Xi'an Lvshui Environmental Protection Engineering Co.,Ltd 摘要:设计污水处理厂,不管对工艺流程的安排还是构筑物的组合都要进行慎重的选择,为的是达到投资少,运行费用低,操作简单的要求,但仍有很多设计人员在设计时与实际脱节,笔者在污水处理厂工程设计和工艺的调试上有多年经验,对固液分离,生化处理等构筑物的选择有一些体会,现采用对比方式来简要说明一些常见构筑物的特点和适用范围,并以制革废水处理工艺或构筑物的选择为例,按照污水处理流程做一个具体说明,重点突出SBR 工艺在制革废水处理上的优越性,供制革厂技术人员或设计工程师参考。 Abstract: For the design of the sewage treatment plant, it should make choice carefully no matter for the arrangment of technical process or combination of buildings, so as to reach the goal of low investment, less operating cost and simple operation. Nevertheless, some designers are still out of step with practice. The author has years of experience in engineering design and commissioning, and has his own realizing for the choice of buildings, so through taking the way of contrast to briefly explain the characteristics and scope of application for the usual bulidings, and taking the instance for the choice of tanning waste water treatment, we made a specific instruction according to the process of waster water treatment to gave prominence to the advantages of SBR techincs in tanning waste water treatment for the reference to technician or designer in tannery. 主题词:污水处理设计构筑物选择 Key words: Water treatment design, Building, Choice 一、概述 在污水处理工艺设计中,宁可一次性投资稍微大一些,尽量使运行费用小一些。否则运行费用如果太大,污水处理系统越是正常运行,企业背的包袱就越大,企业的效益如果稍微差一些,这样企业就不愿意正常运行污水处理系统,就会应付检查,平时污水处理系统就不开,等到环保部门来检查时再开。据我们掌握的情况,污水处理系统能正常运行的企业大约只有60~70%。 在污水处理工程设计的方法选择中,不管是物理处理方法、化学处理方法还是生物处理

相关主题
文本预览
相关文档 最新文档