当前位置:文档之家› 香兰素的合成工艺设计

香兰素的合成工艺设计

香兰素的合成工艺设计
香兰素的合成工艺设计

有机合成课程设计

题目香兰素的合成工艺

系(院)化学与化工系

专业应用化学

班级11应化本2

学生姓名王春莲

学号1114100327

指导教师张圣燕

职称讲师

2013年 12月 20日

香兰素的合成工艺设计

1 产品简介

1.1 中英文名称,化学式,结构式

中文名称:香兰素

别名:香荚兰醛;香荚兰素;香兰醛

化学名称:3-甲氧基-4-羟基苯甲醛

英文名称:Vanillin

分子式:C8H8O3

结构式:

CHO

OH

OCH3

1.2 物化性质

白色至微黄色鳞片状结晶或结晶性粉末,存在有不同熔点的四种结晶变型。呈甜克力香气及强烈的香兰素所独有的芳香气,香气比香兰素强3-4 倍。沸点285 ℃,点76.5 ℃。微溶于水,溶于乙醇、乙醚、甘油、丙二醇、氯仿和碱溶液。基本上无毒害,但其蒸气对皮肤及粘膜有局部刺激作用

1.3 用途

香兰素是重要的食用香料之一,是食用调香剂,具有香荚兰豆香气及浓郁的奶香,是食品添加剂行业中不可缺少的重要原料,广泛运用在各种需要增加奶香气息的调香食品中,如蛋糕、冷饮、巧克力、糖果、饼干、方便面、面包以及烟草、调香酒类、牙膏、肥皂、香水、化妆品、冰淇淋、饮料以及日用化妆品中起增香和定香作用。

香兰素在国外的应用领域很广,大量用于生产医药中间体,也用于植物生长促进剂、杀菌剂、润滑油消泡剂、电镀光亮剂、印制线路板生产导电剂等。国内香兰素主要用于食品添加剂,近几年在医药领域的应用不断拓宽,已成为香兰素应用最

有潜力的领域。

香兰素在国外的应用领域很广,大量用于生产医药中间体,也用于植物生长促进剂、杀菌剂、润滑油消泡剂、电镀光亮剂、印制线路板生产导电剂等。国内香兰素主要用于食品添加剂,近几年在医药领域的应用不断拓宽,已成为香兰素应用最有潜力的领域。目前国内香兰素消费:食品工业占55%,医药中间体占30%,饲料调味剂占10%,化妆品等占5%。

1.4 前景分析

国内外行业现状中国是世界香兰素出口大国,2002年国内需求量2350吨,占产量的30%,其余70%用于出口。而1988年仅出口273吨,1993年为1700吨,2002年为4653吨。1993~2002年,中国香兰素出口量年均增长率为12%。中国香兰素在北美、欧洲、东南亚等地市场享有良好信誉。

2 合成方法

2.1 第一种合成方法——愈创木酚法

(1)合成基本原理

愈创木酚在碱性条件下和乙醛缩合成3-甲氧基-4-羟基苯乙醇酸,3-甲氧基-4-羟基苯乙醇酸在碱性条件下被氧化成3-甲氧基-4-羟基苯乙酮酸(香草扁桃酸),然后在碱性条件下脱羧生成香兰素。其反应方程式如下:

OCH

3

OH CHOCOOH

CHOHCOOH

OH

OCH3

O2

OH

OCH

3

CCOOH

O

CHO

OH

OCH3

(2)合成所需要的原料

愈创木酚、乙醛酸 (3)生产工艺

在碱性条件下,把愈创木酚和乙醛酸在60 ℃下反应24 h ,得到3-甲氧基-4-羟基苯乙醇酸,然后在EDTA 铜配合物的催化下,通入氧气氧化,最后在甲苯溶液中用硫酸酸化脱羧得到香兰素。

反应最佳条件:n(愈创木酚):n(乙醛酸):n(氢氧化钠)=1:1:2,采用半间歇加料方式,半量的碱溶液和乙醛酸一起滴加,搅拌速度为2000 r/min ,反应温度为95 ℃,空气流速为1 mL/s ,氢氧化钠和3-甲氧基-4-羟基苯乙酸醇的物质的量之比为0.5:1。 (4)工艺流程图

3-甲氧基-4-羟

基苯乙醇酸

香兰素

(5)产品表征 紫外吸收分光光度法

标准溶液的制备:准确称取药用参比标准香兰素约100mg ,放入一250ml 容量瓶中,用甲醇定容,混合。取该溶液2.0ml ,放入一100ml 容量瓶中,用甲醇定容后混匀。

试样液的制备:准确称取试样约100mg ,制备方法与上述标准溶液的制备相同。 操作:取上述各溶液分别放入一1cm 石英池中,在最大吸收波长约308nm 处测定吸光度。按下式计算试样中香兰素(C8H8O3)的含量(X)(mg ): X=12.5c(Au/As)

式中 c ——标准溶液中香兰素的浓度,μg/ml ;

Au——试样液的吸光度;

As——标准溶液的吸光度。

结果分析:在200~300 nm波长范围内对香兰素进行紫外光谱扫描。

依据Woodward-Fieser规则计算如下:

同环共轭双烯基本值 253

一个环外双键 5

一个助色基团 6

一个羟基 35

计算值 299

实验实测值 304

(6)产率计算,成本核算

产率:η=香兰素的质量/愈创木酚的质量×100%=34.08%

愈创木酚价格是5.00元/20 mg。

总计:130.00元/kg

2.2 第二种合成方法——对羟基苯甲醛法

(1)合成基本原理

对羟基苯甲醛溴化生成3-溴4-羟基苯甲醛,然后再醇钠的催化下与甲醇反应生成香兰素。其反应方程式如下:

CHO

Br

CHO

3

CHO

OH

OCH3(2)合成所需要的原料

对羟基苯甲醛

(3)生产工艺

在250 mL烧瓶中加入16 g(0.131 mo1)对羟基苯甲醛和90 mL溶剂,溶解后滴人6.8 mL(0.131 mo1)液溴,加热至40~45 ℃反应6 h。减压抽溶剂,残留物加水煮沸,趁热过滤,滤液冷却结晶、过滤、烘干得白色结晶3-溴-4-羟基苯甲醛。

在250 mL烧瓶中加入12g(0.0597mo1)上述产品、45 mL(0.230mo1)28.24%的甲醇钠溶液、35 mLDMF及0.2 g CuCl,在115 ℃下反应1.5 h。然后抽溶剂,残留物用18%盐酸酸化至Ph=4~5,再用热苯萃取3次,分去水层,苯层减压蒸馏去苯,得咖啡色液体。将其溶于热稀酒精溶液,冷却析出结晶,过滤、干燥得产品香兰素。(4)工艺流程图

16g对羟基

苯甲醛

90mL溶剂

溶液

残留物加水煮沸

滤液白色结晶

3-溴-4-羟基-苯甲醛

12g3-溴-4-羟基-苯甲醛

45mL28.24%甲醇钠

溶液

35mLDML

0.2gCuCl

115℃

混合溶液残留物至Ph=4~5

苯层减压

咖啡色液体

白色结晶

干燥

香兰素

(6)产品表征

气相色谱分析法

香兰素标样谱图试样谱图

结果分析:在中等极性柱中可获得良好分离,香兰素在1.00—400.00浓度范围内具有良好的线性,标准曲线相关系数为0.9995,检测限位0.003mg/g。

(7)产率计算,成本核算

产率:η=香兰素的质量/16g×100%=36.42%

对羟基苯甲酸25元/kg

总计:108元/kg

2.3 第三种合成方法——木质素法

(1)合成基本原理

以木材的木质素为原料,在加热和碱性的条件下,通入空气氧化,然后经过萃取、酸化的过程,得到香兰素。其化学反应方程式如下:

OHCCH2CHSO3H

OCH

3

OH

OCH

3

OH

CH(OH)CH2CH2

OH CHO

OCH

3

OH

(2)合成所需要的原料

木片、木屑等木头

(3)生产工艺

将木材碎片用220 ℃的水蒸气处理2 min,再用100 ℃的水洗2次,过滤。固体不溶物用pH=13的氢氧化钠溶液处理30 min,过滤。滤液用pH=2的硫酸在80 ℃处理10 min,过滤得到酸不溶性的木质素。将10 g木质素和100 mL氢氧化钠溶液加入500 mL高压釜中,加入一定量的氧化铜,通入氧气,保持压力为1.4 MPa,搅拌速度为200 r/min,加热到170 ℃,保温反应3 min,反应结束后,过滤出去氧化铜,母液酸化得到香兰素。

反应最佳条件:木质素10 g,氢氧化钠14 g,氧气7.5 g,硫酸铜7.5 g,氯化铁0.5 g,反应时间10 min。

(4)工艺流程图

木材碎

220℃水蒸气

处理2min

2次过滤

固体不溶物

Ph=13的氢氧化钠溶液

处理

30min 滤液

Ph=2的硫酸溶液

10g 木

质素

100mL 氢氧化钠溶

液高压

加热到170

保温反应

30min

母液

香兰素

(5)产品表征 高效液相测定

对照品溶液 精确称取香兰素标准品25 mg, 用乙腈溶解并定容于25 mL

容量瓶中, 得到110 g /L 的混合标准品储备液, 4 e 冰箱保存。精确量取1 mL 储备液至10 mL 容量瓶中, 用乙腈定容, 得到香兰素质量浓度均为100 mg /L 的混合工作溶液。

11212 样品溶液 精密称取自制香兰素粗产品适量, 用乙腈溶解并定容, 用0145 L 微孔滤膜过滤后, 取10 LL 进样。

香兰素谱图

结果分析:如图所示,在2—3nm有吸收,表明试样中含有香兰素。

(7)产率计算,成本核算

产率η=香兰素的质量/10g×100%=6.75%

木头碎渣0.3元/kg;氧化铜68元/kg

总计:76.43元/kg

3 合成方法评价

3.1 合成工艺路线成功率评价

第一种:愈创木酚法。合成路线方式:直线型。路线长度:较后两种简略。直

接利用草酸电解液与愈创木酚反应合成MHPA,进一步电解氧化合成香兰素,是一种新的乙醛酸法。利用有机电化学合成中的阳极氧化法,单步收率可达90%以上。该法具有装置简单、操作平稳;反应选择性好、产物纯度高。

第二种:对羟基苯甲酸法。合成路线方式:直线型。路线长度:相对较复杂。该方法具有条件温和、工艺简单、产率高等优点,具有一定的发展前景产率高达90%。道如采用新型高效的碱式硫酸铜-D MF 催化体系, 使其甲氧基化, 转化率达96.7% 。对羟基苯甲醛通过苯酚的Ke ime r 一Ti e反应或对甲酚的氧化反应制取。该法具有反应条件温和、工艺简单、产率高等优点。

第三种:木质素法。合成路线方式:直线型。路线长度:较前两种过程复杂。此法香兰素产率为10%-15%,世界各国以该法生产香兰素占半数以上,广州造纸厂采用此法。但该法酸、碱的耗量大,工艺较长,有关该法研究报道很多,但生产厂家还不多。

3.2 合成工艺路线经济性评价

第一种:该法无需外加氧化剂和催化剂,可节省原料。

第二种:对羟基苯甲酸价格昂贵,原料成本过高。

第三种:木质素来源广泛,纸浆废液中也含有大量的木质素,可以作为廉价的生产原料。我国蕴藏丰富的林产资源, 若能充分利用林产化工废料以较大规模生产香兰素,定能获得很好的经济效益。由于木质素来源广泛,处理含木质素的废液有利可图,所以国外学者对此深人研究,取得一定进展。

3.3 合成工艺路线环保性评价

第一种:直接利用草酸电解液与愈创木酚反应合成MHPA,进一步电解氧化合成香兰素,减少废物污染等优点。

第二种:若能解决好溴的回收问题,减少环境污染,该法具有一定发展前景。

第三种:处理含有木质素的废液可以得到木质素,所以此法对环保还是非常有利的。

总之:综合考虑,第三种方法是最好的方法。

4 参考文献

[1] 李真顺, 迟玉杰. 香兰素的合成方法及应用[J]. 中国食品添加剂, 2004, 06:

101-109.

[2] 王霞, 黎碧娜, 吴勇. 香兰素的合成方法评价[J]. 广东化工, 2002, 17(2): 16-19.

[3] 季卫刚, 赵先英, 覃军等. 香兰素的合成方法综述[J]. 河北工业科技, 2003, 20(6):

43-47.

[4] 凌伟忠, 张精安, 林春晓等. 由4-羟基苯甲醛合成香兰素的工艺研究[J]. 广东微

量元素科学, 2007, 14(9): 67-70.

年产3000吨丙烯氰(AN)合成工段换热器工艺设计1

年产3000 吨丙烯氰合成工段换热器工艺设计

目录 一、设计说明 (3) 1.1 概述 (3) 1.2丙烯腈生产技术的发展概况 (3) 1.2.1国外的发展情况 (3) 1.2.2国内的发展情况 (4) 1.3 世界X围内产品的生产厂家、产量 (6) 1.4世界X围内生产该产品的所有工艺及其分析 (7) 1.4.1环氧乙烷法 (7) 1.4.2 乙炔法 (7) 1.4.3丙烯氨氧化法 (7) 1.5设计任务 (8) 二、生产方案 (8) 2.1 工艺技术方案及原理 (8) 2.2 主要设备方案 (9) 2.2.1催化设备 (9) 2.2.2控制系统 (10) 三、物料衡算和热量衡算 (10) 3.1 生产工艺及物料流程 (10) 3.2 小时生产能力 (14) 3.3 物料衡算和热量衡算 (14) 3.3.1反应器的物料衡算和热量衡算 (14) 3.3.2废热锅炉的热量衡算 (17) 3.3.3空气饱和塔物料衡算和热量衡算 (18) 3.3.4 氨中和塔物料衡算和热量衡算 (21) 3.3.5换热器物料衡算和热量衡算 (27) 3.3.6丙烯蒸发器热量衡算 (32) 3.3.7丙烯过热器热量衡算 (33) 3.3.8氨蒸发器热量衡算 (33) 3.3.9气氨过热器 (34) 3.3.10 混合器 (34) 3.3.11 空气加热器的热量衡算 (35) 3.3.12吸收水第一冷却器 (36) 3.3.13 吸收水第二冷却器 (36) 四、主要设备的工艺计算 (37) 4.1 空气饱和塔 (37) 4.2 水吸收塔 (40) 4.3 合成反应器 (43) 4.4 废热锅炉 (45) 五、环境保护要求 (46) 5.1丙烯腈生产中的废水和废气及废渣的处理 (46) 六、参考文献 (50) 1设计说明

制药工程课程设计-尼可地尔合成工艺设计讲解

天津工业大学 环境与化学工程学院 2016届制药工程课程设计 题目:年产36吨尼克地尔原料药车间工艺设计 报告人:____ ______________ 班级:___ ___________ 学号:___ ___________ 指导老师:____ ___________ 实习时间:____ __

目录 第一章产品介绍 (1) 第二章生产工艺说明 (2) 第三章生产周期 (5) 第四章物料衡算 (6) 第五章设备选型 (10) 附件:设备流程图、车间布置图

第一章产品介绍 1.3产品名称及生产规模 产品名称:尼可地尔 英文名称:Nicorandil 化学名:N-(2-羟乙基)烟酰胺硝酸酯 生产规模:36t/a 1.2产品规格 物理性状:针状 熔沸点:熔点92~93℃ 分子式:C8H9N3O4 结构式: 分子量:211.17 1.3产品的重要价值 尼可地尔,又叫做烟浪丁,是一种硝酸酯类物质,可用于治疗缺血性心脏疾病。与硝酸甘油作用相似,但又有所不同。尼可地尔在细胞膜和线粒体水平选择性激活K+-ATP通道,促使冠状动脉和外周血管扩张,随后还原前、后负荷。而且该药物主要主要舒张小动脉,增开心肌及血管平滑肌细胞膜的钾通道,并且不具有耐药性。

第二章 生产工艺说明 2.1产品合成方法 合成本产品所需原料有烟酸、乙醇胺、无水乙醇、碳酸氢钠、发烟硝酸、乙醚、氯化亚砜、氯仿、碳酸钾、无水硫酸镁、乙醇依次经历硝化反应、酰化反应和精制这三个步骤。 产品生产主要反应如下: 1.硝化反应: NH 2CH 2CH 2 OH NH 2CH 2CH 2ONO 2·HNO 3 2.缩合反应 NH 2CH 2CH 2ONO 2·HNO 3+ 2.2生产工艺流程概述 1.硝化反应 将发烟硝酸通过计量罐置于带有夹套的反应釜中,通冷盐水冷却至-8℃搅拌,缓慢滴加氨基乙醇,滴加完毕,于0℃继续搅拌1 h,减压蒸除过量硝酸,将剩余物倾入冷乙醚中,析出白色沉淀,抽滤至干,得产品 2.合成烟酰氯盐酸盐反应 将烟酸、氯化亚砜加入反应釜中,回流2h 。减压蒸馏除去过量氯化亚砜,干燥,得产品粗品。 HNO 3

香兰素的合成工艺设计

有机合成课程设计 题目香兰素的合成工艺 系(院)化学与化工系 专业应用化学 班级11应化本2 学生姓名王春莲 学号1114100327 指导教师张圣燕 职称讲师 2013年 12月 20日

香兰素的合成工艺设计 1 产品简介 1.1 中英文名称,化学式,结构式 中文名称:香兰素 别名:香荚兰醛;香荚兰素;香兰醛 化学名称:3-甲氧基-4-羟基苯甲醛 英文名称:Vanillin 分子式:C8H8O3 结构式: CHO OH OCH3 1.2 物化性质 白色至微黄色鳞片状结晶或结晶性粉末,存在有不同熔点的四种结晶变型。呈甜克力香气及强烈的香兰素所独有的芳香气,香气比香兰素强3-4 倍。沸点285 ℃,点76.5 ℃。微溶于水,溶于乙醇、乙醚、甘油、丙二醇、氯仿和碱溶液。基本上无毒害,但其蒸气对皮肤及粘膜有局部刺激作用 1.3 用途 香兰素是重要的食用香料之一,是食用调香剂,具有香荚兰豆香气及浓郁的奶香,是食品添加剂行业中不可缺少的重要原料,广泛运用在各种需要增加奶香气息的调香食品中,如蛋糕、冷饮、巧克力、糖果、饼干、方便面、面包以及烟草、调香酒类、牙膏、肥皂、香水、化妆品、冰淇淋、饮料以及日用化妆品中起增香和定香作用。 香兰素在国外的应用领域很广,大量用于生产医药中间体,也用于植物生长促进剂、杀菌剂、润滑油消泡剂、电镀光亮剂、印制线路板生产导电剂等。国内香兰素主要用于食品添加剂,近几年在医药领域的应用不断拓宽,已成为香兰素应用最

有潜力的领域。 香兰素在国外的应用领域很广,大量用于生产医药中间体,也用于植物生长促进剂、杀菌剂、润滑油消泡剂、电镀光亮剂、印制线路板生产导电剂等。国内香兰素主要用于食品添加剂,近几年在医药领域的应用不断拓宽,已成为香兰素应用最有潜力的领域。目前国内香兰素消费:食品工业占55%,医药中间体占30%,饲料调味剂占10%,化妆品等占5%。 1.4 前景分析 国内外行业现状中国是世界香兰素出口大国,2002年国内需求量2350吨,占产量的30%,其余70%用于出口。而1988年仅出口273吨,1993年为1700吨,2002年为4653吨。1993~2002年,中国香兰素出口量年均增长率为12%。中国香兰素在北美、欧洲、东南亚等地市场享有良好信誉。 2 合成方法 2.1 第一种合成方法——愈创木酚法 (1)合成基本原理 愈创木酚在碱性条件下和乙醛缩合成3-甲氧基-4-羟基苯乙醇酸,3-甲氧基-4-羟基苯乙醇酸在碱性条件下被氧化成3-甲氧基-4-羟基苯乙酮酸(香草扁桃酸),然后在碱性条件下脱羧生成香兰素。其反应方程式如下: OCH 3 OH CHOCOOH CHOHCOOH OH OCH3 O2 OH OCH 3 CCOOH O CHO OH OCH3

年产20万吨PVC合成工段工艺设计毕业设计

毕业设计(论文)任务书 化学化工院化工系(教研室)系(教研室)主任: (签名) 年月日 学生姓名: 学号: 专业: 化学工程与工艺 1 设计(论文)题目及专题:年产20万吨PVC合成工段工艺设计 2 学生设计(论文)时间:自 2 月 20 日开始至 6 月 2 日止 3 设计(论文)所用资源和参考资料:1)化工设计;2)化工设备设计;3)化工工艺设计手册;4)有机合成;5)株洲化工厂现场实习资料。 4.设计(论文)完成的主要内容:1)总论;2)生产流程及生产方案的确定; 3)生产工艺流程叙述;4)工艺计算; 5)工艺管道设计; 6)安全与节能; 7.技术经济. 5.提交设计(论文)形式(设计说明与图纸或论文等) 1. 带控制点生产工艺流程图; 2. 车间立面布置图; 3. 合成塔结构图。 4 厂房设计平面图 6 发题时间:二○一一年二月二十日 指导教师:(签名) 学生(签名)

内容摘要 本文讲述了我国聚氯乙烯工业生产技术的发展进程和目前状况,包括原料路线、工艺设备、聚合方法等。本设计采用悬浮法生产聚氯乙烯,介绍了采用悬浮法生产PVC树脂工聚合机理,工艺过程中需要注意的问题,包括质量影响因素,工艺条件及合成工艺中的各种助剂选择,对聚合工艺过程进行详细的叙述。并且从物料衡算、热量衡算和设备计算和选型三个方面进行准确的工艺计算,对厂址进行了选择,采取了防火防爆防雷等重要措施,对三废的处理回收等进行了叙述,画出了整个工艺的流程图。 关键词:聚氯乙烯;生产技术;悬浮法;乙炔法;乙烯法; 防粘釜技术;

目录 第一章总论 (2) 1.1 国内外 pvc发展状况及发展趋势 (2) 1.2 单体合成工艺路线 (3) 1.2.1乙炔路线 (3) 1.2.2乙烯路线 (4) 1.3聚合工艺实践方法 (5) 1.3.1本体法聚合生产工艺 (5) 1.3.2乳液聚合生产工艺 (5) 1.3.3悬浮聚合生产工艺 (6) 1.4最佳的配方、后处理设备的选择 (7) 1.4.1配方的选择 (7) 1.4.2后处理设备侧选择 (7) 1.5 防粘釜技术 (9) 1.6原料及产品性能 (9) 1.7 聚合机理 (11) 1.7.1自由基聚合机理 (11) 1.7.2链反应动力学机理 (12) 1.7.3 成粒机理与颗粒形态 (12) 1.8影响聚合及产品质量的因素 (13) 1.9工艺流程叙述 (14)

马来酸依那普利合成工艺设计

马来酸依那普利合成设计 1产品简介 1.1中英文名称,分子式,结构式 中文名:马来酸依那普利 别名:苯丁酯脯酸,苯酯丙脯氨酸,苯酯丙脯酸,益压利,悦宁定;MSD ,Renitec 化学名:N -[(S)-1-(乙氧羰基)-3-苯丙基]-L-丙氨酰-L-脯氨酸(Z)-2-丁烯二酸盐 英文名:EnalaprilMaleate 分子式:202825444C H N O C H O · 结构式: 1.2物化性质 物理性质:白色鳞片状结晶或结晶性粉末;无臭,微有引湿性。在甲醇中易溶,在水中略溶,在乙醇或丙酮中微溶,在氯仿中几乎不溶。比旋度取本品,精密称定,加甲醇制成每1mL 中含10mg 的溶液,依法测定,比旋度为-40°至-44°。m.p.143~144.5(伴有分解)。pH (1%水)=2.6。pKa1(25℃)=3.0,pKa2(25℃)=5.4。 化学性质:偶见尿素氮、肌酐或谷丙转氨酶、谷草转氨酶轻度上升。若出现白细胞减少或血管神经性水肿(尤其发生于喉部者)需立即停药。与利尿药同用可致严重低血压,用本品前停用利尿药或增加钠摄入可减少低血压可能。本品与利钾利尿药同用可减少钾丢失,但与保钾利尿药同用可使血钾增高。本品与锂同用可致锂中毒,但停药后毒性反应即消失。与其他降压药,尤其是利尿药合用,降压作用增强,故使用本品前应停用利尿药或从小剂量开始。本品能使血钾升高,不宜与保钾利尿

药或补钾制剂合用。 1.3用途 本品为血管紧张素转换酶抑制剂,口服后在体内水解成依那普利拉(Enalaprilat)。后者抑制血管紧张素转换酶,降低血管紧张素Ⅱ含量,造成全身血管舒张,引起降压。依那普利是前体药物,其乙酯部分在肝内被迅速水解,转化成它的有效代谢物-依那普利拉发挥降压作用,口服依那普利约68%被吸收,与食物同服,不影响它的生物利用度,服药后一小时,血浆依那普利浓度可达峰值。服药后3.5~4.5小时,依那普利拉血浆浓度可达峰值,半衰期为11小时,肝功能异常者依那普利转变成依那普利拉的速度延缓,依那普利给药20分钟后广泛分布全身、肝、肾、胃和小肠药物浓度最高。大脑浓度最低,日服两次,两天后,依那普利拉与血管紧张素转换酶结合达到稳态,最终半衰期延长为30~35小时,依那普利拉主要由肾脏排泄。严重肾功能不全病人(肌酐清除率低于30ml/min)可出现药物蓄积,本药能用血液透析法除去。 1.4应用前景分析 临床采用依苏与硝苯地平缓释片联合治疗中重度高血压50例,所有患者治疗前停用对血压有影响的药物,用药前连续非同日3次血压和心率的平均值做为治疗前的血压及心率,用药后每日测血压2~3次,取疗程最后3天血压的平均值作为治疗后血压。所有病人依那普利用5mg,2次/日,硝苯地平缓释片10mg,2次/日。2~3周调整药物剂量使血压达到理想水平(150/90mmHg)。4周为1疗程。治疗前后检查血、尿常规,血脂、血糖、心电图、肝功能、肾功能。结果显示,本组50例,显效28例,有效20例,无效2例,总有效率96%。用药过程中其中头痛头晕3例,干咳2例,恶心1例,乏力1例,持续1~2周自行消失。本品用于治疗各期原发性高血压。肾血管性高血压。各级心力衰竭。对于症状性心衰病人,也适用于:提高生存率;延缓心衰的进展;减少因心衰而导致的住院。预防左心室功能不全病人冠状动脉缺血事件,适用于:减少心肌梗塞的发生率;减少不稳定型心绞痛所导致的住院。

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳 工艺项目 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论 (3) 1.1 概述 (3) 1.1.1 项目名称 (3) 1.1.2 合成氨工业概况 (3) 1.2 项目背景及建设必要性 (4) 1.2.1 项目背景 (4) 1.2.2 项目建设的必要性 (4) 1.2.3 建设意义............................................................................. 错误!未定义书签。 1.2.4 建设规模 (4) 第二章市场预测 (6) 2.1国内市场预测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.. (7) 3.1 净化工序中脱碳的方法. (7) 3.1.1 化学吸收法 (7) 3.1.2 物理吸收法 (8) 3.1.3 物理化学吸收法................... (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯(PC)法脱碳基本原理 (10) 3.2.1 PC法脱碳技术国内外的情况 (10) 3.2.2 发展过程 (10) 3.2.3 技术经济 (11) 3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述 2.1 概述 1.1.1项目名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业概况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O(g)→2NH3(g)+CaCO3 在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。 世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。 2.2 项目背景及建设必要性 1.2.1 项目背景 我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。 但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

香兰素生产工艺及其改进

香兰素生产工艺及其改进 始有溴蒸气从液面下逸出的瞬闻),就应及时 停止通溴,并分次少量地补加粉末状碳酸锂进 行中和调整至pH3.0~5.0范围内,直至通溴 操作结束为止. 加完碳酸镪后,将料绩由6O℃逐渐升温至 80℃,调节并控制料液的pH值为5.0(可先用 精密试纸粗测,再取样液用甲基红试液检查剐 呈黄色即可)无变化后,即达合成反应的终 点.停止通溴和搅拌,关上蒸汽. 取样液进行杂质检查.如果溶液中尚存有 过量的溴素(当用pH试纸测定时,其尾部呈 血红色条纹状),应补加尿素进行处理J如含有 溴酸盐成分(当往样液的试管中加入稀硫酸 时,样液呈黄色),则应加入少量硫脲进行还 原处理若料液中所含有的硫酸根超过标准, 就需将溶液升温歪沸,并调节溶液的pH值至 4.0左右,加入适量的氢氧化钡进行处理,并 搅拌半小时,静置4h后取样再复查硫酸根是否 合格如溶液中的硫酸根消失,然而钡盐出

现,就应再将溶液加入少许硫酸锂饱和溶渡并‘ 升温至沸,以赊尽钡离子.最后,还要复查该 溶液的pH值是否仍为5.0,否则应予以调整. 将上述已经净化合格的溴化镪溶液,在快 速搅拌下加入少量的粉状活性炭进行脱色处理,然后进至过滤工序.将所收集的滤液用泵 打入浓缩罐进行浓缩.在浓缩过程中,要随着 罐内液位的下降,补加滤液若干次.同时,在 浓缩过程中,会有一些混浊物析出,这是溶液 中含有的溶解度较小的碳酸锂在浓缩时析出的缘故此时,应将其除去(采用捞晶的方法). 当浓缩至溴化锂浓溶液的液温升至为190~ l9℃肘,即达到终点(在这以前1h停止补加 滤液)趁热放料进行过滤,以除尽”水不溶 物”杂质等.滤缓经冷却,搅拌,结晶,离心 分离,得一木合溴他锂.由于溴他锂(LiBr? HO)投易潮解,困此应立即密封包装,并置 故于干燥的库房内. 4.产品质量 外观,纯自色立方晶体或均匀状粉末 含量:>98.6(L2LiBr?H±O计)

丙烯腈合成工段的工艺设计

丙烯腈合成工段的工艺设计 前言 毕业设计是培养学生运用理论知识进行实际设计能力的重要实践教学环节,是理论与实际结合的重要连接点。在教师指导下毕业设计可以培养我们独立思考,运用所学到的基本理论并结合生产实际的知识,综合的分析和解决工程实际问题的能力。 本次毕业设计所设计的内容为年产6万吨丙烯腈合成工段的工艺设计,通过认真细听老师课堂上讲解和任务布置,我们了解到了为完成设计需要查找资料的方向,并进行了细心的查阅,掌握了基本的理论知识。对于刚进行设计的人来说,学会收集、理解、熟悉和使用各种资料,正是设计课程需要培养的重要方面,化工设计非常强调标准规范。但是并不是限制设计的创造和发展,因此遇到与设计要求有矛盾时,经过必要的手续可以放弃标准而服从设计要求。通过设计应知道如何查取数据知道如何查找资料对丙烯腈合成工段的工艺设计有了一个全新的 认识,知道如何选取相关数据参数,建立一个工程概念,知道工程和理论的区别。对于物料衡算和热量衡算、主要设备的工艺计算(反应器)等都有一个全新的认识和了解,知道如何使用手册和资料,认识工程。

一、产品的性状、用途、国内外市场情况 1.1 丙烯腈简介 丙烯腈是一种重要的有机合成单体,在丙烯产品系列中居第二,仅次于聚丙烯,是三大合成材料(纤维、橡胶、塑料)的重要化工原料,主要用来生产聚丙烯腈纤维(腈纶)、丙烯腈- 丁二烯-苯乙烯(ABS)塑料、苯乙烯(AS)塑料、丙烯酰胺等。丙烯腈在合成纤维、合成树脂等高分子材料中占有显著地位,应用前景广阔。除此之外,丙烯腈聚合物与丙烯腈衍生物也广泛应用于建材及日用品中 1.2 丙烯腈物化性质 1.2.1 丙烯腈物理性质 无色或淡黄色液体,有特殊气味,分子量:53.06 沸点:77.3℃冰点:-83.5 ℃生成热:184.2 kJ/mol(25℃) 燃烧热:1761.5 kJ/mol 聚合热:72.4 kJ/mol 蒸汽压:11.0KPa(20℃) 闪点:0℃自燃点:481℃爆炸极限:在空气中 3.0%~17%(体积)油水分配系数:辛醇/水分配系数的对数值为-0.92 毒性:剧毒,毒作用似氢氰酸溶解性:溶于丙酮、苯、四氯化碳、乙醚、乙醇等有机溶剂,微溶于水 1.2.2 丙烯腈化学性质 丙烯腈由于分子结构带有C=C双键及-CN键,所以化学性质非常活泼,可以发生加成、聚合、腈基及氢乙基化等反应。聚合反应和加成反应都发生在丙烯腈的C=C 双键上,纯丙烯腈在光的作用下能自行聚合,所以在丙烯腈成品及丙烯腈生产过程中,通常要加少量阻聚剂,如对苯酚甲基醚(阻聚剂MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。除发生自聚外,丙烯腈还能与苯乙烯、丁二烯、乙酸乙烯、丙烯酰胺等发生共聚反应,由此可制得合成纤维、塑料、涂料和胶粘剂等。丙烯腈经电解加氢偶联反应可以制得已二腈。氰基反应包括水合反应、水解反应、醇解反应等,丙烯腈和水在铜催化剂存在下,可以水合制取丙烯酰胺。氰乙基化反应是丙烯腈与醇、硫醇、胺、氨、酰胺、醛、酮等反应;丙烯腈和醇反应可制取烷氧基丙胺,烷氧基丙胺是液体染料的分散剂、抗静电剂、纤维处理剂、表面活性剂、医药等的原料。丙烯腈与氨反应可制得1,3 丙二胺,该产物可用作纺织溶剂、聚氨酯溶剂和催化剂。 1.3 丙烯腈的用途

氯化氢合成与吸收工艺设计及运行总结

氯化氢合成与吸收工艺设计及运行总结 王真贝,黄建成 (江苏扬农化工集团,江苏扬州225000) [关键词]:氯化氢合成石墨二合一氯化氢吸收设备选型运行情况 [摘要]:对扬农化工集团产能扩建项目中盐酸合成工艺的设计过程进行了简要的概述。对于设备选型以及后期运行情况进行了分析,并对生产过程出现的异常现象以及处理办法进行了描述。 Hydrogen chloride synthesis and absorption of process design and operation summary Wang Zhenbei*,Huang Jiancheng (Jiangsu Yangnong Chemical Industry Co.,Ltd., Jiangsu Yangzhou 225000,China) [key words]: hydrogen chloride synthetic graphite hydrochloric acid absorption type equipment operation [Abstract]: the design process of the synthesis of hydrochloric acid production capacity expansion project Yangnong Chemical Industry Co.,Ltd., in brief. For equipment selection and post operation are analyzed, the abnormal phenomenon and appeared on the production process and processing method are described. 1、前言 盐酸是氯碱化工的主要产品之一,目前盐酸合成工艺多数采用合成和吸收两大操作单元组成。合成炉是制造氯化氢气体或盐酸的主要设备。过去工艺上应用比较广泛的是钢制合成炉,而近期均以石墨合成炉为主。由于石墨材料具有耐腐蚀、耐高温、传热效率高等优点,其应用越发广泛。配合夹套冷却的合成炉可以降低炉内氯化氢温度,提高生产能力,甚至可以利用反应热副产蒸汽。[1] 扬农化工集团氯碱分厂离子膜以及隔膜电解工艺碱产能为12万吨/年,配套产生氯气3.5万吨/年,盐酸工段作为氯气平衡的工段之一,采用氢气和氯气反应生成氯化氢,再用吸收水吸收产生32%盐酸作为产品出售。原来盐酸工段有φ700的合成炉2台,单套产能为1.5万吨/年,为满足集团产能扩大的发展需求,新增1台φ1200的石墨二合一氯化氢合成炉,炉体采用内衬石墨,外体钢制的合成炉,配套吸收系统。此类合成工艺具有以下特点:1、炉体温度低 (530±30)℃;2、设备寿命长,平均使用寿命约2年;3、制造及安装方便;4、吸收效率高;5、操作弹性较大;6、系统三废产生量少。 2、工艺设计要求 合成炉选用石墨合成炉。本次设计是在扬农集团多年积累的设计经验、运行的基础上,设计出工艺合理、设备优选、产能以及质量满足要求的φ1200石墨二合一氯化氢合成炉。 3、工艺参数计算 本合成工艺设计按照年产2.5万吨32%盐酸,年生产天数330天计算。合成炉系统工艺由合成炉本体、空冷管道(配马槽通冷水冷却)、石墨冷却器、三级吸收塔、水流泵等部分组成。具体工艺流程见图1。

年产20万吨氯碱盐酸工段工艺设计

1引言 盐酸,又称氢氯酸,是氯化氢的水溶液。亦是氯碱企业中最基本的无机酸和化工原料之一,也是氯碱厂做好氯气产品生产能力平衡的关键产品和大宗的化学合成法产品。 氯碱,即氯碱工业,也指使用饱和食盐水制氯气氢气烧碱的方法。工业上用电解饱和NaCl 溶液的方法来制取NaOH 、Cl 2和H 2,并以它们为原料生产一系列化工产品,称为氯碱工业。 工业上利用氢气与氯气合成的方法生产氯化氢,因此盐酸是氯碱工业的重要产品。 1.1盐酸概况 1.1.1物理性质 盐酸是无色液体,具有腐蚀性,是氯化氢的水溶液(工业用盐酸会因有杂质三价铁盐而略显黄色)。氯化氢分子量36.46,密度大于空气,标准状态下的密度为1.639g /L ,临界温度为51.54℃,临界压力为8314kPa 。氯化氢气体在水中的溶解度很大,随着氯化氢的分压的升高而增加,随着温度的上升而降低。 在化学上人们把盐酸和硫酸、硝酸、氢溴酸、氢碘酸、高氯酸合称为六大无机强酸,有刺激性气味。由于浓盐酸具有挥发性,挥发出的氯化氢气体与空气中的水蒸气作用形成盐酸小液滴,所以会看到酸雾。 主要成分:氯化氢,水。 熔点(℃):-114.8(纯HCl) 沸点(℃):108.6(20%恒沸溶液) 相对密度(水=1):1.20 相对蒸气密度(空气=1):1.26 饱和蒸气压(kPa):30.66(21℃) 溶解性:与水混溶,浓盐酸溶于水有热量放出。溶于碱液并与碱液发生中和反应。能与乙醇任意混溶,溶于苯。 氯化氢在101.3kPa 压力下,沸点为—85℃,凝固点为—114.2℃。 氯化氢的比热容在常压下15℃时为0.8124kJ /kg ℃,在0—1700℃范围内,可按下式计算(其误差为1.5%) 50.7557511.2505C T -=+?10 (8-1),式中,T 为绝对温度K 。 15℃时盐酸的密度与浓度之间的关系

年产10万吨丙烯酸丁酯合成工艺设计

课程设计 题目年产10万吨丙烯酸丁酯合成工艺设计学院化学化工学院 专业化学工程与工艺 班级 学生 学号 指导教师化学工程系课程指导小组 二〇一五年十一月二十日

学院专业化学工程与工艺 学生学号 设计题目年产10吨丙烯酸丁酯合成工艺设计 一、课程设计的内容 主要内容为年产10万吨丙烯酸丁酯的工艺设计。通过工艺对比选择合适的方案,进行物料衡算和能量衡算,确定关键设备的选型和材料,绘制出工艺流程图、设备图等相关图纸,对生产过程中进行经济核算与分析。 二、课程设计的要求 1.查阅国内外的相关文献不得少于15篇,完成课程设计任务。 2.独立完成给定的设计任务后编写出符合要求的课程设计说明书,要求工艺 设计合理,将研究、开发的技术及过程开发的成果与过程建设、经济核算衔接起来;绘制出必要的设计图纸。 3. 综合应用化学工程和相关学科的理论知识与技能,分析和解决实际问题。 4. 完成课程设计的撰写。 三、文献查询方向及范围 1.利用学校的清华同方数据库、万方学位论文全文数据库、ScienceDirect、ACS(美国化学学会)数据库查询丙烯酸酯工业制备方法等中英文文献与硕博论文。 2.主要参考文献 [1] 夏涛. 丙烯酸正丁酯合成反应的新型催化剂及工艺研究[D]. 长沙: 湖南大学2002. [2] 杨召启,李石磊,方晓明.丙烯酸丁酯最佳反应条件的选择[J].甘肃科技, 2010,26(1):41-43. [3]徐金文,丁鹏飞. 降低精制塔底重组份中丁酯含量[J]. 山东化工, 2015,44(16): 119-120. [4] 李汝新. 丙烯酸及酯的市场分析[J].甘肃科技, 2006,22(5):1-8. [5] 邵艳秋,张桂芳. 丙烯酸丁酯合成方法的改进[J]. 浓阳化工, 2000, 29(2), 70-75. [6] Acrylic acid technology, Chemical Week, 2003, 165(21):25-26. [7] Acrylic acid, European Chemical News, 2002, 77(2021): 17.

香料香兰素的合成

合成香兰素的工作任务 1.香兰素简介 香兰素(Vanillin )为白色或微黄色针状结晶,具有类似香荚兰豆的香气及浓郁的奶香,味微甜;熔点81~83℃,化学名为3-甲氧基-4-羟基苯甲醛。香兰素是重要的食用香料之一,为香料工业中最大的品种,是人们普遍喜爱的奶油香草香精的主要成份,广泛用于食品、巧克力、冰淇淋、饮料以及日用化妆品中起增香和定香作用。另外香兰素还可作饲料的添加剂、电镀行业的增亮剂、制药行业的中间体。 13.2 合成香兰素工作任务分析 13.2.1目标化合物分子结构的分析 ①香兰素的分子式:C 8H 8O 3 ②香兰素的分子结构式: CHO OCH 3 不难看出,目标化合物基本结构为取代苯酚结构,醛基和甲氧基分别处于酚羟基的对位和邻位。 13.2.2香兰素的合成路线分析 从苯环上基团引入的角度看,醛基可以直接引入,也可以采用氧化(或还原)的方法引入。 分析1: 相应合成路线1: CH 3 O NH 2 CH 3 O +HSO 4 N 23 分析2: 相应合成路线2: OH CH 3 O CH 3 O HO CHCOOH OH 分析3: OCH 3 OH FGI CH 3 O CHCOOH OH HO CH 3 O OH CH CH CH 3 TM FGR FGI OCH 3 OH + OHCCOOH 丁香酚 CHO OCH 3 OH 2 OCH 3 NaNO 2 H 2SO 4 CH 3Cl NaOH [O] OHCCOOH TM TM TM

相应合成路线3: CH 2CH=CH 2 OCH 3 ONa CH=CH-CH 3 OCH 3 ONa CHO OCH 3 OH 分析4: 相应合成路线4: 从基团变换的角度,也可以有下面的逆向推导。 分析5: CHO OH Br CHO OH 相应合成路线5: 分析6: CH 3 相应合成路线6 显然,路线5和路线6由于卤化时能发生多卤化及甲氧基化反应较难的问题,不是好的合成路线。路线1~4各有特点,只要条件具备,都可值得尝试。 13.2.3 文献中常见的香兰素的合成方法 目前香兰素的生产方法较多,典型的主要有: 路线一:以邻硝基氯苯为原料的多步合成的方法。 (1)甲氧基化反应 ++CH 3O NO 2 Cl KOH CH 3OH NO 2 ++KCl H 2 O (2)还原反应 OCH 3 OH CO 2 CHO OH TM CH 3 O OH COOH FGI FGR FGR [O] 异构化 TM TM OCH 3 OH CH 3 O OH COOH [H] NaOCH 3 TM TM CH3 OH TM Cl 2 CH 3 Cl NaOCH 3 CH 3 OCH 3OH

130万吨焦化厂粗笨工段工艺的设计

1 绪论 1.1炼焦煤气中回收苯族烃的意义 炼焦化学工业是煤炭综合利用的专业。煤在炼焦时除了有75%左右变成焦炭外,还有25%左右生成各种化学品及煤气,为了便于说明将煤炭炼焦时的产品列出如下:(单位:2 /Nm g) 75%25% 250~450 80~120 30~45 8~16 6~30 2~2.5 1.0~ 2.5 8~12 0.4~0.6? ? ? ? ? ? ? ←??????→? ??????? 2水煤汽焦油汽粗苯氨 焦炭煤荒煤气硫化氢 其它硫化物(CS,噻吩等) 氰化物 萘 吡啶盐基 由此看来,从荒煤气中粗苯的含量来看,回收粗苯是十分必要的。 焦炉煤气经硫铵工段后进入粗苯工段,进行苯族烃的回收并制取粗苯,目前我国焦化工业生产的苯类产品仍占很重要的地位。 1.2粗苯的性质 粗苯是多种芳烃族和和其它多种碳氢化合物组成的复杂混合物,粗苯的主要成分是苯、二甲苯、甲苯及三甲苯等,此外,还含有一些不饱和化合物,硫化物及少量的酚类和吡啶碱类。在用洗油回收煤气中的苯族烃时,则尚有少量轻质馏分掺杂在其中。 粗苯是谈黄色的透明液体,比水轻,不溶于水。在贮存时,由于轻质不饱和化合物的氧化和聚合所形成的树脂状物质能溶于粗苯使其着色并很快地变暗。在常温下,粗苯的比重是0.891~0.92kg/L。粗苯是易燃易爆物质,闪点12℃.粗苯蒸汽在空中的浓度达到1.4~7.5%(体积)范围内时,及形成爆炸性的混合物。 粗苯质量的好坏以实验室蒸馏时180℃前蒸馏出量的百分数来确定,粗苯的沸点范围是75~200℃,180℃前溜出量越多,粗苯质量越好;在180℃后的溜出物则为溶剂油。 粗苯易燃易爆,要求工段必须严禁烟火,并对电动机加以防爆。 粗苯的组成取决于炼焦配煤的组成及炼焦产物在炭化室内热解程度,粗苯各组分的平均含量见下表(表1-1)。

马来酸依那普利合成工艺设计

马来酸依那普利合成设计 1产品简介 1.1中英文名称,分子式,结构式 中文名:马来酸依那普利 别名:苯丁酯脯酸,苯酯丙脯氨酸,苯酯丙脯酸,益压利,悦宁定;MSD,Renitec 化学名:N-[(S)-l-(乙氧羰基)-3-苯丙基卜L-丙氨酰-L-脯氨酸(Z)-2- 丁烯二酸盐 英文名:EnalaprilMaleate 结构式: l.2物化性质 物理性质:白色鳞片状结晶或结晶性粉末;无臭,微有引湿性。在甲醇中易溶, 在水中略溶,在乙醇或丙酮中微溶,在氯仿中几乎不溶。比旋度取本品,精密称定,加甲醇制成每 1mL中含10mg的溶液,依法测定,比旋度为-40 °至-44 °。m. p.143~144.5 (伴有分解)。pH (1%水)=2.6。pKa1 (25C) =3.0,pKa2 (25C)=5.4 化学性质:偶见尿素氮、肌酐或谷丙转氨酶、谷草转氨酶轻度上升。若出现白细胞减少或血管神经性水肿(尤其发生于喉部者)需立即停药。与利尿药同用可致严重低血压,用本品前停用利尿药或增加钠摄入可减少低血压可能。本品与利钾利尿药同用可减少钾丢失,但与保钾利尿药同用可使血钾增高。本品与锂同用可致锂中毒,但停药后毒性反应即消失。与其他降压药,尤其是利尿药合用,降压作用增强,故使用本品前应停用利尿药或从小剂量开始。本品能使血钾升高,不宜与保钾利尿 1

药或补钾制剂合用 1.3用途 本品为血管紧张素转换酶抑制剂,口服后在体内水解成依那普利拉(En alaprilat)。后 者抑制血管紧张素转换酶,降低血管紧张素U含量,造成全身血管舒张,引起降压。依那普利是前体药物,其乙酯部分在肝内被迅速水解,转化成它的有效代谢物-依那普利拉发挥降压作用,口服依那普利约 68%被吸收,与食物同服,不影响它的生物利用度,服药后一小时,血浆依那普利浓度可达峰值。服药后 3.5?4.5小时,依那普利拉血浆浓度可达峰值,半衰期为11小时,肝功能异常者依那普利转变成依那普利拉的速度延缓,依那普利给药20分钟后广泛分布全身、肝、肾、胃和小肠药物浓度最高。大脑浓度最低,日服两次,两天后,依那普利拉与血管紧张素转换酶结合达到稳态,最终半衰期延长为30?35小时,依那普利拉主要由肾脏排泄。严重肾功能不全病人(肌酐清除率低于 30ml/min )可出现药物蓄积,本药能用血液透析法除去。 1.4应用前景分析 临床采用依苏与硝苯地平缓释片联合治疗中重度高血压50例,所有患者治疗前停用对血压有影响的药物,用药前连续非同日3次血压和心率的平均值做为治疗前 的血压及心率,用药后每日测血压2?3次,取疗程最后3天血压的平均值作为治疗后血压。所有病人依那普利用5mg,2次/日,硝苯地平缓释片10mg, 2次/日。2? 3周调整药物剂量使血压达到理想水平(150/90mmHg)。4周为1疗程。治疗前后检查血、尿常规,血脂、血糖、心电图、肝功能、肾功能。结果显示,本组 50例,显效28例,有效20例,无效2例,总有效率96%。用药过程中其中头痛头晕3例,干咳2例,恶心1例,乏力1例,持续1?2周自行消失。本品用于治疗各期原发性高血压。肾血管性高血压。各级心力衰竭。对于症状性心衰病人,也适用于:提高生存率;延缓心衰的进展;减少因心衰而导致的住院。预防左心室功能不全病人冠状动脉缺血事件,适用于:减少心肌梗塞的发生率;减少不稳定型心绞痛所导致的住院。

香兰素的合成方法及技术展望

.- 香兰素的合成方法及技术展望 吴志尚化工一班 3014207025 (天津大学化工学院,天津 300072) 摘要:香兰素是世界上最重要的香料之一,广泛应用在食品饮料、香精香料和医药工业等领域中, 全球每年的需求量超过16000t。鉴于人们对纯天然绿色食品的追求日益增长,天然香兰素高效的生产方法也成为研究的热点。本文综述了香兰素的多种不同的合成途径以及合成关键因素等方面的研究进展, 分析探讨了不同合成途径的优劣之处。并展望了利用微生物高产天然香兰素存在的瓶颈以及有潜力的发展方向。 关键词:香兰素;天然香料;合成途径 The synthesis methods of vanillin and technical outlook Wu Zhishang Class 1 3014207025 (School of chemical engineering institute,Tianjin University,Tianjin 300072) Abstract:Vanillin is one of the most important flavoring compounds, and it is widely used in the food industry, spice fragrance, and medicine industry, etc. The annual worldwide consumption is estimated over 16 000 tons. Due to people's increasing concern for natural food,the product of natural vanillin has become the major point of scientific research. By comparing different production methods of vanillin, we concluded that the microbial transformation to vanillin is the most promising method. Research developments on different biosynthetic pathways for vanillin, as well as the genes and enzymes involved, were discussed. In addition,the advantages and disadvantages of each pathway were compared and explained. Finally, the existing bottlenecks in biosynthesis of high-yield natural vanillin with the help of genetic and metabolic engineering, and the potential development direction in this field were elucidated. Natural spices ; Synthetic pathway Vanillin;Keywords: 香兰素(Vanillin, 4-羟基-3-甲氧基苯甲醛)主要存在于天然植物香荚兰中, 是世界上最重要的香料之一。香兰素的晶体为白色针状,呈香兰荚特有的香气,它微溶于冷水,易溶[1]于热水、乙醇、乙醚、氯仿和热挥发油中。其化学结构为:

产五万吨合成氨合成工段工艺设计方案

目录 中文摘要 (1) 英文摘要 (2) 1 引言 (3) 1.1 氨的基本用途 (3) 1.2 合成氨技术的发展趋势 (4) 1.3 合成氨常见工艺方法 (4) 1.3.1 高压法 (5) < 1.3.2 中压法 (5) 1.3.3 低压法 (5) 1.4 设计条件 (5) 1.5 物料流程示意图 (6) 2 物料衡算 (8) 2.1 合成塔入口气组成 (8) 2.2 合成塔出口气组成 (8) 2.3 合成率计算 (9) 《 2.4 氨分离器出口气液组成计算 (10) 2.5 冷交换器分离出的液体组成 (13) 2.6 液氨贮槽驰放气和液相组成的计算 (13) 2.7 液氨贮槽物料衡算 (15) 2.8 合成循环回路总物料衡算 (17) 3 能量衡算 (28) 3.1 合成塔能量衡算 (28) 3.2废热锅炉能量衡算 (30) ~ 3.3 热交换器能量衡算 (31) 3.4 软水预热器能量衡算 (32) 3.5 水冷却器和氨分离器能量衡算 (33) 3.6 循环压缩机能量衡算 (35) 3.7 冷交换器与氨冷器能量衡算 (36) 3.8 合成全系统能量平衡汇总 (38) 4 设备选型及管道计算 (40) 4.1 管道计算 (40) , 4.2 设备选型 (42) 结论 (43) 致谢 (44) 参考文献 (45)

年产五万吨合成氨合成工段工艺设计 摘要:本次课程设计任务为年产五万吨合成氨工厂合成工段的工艺设计,氨合成工艺流程一般包括分离和再循环、氨的合成、惰性气体排放等基本步骤,上述基本步骤组合成为氨合成循环反应的工艺流程。其中氨合成工段是合成氨工艺的中心环节。新鲜原料气的摩尔分数组成如下:H273.25%, N225.59%,CH41.65%,Ar0.51%合成操作压力为31MPa,合成塔入口气的组成为NH3(3.0%>,CH4+Ar(15.5%>,要求合成塔出口气中氨的摩尔分数达到 17%。通过查阅相关文献和资料,设计了年产五万吨合成氨厂合成工段的 工艺流程,并借助CAD技术绘制了该工艺的管道及仪表流程图和设备布置图。最后对该工艺流程进行了物料衡算、能量衡算,并根据设计任务及操作温度、压力按相关标准对工艺管道的尺寸和材质进行了选择。 关键词:物料衡算,氨合成,能量衡算 , The Design of 50kt/a Synthetic Ammonia Process Abstract:There are many types of Ammonia synthesis technology and process,Generally,they includes ammonia synthesis, separation and recycling, inert gases Emissions and other basic steps, Combining the above basic stepsturnning into the ammonia synthesis reaction and recycling process , in which ammonia synthesis section is the central part of a synthetic ammonia process. The task of curriculum design is theammonia synthesis section of an annual fifty thousand tons synthetic ammonia plant . The composition of fresh feed gas is: H2(73.77%>,N2(24.56%>,CH4(1.27%>,Ar(0.4%>, the temperature is 35℃, the operating pressure is 31MPa, the inlet gas composition of the Reactor is : NH3(3.0%>,CH4+Ar(15.7%>,it Requires the mole fraction of ammonia reacheds to 16.8% of outlet gas of synthesis reactor. By consulting the relevant literature and information,we designed the ammonia synthesis section of an annual fifty thousand tons synthetic ammonia

相关主题
文本预览
相关文档 最新文档