当前位置:文档之家› 微波顺磁共振精品文档9页

微波顺磁共振精品文档9页

微波顺磁共振精品文档9页
微波顺磁共振精品文档9页

7-4 微波顺磁共振

赵滨华

电子自旋的概念是Pauli在1924年首先提出的。1925年,S.A.Goudsmit和G.Uhlenbeck用它来解释某种元素的光谱精细结构获得成功.Stern和Ger1aok也以实验直接证明了电子自旋磁矩的存在。

电子自旋共振(Electron Spin Resonance),缩写为ESR,又称顺磁共振(Paramagnetic Resonance)。它是指处于恒定磁场中的电子自旋磁矩在射频电磁场作用下发生的一种磁能级间的共振跃迁现象。这种共振跃迁现象只能发生在原子的固有磁矩不为零的顺磁材料中,称为电子顺磁共振。1944年由前苏联的柴伏依斯基首先发现。它与核磁共振(NMR)现象十分相似,所以1945年Purcell、Paund、Bloch和Hanson等人提出的NMR 实验技术后来也被用来观测ESR现象.

ESR己成功地被应用于顺磁物质的研究,目前它在化学、物理、生物和医学等各方面都获得了极其广泛的应用。例如发现过渡族元素的离子;研究半导体中的杂质和缺陷;离子晶体的结构;金属和半导体中电子交换的速度以及导电电子的性质等。所以,ESR也是一种重要的近代物理实验技术。+

ESR的研究对象是具有不成对电子的物质,如(1)具有奇数个电子的原子,象氢原子;(2)内电子壳层未被充满的离子,如过渡族元素的离子;(3)具有奇数个电子的分子,如NO; (4)某些虽不含奇数个电子,但总角动量不为零的分子,如O

; (5)在反应过程中或物质因受辐射作用产生

2

的自由基;(6)金属半导体中的未偶电子等等,通过对电子自旋共振波谱的研究,即可得到有关分子、原子或离子中未偶电子的状态及其周围环境方面的信息,从而得到有关的物理结构和化学键方面的知识。

“电子自旋共振”,与“核磁共振”的不同点在于电子磁矩较核磁矩大三个数量级,因此在实验中,若二者的共振频率大致相同,则电子自旋共振所需的外加静磁场要小得多,由螺线管产生就够了。

用电子自旋共振方法研究未成对的电子,可以获得其它方法不能得到或不能准确得到的数据。如电子所在的位置,游离基所占的百分数等

等。

一.实验目的:

1.了解顺磁共振的基本原理。

2.观察在微波段的EPR 现象,测量DPPH 自由基中电子的g 因子。

3.利用样品有机自由基DPPH 在谐振腔中的位置变化,探测微波磁场的情况,确定微波的波导波长g λ

二、实验原理:

由原子物理可知,自旋量子数21=s 的自由电子其自旋角动量)1(+s s π2h

=η,h =6.6210-34 J s ,称为普朗克常数,因为电

子带电荷,所以自旋电子还具有平行于角动量的磁矩e μ,当它在磁场

中由于受磁感应强度0B 的作用,则电子的单个能级将分裂成2S+1(即两

个)子能级, 称作塞曼能级,如图7-4-1所示,两相邻子能级间的能级差为

0B g E B μ=? (1) 式中102741.9224-?==m e B e ημ焦耳/持斯拉,称为玻尔磁子,g 为电子的

朗德因子,是一个无量纲的量,其数值与粒子的种类有关,如21=

s 的自由电子g=2.0023。从图7-4-1可以看出,这两个子能级之间的分裂将随着磁感应强度B 0的增加而线性地增加。自由电子在直流静磁场0B 中,不仅作自旋运动,而且将绕磁感应强度0B 进动,其进动频率为v ,如果在直流磁场区迭加一个垂直于0B 频率为v 的微波磁场1B ,当微波能量子的能量

等于两个子能级间的能量差E ?时,则处在低能级上的电子有少量将从微波磁场1B 吸收能量而跃进到高能级上去。因而吸收能量为

hv B g E B ==?0μ (2)

即发生EPR 现象,式(2)称

为EPR 条件。式(2)也可写成 0B h

g v B μ= (3) 将g 、B μ 、 h 值代入上式

得08024.2B v =1010Hz 。此

处0B 的单位为T(特斯

拉)。如果微波的波长

λ≈3cm, 即

ν≈10000Z MH , 则共振

时相应的0B 要求在0. 3T

以上。

在静磁场中, 当处于热平衡时,这两个能级上的电子数将服从玻尔兹曼分布,即高能级上的电子数2n 与低能级上的电子数1n 之比为

)ex p()ex p(012kT

B g kT E n n B μ-=?-= (4) 一般0B g B μ比kT 小三个数量级, 即0B g B μ<

kT

hv kT B g n n -≈-≈11012βμ (5) 式中k =1.3807x 2310-焦耳/开, 为玻尔兹曼常数,在室温下 T=300K,如微波的Hz 1010≈ν时, 则9984.01

2=n n 。可以看出, 实际上只有很小一部分电子吸收能量而跃迁, 故电子自旋共振吸收信号是十分微弱的。 设21n n n +=+为总电子数,则容易求得热平衡时二子能级间的电子

数差值为

++-==-=n KT

hv n kT B g n n n B 22021μ (6) 由于EPR 信号的强度正比于-n ,因比在 +n 一定时,式(6)说明温度越低

图 7-4-1 电子自旋共振能级分

裂示意图

和磁场越强,或微波频率越高,对观察E P R 信号越有利。

实验所采用的样品为含有自由基的二苯基—苦基肼基(DPPH ),其分子式为3226256)()(NO H C N N H C ,结构式如图7-4-2所示

图7-4-2 DPPH 的结构图

由此可见,在中间的N 原子少一个共价键,有一个未偶电子,或者说有一个未配对的自由电子,这个自由电子就是实验研究的对象,它无轨道磁矩,因此实验中观察到的是电子自旋共振的情况,故通常又称为电子自旋共振(ESR ), 由于DPPH 中的“自由电子"并不是完全自由的, 故其g 因子值不等于2.0023,而是2.0036.

三、实验装置

图7-4-3 实验装置示意图

顺磁共振最初是在射频电路中观测的,后来为了提高灵敏度从提高频率着手,于是微波系统取代了射频电路。

微波顺磁共振实验是在三厘米频段(9370MHZ 附近)进行电子自旋

共振实验的。采用可调式矩形谐振腔。

微波顺磁共振实验系统方框图见图7-4-3。图中信号发生器为系统提供频率约为9370MHZ的微波信号,微波信号经过隔离器,衰减器,波长计到魔T的H臂,魔T将信号平分后分别进入相邻的两臂。

可调矩形样品谐振腔,通过输入端的耦合片,可使微波能量进入微波谐振腔,矩形谐振腔的末端是可移动的活塞,用来改变谐振腔的长度。为了保证样品总是处于微波磁场的最强处,在谐振腔的宽边正中开了一条窄缝,通过机械传动装置可使实验样品处于谐振腔中的任意位置,并可从贴在窄边的刻度直接读出,实验样品为密封于一段玻璃管中的有机自由基DPPH。

系统中,磁共振实验仪的“X轴”输出为示波器提供同步信号,调节“调相”旋钮可使正弦波的负半周扫描的共振吸收峰与正半周的共振吸收峰重合。当用示波器观察时,扫描信号为磁共振实验仪的X轴提供的50MHZ正弦波信号,Y轴为检波器输出的微波信号。

将磁场强度的H数值及微波频率的v的数值代入磁共振条件就可以求得朗德因子g的值。

下面对微波源,磁场系统,样品谐振腔,魔T系统等作简单介绍。

1.微波源

微波源可采用反射式速调管微波源或固态微波源。本实验采用3cm 固态微波源,它具有寿命长、输出频率较稳定等优点,用其作微波源时,ESR的实验装置比采用速调管简单。因此固态微波源目前使用比较广泛。通过调节固态微波源谐振腔中心位置的调谐螺钉,可使谐振腔固有频率发生变化。调节二极管的工作电流或谐振腔前法兰盘中心处的调配螺钉可改变微波输出功率。

2.魔 T

魔 T是一个具有与低频电桥相类似特征的微波元器件,如图7-4-4所示。它有四个臂,相当于一个E~T和一个H~T组成,故又称双T,是一种互易无损耗四端口网络,具有“双臂隔离,旁臂平分”的特性。利用四端口S矩阵可证明,只要1,4臂同时调到匹配,则2,3臂也自动获得匹配;反之亦然。E臂和H臂之间固有隔离,反向臂2,3之间彼此隔离,

微波顺磁共振精品文档9页

7-4 微波顺磁共振 赵滨华 电子自旋的概念是Pauli在1924年首先提出的。1925年,S.A.Goudsmit和G.Uhlenbeck用它来解释某种元素的光谱精细结构获得成功.Stern和Ger1aok也以实验直接证明了电子自旋磁矩的存在。 电子自旋共振(Electron Spin Resonance),缩写为ESR,又称顺磁共振(Paramagnetic Resonance)。它是指处于恒定磁场中的电子自旋磁矩在射频电磁场作用下发生的一种磁能级间的共振跃迁现象。这种共振跃迁现象只能发生在原子的固有磁矩不为零的顺磁材料中,称为电子顺磁共振。1944年由前苏联的柴伏依斯基首先发现。它与核磁共振(NMR)现象十分相似,所以1945年Purcell、Paund、Bloch和Hanson等人提出的NMR 实验技术后来也被用来观测ESR现象. ESR己成功地被应用于顺磁物质的研究,目前它在化学、物理、生物和医学等各方面都获得了极其广泛的应用。例如发现过渡族元素的离子;研究半导体中的杂质和缺陷;离子晶体的结构;金属和半导体中电子交换的速度以及导电电子的性质等。所以,ESR也是一种重要的近代物理实验技术。+ ESR的研究对象是具有不成对电子的物质,如(1)具有奇数个电子的原子,象氢原子;(2)内电子壳层未被充满的离子,如过渡族元素的离子;(3)具有奇数个电子的分子,如NO; (4)某些虽不含奇数个电子,但总角动量不为零的分子,如O ; (5)在反应过程中或物质因受辐射作用产生 2 的自由基;(6)金属半导体中的未偶电子等等,通过对电子自旋共振波谱的研究,即可得到有关分子、原子或离子中未偶电子的状态及其周围环境方面的信息,从而得到有关的物理结构和化学键方面的知识。 “电子自旋共振”,与“核磁共振”的不同点在于电子磁矩较核磁矩大三个数量级,因此在实验中,若二者的共振频率大致相同,则电子自旋共振所需的外加静磁场要小得多,由螺线管产生就够了。 用电子自旋共振方法研究未成对的电子,可以获得其它方法不能得到或不能准确得到的数据。如电子所在的位置,游离基所占的百分数等

电子顺磁共振实验

近代物理实验 实验名称:电子顺磁共振姓名:张超 学号: 3110831032 指导老师:解光勇

【实验目的】 1、在了解电子自旋共振原理的基础上,学习用微波频段检查电子自旋共振信号的方法。 2、观察共振信号波形,李萨如图形和色散图形。 3、测定DPPH 中电子的g 因子。 【实验内容】 1、将DPPH 样品插在示波器的小孔中; 2、打开电源,将示波器的输入通道打在直流(DC )档上; 3、调节检波器中的旋钮,使直流(DC )信号输出最大; 4、调节端路活塞,再使直流(DC )信号输出最小; 5、将示波器的输入通道打在交流(AC )档上,幅度为5mV 档; 6、这是在示波器就可以观察到共振信号,但此时的信号不一定为最强,可以在小范围内调节端路活塞与检波器,也可以调节样品在磁场中的位置(样品在磁场中心处为最佳状态),使信号达到一个最佳的状态; 7、信号调出以后,关机,将阻抗匹配器接在环型器中的(II )端与钮波导中间,开机,通过调节阻抗匹配器上的旋钮,就可以观察到吸收或色散波形; 8、由磁铁感应强度B ,微波频率f ,根据B γω=,计算出旋磁比γ,又因为e m e g 2?-=γ,所以有:B e f m g ??-=π4,计算出朗德g 因子值。

【实验仪器】 电子顺磁共振谱仪、示波器等。 实际实验时的实际仪器图如下图所示

电子顺磁共振谱仪有谐振腔、微波源、隔离器、环形器、晶体检波器、扭波导、短路活塞和阻抗调配器八部分组成。 【实验原理】 电子自旋共振(ESR)或电子顺磁共振(EPR),是指在稳恒磁场作用下,具有未成对电子的物质置于静磁场z B 中,由于电子自旋磁矩与外 部磁场相互作用导致电子的基态发生塞曼能级分裂:Z B B g E μ=?(B μ为波尔磁矩,g 为无量纲参数);当在垂直于静磁场方向上所加横向电磁波的量子能量ωn 等于E ?时,满足共振条件,此时未成对电子由下能级跃迁上能级。1944年,苏联物理学家扎沃伊斯基首次从2CuCl 、2MnCl 等顺磁性盐类发现。电子自旋共振(顺磁共振)研究主要对象 是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测(测量因子、

实验三_顺磁共振

实验三微波顺磁共振 电子自旋的概念是Pauli在1924年首先提出的。1925年,S.A.Goudsmit和 G.Uhlenbeck用它来解释某种元素的光谱精细结构获得成功。Stern和Ger1aok也以实验直接证明了电子自旋磁矩的存在。 电子自旋共振(Electron Spin Resonance)缩写为ESR,又称顺磁共振(Paramagnetic Resonance)。它是指处于恒定磁场中的电子自旋磁矩在射频电磁场作用下发生的一种磁能级间的共振跃迁现象。这种共振跃迁现象只能发生在原子的固有磁矩不为零的顺磁材料中,称为电子顺磁共振。1944年由前苏联的柴伏依斯基首先发现。它与核磁共振(NMR)现象十分相似,所以1945年Purcell、Paund、Bloch和Hanson等人提出的NMR实验技术后来也被用来观测ESR现象。 ESR己成功地被应用于顺磁物质的研究,目前它在化学、物理、生物和医学等各方面都获得了极其广泛的应用。例如发现过渡族元素的离子、研究半导体中的杂质和缺陷、离子晶体的结构、金属和半导体中电子交换的速度以及导电电子的性质等。所以:ESR也是一种重要的近代物理实验技术。 ESR的研究对象是具有不成对电子的物质,如(1)具有奇数个电子的原子,象氢原子; (2)内电子壳层未被充满的离子,如过渡族元素的离子;(3)具有奇数个电子的分子,如NO; (4)某些虽不含奇数个电子,但总角动量不为零的分子,如O2;(5)在反应过程中或物质因受辐射作用产生的自由基;(6)金属半导体中的未成对电子等等,通过对电子自旋共振波谱的研究,即可得到有关分子、原子或离子中未偶电子的状态及其周围环境方面的信息,从而得到有关的物理结构和化学键方面的知识。 “电子自旋共振”与“核磁共振”的不同点在于电子磁矩较核磁矩大三个数量级,因此在实验中,若二者的共振频率大致相同,则电子自旋共振所需的外加静磁场要小得多,由螺线管产生就够了。 用电子自旋共振方法研究未成对的电子,可以获得其它方法不能得到或不能准确得到的数据。如电子所在的位置,游离基所占的百分数等等。 一、实验目的: 1.了解顺磁共振的基本原理。

物理实验报告_铁磁共振

铁磁共振 摘 要 本实验观察了速调管的振荡模式,谐振腔的谐振曲线,单晶样品的共振曲线,用逐点法测量了多晶样品的共振曲线.实验测得谐振腔的有效品质因数为861.24,测得单晶样品共振线宽H D =224.5A/m,旋磁比g =11 2.1810′Hz·m/A,朗德因子g=2.4,弛豫时间t =7 2.1410 -′s.测得多晶样品H D =31847.5A/m,g =11 2.3610′Hz· m/A,g=2.6,t =10 2.110 -′s . 关键词 铁磁共振,共振曲线,谐振曲线,品质因数,微波 一、引言 共振是自然界中普遍存在的一种客观现象.共振技术被广泛应用于机械、化学、力学、电磁学、光学、原子与分子物理学、工程技术等几乎所有的科技领域.磁共振是发生在既有角动量又有磁矩的系统在磁场作用下形成的塞曼能级间的共振感应跃迁,它不但具有共振的共性,还有其自身的特点.在目前可得到的磁感应强度的条件下,磁共振所涉及的共振频率通常处于射频和微波频段. 铁磁共振是于20世纪40年代发展起来的一种研究物质宏观性能和微观结构的重要实验手段,是指铁磁体材料在受到相互垂直的稳恒磁场和交变磁场的共同作用时发生的共振现象.利用铁磁共振现象可以测量体磁体材料的g 因子、共振线宽、弛豫时间等性质.该项技术在微波铁氧体器件的制造、设计等方面有着重要的应用价值.通过本实验,熟悉微波传输中常用的元件及其作用,掌握传输式谐振腔的工作特性,了解谐振腔观察铁磁共振的基本原理和实验条件. 二、实验原理 1、铁磁共振 当铁磁体材料同时受到两个相互垂直的磁场,即恒定磁场0H 和微波交变磁场h ,在0H 的作用下,铁磁体的磁化强度将围绕0H 进动,进动频率为: 00H w g = (1)

最新微波顺磁共振

微波顺磁共振

7-4 微波顺磁共振 赵滨华 电子自旋的概念是Pauli在1924年首先提出的。1925年,S.A.Goudsmit和G.Uhlenbeck用它来解释某种元素的光谱精细结构获得成功.Stern和Ger1aok 也以实验直接证明了电子自旋磁矩的存在。 电子自旋共振(Electron Spin Resonance),缩写为ESR,又称顺磁共振(Paramagnetic Resonance)。它是指处于恒定磁场中的电子自旋磁矩在射频电磁场作用下发生的一种磁能级间的共振跃迁现象。这种共振跃迁现象只能发生在原子的固有磁矩不为零的顺磁材料中,称为电子顺磁共振。1944年由前苏联的柴伏依斯基首先发现。它与核磁共振(NMR)现象十分相似,所以1945年Purcell、Paund、Bloch和Hanson等人提出的NMR实验技术后来也被用来观测ESR现象. ESR己成功地被应用于顺磁物质的研究,目前它在化学、物理、生物和医学等各方面都获得了极其广泛的应用。例如发现过渡族元素的离子;研究半导体中的杂质和缺陷;离子晶体的结构;金属和半导体中电子交换的速度以及导电电子的性质等。所以,ESR也是一种重要的近代物理实验技术。+ ESR的研究对象是具有不成对电子的物质,如(1)具有奇数个电子的原子,象氢原子;(2)内电子壳层未被充满的离子,如过渡族元素的离子;(3)具有奇数个电子的分子,如NO; (4)某些虽不含奇数个电子,但总角动量不为零的分子,如O2; (5)在反应过程中或物质因受辐射作用产生的自由基;(6)金属半导体中的未偶电子等等,通过对电子自旋共振波谱的研究,即可得到有关分子、原子或离子中未偶电子的状态及其周围环境方面的信息,从而得到有关的物理结构和化学键方面的知识。 “电子自旋共振”,与“核磁共振”的不同点在于电子磁矩较核磁矩大三个数量级,因此在实验中,若二者的共振频率大致相同,则电子自旋共振所需的外加静磁场要小得多,由螺线管产生就够了。 用电子自旋共振方法研究未成对的电子,可以获得其它方法不能得到或不能准确得到的数据。如电子所在的位置,游离基所占的百分数等等。 一.实验目的: 1.了解顺磁共振的基本原理。 2.观察在微波段的EPR现象,测量DPPH自由基中电子的g因子。 3.利用样品有机自由基DPPH在谐振腔中的位置变化,探测微波磁场的情况,确定微波的波导波长?Skip Record If...? 二、实验原理: 由原子物理可知,自旋量子数?Skip Record If...?的自由电子其自旋角动量?Skip Record If...? ?Skip Record If...??Skip Record If...?,h=6.62?10-34 J?s,称 仅供学习与交流,如有侵权请联系网站删除谢谢7

铁磁共振

用传输式谐振腔观测铁磁共振 铁磁共振在磁学和固体物理学中都占有重要地位。它是微波铁氧体物理学的基础,而微波铁氧体在现代雷达和微波通信方面都有重要应用。 铁磁共振和核磁共振、电子自旋共振一样,成为研究物质宏观性能和微观结构的有效手段。早在1935年,著名苏联物理学家兰道(Lev Davydovich Landau 1908—1968)等就提出铁磁性物质具有铁磁共振特性。经过若干年在超高频技术发展起来后,才观察到铁磁共振现象。多晶铁氧体最早的铁磁共振实验发表于1948年。以后的工作则多采用单晶样品。 实验目的 1.了解微波谐振腔的工作原理,学习微波装置调整技术。 2.通过观测铁磁共振,进一步认识磁共振的一般特性和实验方法。 实验原理 1.微波谐振腔 在微波技术中谐振腔是一个非常重要的部分。所谓微波谐振腔就是一个封闭的金属导体空腔,一般为矩形或圆柱形。腔壁反射电磁波辐射,使电磁波局限在空腔内部。谐振腔的入射端开一小孔,使电磁波进入谐振腔。电磁波在腔内连续反射。若波形和频率与谐振腔匹配,可形成驻波,也即发生谐振现象。如谐振腔无损耗,则腔内振荡便可持续下去。(1)矩形波导管 矩形截面的空心导体管构成矩形波导,它是传播微波最常用的传输线。矩形谐振腔实际上是一段封闭的矩形波导,即在波导入射端和出射端加装了反射电磁波的金属片。理论分析表明:在波导管中不存在电场纵向分量和磁场纵向分量同时为零的电磁波。在波导管中传播的电磁波可以分为两大类:(1)横电波又称为磁波。简写为TE波或H波;磁场可以有纵向和横向分量,但电场只有横向分量。矩形波导管传播的基本波形是TE10波。(2)横磁波又称为电波,简写为TM波或E波;电场可以有纵向和横向分量,但磁场只有横向分量。至于电场和磁场的纵向分量都不为零的电磁波,则可以看成横电波和横磁波迭加而成。 在实际应用中,总是把波导管设计成只能传播单一波形。我们使用的矩形波导管只能传播TE10波。

近代物理实验-电子顺磁共振

近代物理实验——电子顺磁共振 一、引言 电子顺磁共振(electron paramagnetic resonance ,EPR )是由不配对电子的磁矩发源的一种磁共振技术,可用于从定性和定量方面检测物质原子或分子中所含的不配对电子,并探索其周围环境的结构特性。对自由基而言,轨道磁矩几乎不起作用,总磁矩的绝大部分(99%以上)的贡献来自电子自旋,所以电子顺磁共振亦称“电子自旋共振”(ESR )。 二、实验目的 1.测定DPPH 中电子的g 因数; 2.测定共振线宽; 3.掌握电子自旋试验仪的原理及使用 三、实验原理 电子除了具有质量、电荷,以及在原子中作轨道运动而具有轨道角动量、轨道磁矩以外,还存在自旋s 和自旋磁矩S μ ,在量子力学中,电子的自旋角动量为 s P = , 式中1/2s = 为电子自旋量子数,因为电子带电,所以它具有平行于自旋轴的磁矩,其大小为 s s s P μγγ==, 其中s γ 称为电子自旋运动的旋磁比。 如果电子处于磁场B 中,由于它有自旋磁矩,它就会绕外磁场方向进动。在外磁场中,自旋磁矩只能有某些确定的取向,即S μ在外磁场方向上的投影是确定的: sz s s m μγ= , s m 是电子的自旋磁量子数,它有21s + 个值。因1/2s =,故s m 只能 取两个值:1 2 ± 。所以自旋磁矩在外磁场中只能有两个取向。 一般情况下,原子中电子的磁矩是自旋磁矩与轨道磁矩的矢量和,为了统一描述,通常引入无量纲的朗德因子g 因子,这样电子总磁矩余总角动量之间的关系可写为

2j j j j e e g P P m μγ=-=- 其中j 是电子的总角动量量子数,j l s =+ ,1l s +- ,…,l s - ()()() () 111121j j l l s s g j j +-+++=+ + 2j e e g m γ= 在外磁场方向,电子磁矩的分量为 2jz s s j e e m m g m μγ==,,1,...,1,mj j j j j =--+- 若电子的磁矩用玻尔磁子2B e e m μ= 为单位来量度,于是有 jz j B m g μμ= 对于电子的轨道运动0s = ,j l = 则1g = ,于是2l e e m γ= ;对于电子的自旋运动,j s = ,0l = ,则2g = 于是,s e e m γ= 。 当电子磁矩处于外磁场0B 中,会获得附加势能 00j B E B gm B μμ=-=- 可见,在外磁场中不成对电子的能级会分裂成21j + 个子能级,而且相邻两个子能级之间的能量差为 0B E g B μ= 如果另外再向这个系统加一个弱的交变磁场,并使它的磁场分量l B 的方向与 0B 和s μ 组成的平面始终垂直,即绕0B 方向以s μ 的进动频率转动 0B g B B μωγ= = 此时交变电磁场的能量ω 正好等于电子的两个相邻磁能级之间的能量差,因而系统将吸收电磁场的能量,从低能态跃迁到高能态,这种共振跃迁现象通常只发

微波顺磁共振

微波电子顺磁共振 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR ”或“ESR ”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 实验目的 1.研究微波波段电子顺磁共振现象。 2.测量DPPH 中的g 因子。 3.了解、掌握微波仪器和器件的应用。 4.进一步理解谐振腔中TE 10波形成驻波的情况,确定波导波长。 实验原理 本实验有关物理理论方面的原理请参考有关“电子自旋(顺磁)共振”实验“微波参数测量”实验等有关章节。 在外磁场B 0中,电子自旋磁矩与B 0相互作用,产生能级分裂,其能量差为 0B g E B μ=Δ (1) 其中g 为自由电子的朗德因子,g=2.0023。 在与B 0垂直的平面内加一频率为f 的微波磁场B 1,当满足 h B g h E f B 0 μ=Δ= (2) 时,处于低能级的电子就要吸收微波磁场的能量,在相邻能级间发生共振跃迁,即顺磁共振。 在热平衡时,上下能级的粒子数遵从玻尔兹曼分布 KT E e N N Δ?=1 2 (3) 由于磁能级间距很小,KT E <<Δ,上式可以写成 KT E N N Δ? =112 (4) 由于0>ΔKT E ,因此N 2

微波铁磁共振

微波铁磁共振 实验仪器:(注明规格和型号) 微波铁磁共振实验系统;三厘米固态信号源;示波器;微安表;特斯拉计 实验目的: 1. 熟悉、掌握微波实验系统的调试和测试方法 2. 了解用谐振腔法观测铁磁共振的基本原理和实验方法 3. 通过观察铁磁共振现象和测定有关的物理量,认识铁磁共振的一般特性 实验原理简述: 铁磁共振(FMR )观察的对象是铁磁介质的未偶电子,因此可以说是铁磁介质中的电子自旋共振。 铁磁介质的磁导率主要由电子自旋所决定的,按经典力学原理电子自旋角动量m J 与自旋磁矩m P 有如下关系: m m J P γ= 其中, /B g μγ= 称为磁旋比。在外磁场B 中自旋电子将受到一个力矩T 的作用 B P T m ?= 因而角动量m J 将发生变化,其运动方程为 T dt dJ m = 计算得: )(B P dt dP m m ?=γ 若在铁氧体中单位体积内有N 个自旋电子,则磁化强度M 为 m NP M = 因此有 )(B M dt dM ?=γ 若磁矩M 按t i y x e m M 0,ω=规律进动,而稳恒磁场z i B B 0=,代入解此方程,得00B γω= 这就是通常称为拉莫尔进动的运动方式,从量子力学的观点来看,共振吸收现象发生在电磁场的量子ω 恰好等于系统M 的两相邻塞曼能级间的能量差,即 m B g E B ?=?=0μω 吸收过程中产生1±=?m 的能级跃迁,因此这一条件等同于 00ωγω==B ,与经典力学的结论一致。 在外加恒定磁场B 0的作用下,磁矩M 将围绕着磁场B 0进动。实际上这种进动是不会延续很久的,因为磁介质内部有损耗存在。如图4-3-2所示。 这个过程就是磁化过程,磁性介质所以能被磁化就说明其内部存在有阻尼损耗。图中T D 表示阻尼力,其方向指向B 0。磁矩M 受阻尼力的作用很快转向B 0方向,其周期为,如果要维持其进动,必须另外提供能量。这个能量通常由微波磁场提供。系统从微波磁场中吸收的能量恰好补充铁磁样

顺磁共振实验报告

近代物理实验报告 顺磁共振实验 学院 班级 姓名 学号 时间 2014年5月10日

顺磁共振实验 实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR ”或“ESR ”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋g 因子,检波 【引言】 顺磁共振(EPR )又称为电子自旋共振(ESR ),这是因为物质的顺磁性主要来自电子的自旋。电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子自旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演变,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH 的g 因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。 【正文】 一、实验原理 (1)电子的自旋轨道磁矩与自旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为: 2l l e e P m μ=- ,负号表示方向同l P 相反。在量子力学中(1)l P l l =+,因而 (1)(1)2l B e e l l l l m μμ=+=+,其中2B e e m μ=称为玻尔磁子。电子除了轨道运动外

近代物理实验报告—铁磁共振

铁磁共振 【摘要】本实验利用调速管产生微波,观察了谐振腔的谐振曲线,测得谐振腔的有效品质因数为1507, 并进一步利用谐振腔研究了单晶和多晶样品的铁磁共振性质,得到了单晶样品和多晶样品的的共振线宽,旋磁比,朗德因子以及弛豫时间,并用逐点法测量了多晶样品的共振曲线。 【关键词】微波、铁磁共振、品质因数 一、引言 早在1935年,著名苏联物理学家朗道就提出铁磁性物质具有铁磁共振特性。经过十几年,在超高频技术发展起来后,才观察到铁磁共振吸收现象,后来波耳得(Polder )和侯根(Hogan )在深入研究铁磁体的共振吸收和旋磁性的基础上,发明了铁氧体的微波线性器件,使得铁磁共振技术进入了一个新的阶段。自20世纪40年代发展起来后,铁磁共振和核磁共振、电子自旋共振等一样,成为研究物质宏观性能和用以分析其微观结构的有效手段。 铁磁共振是指铁磁体材料在受到相互垂直的稳恒磁场和交变磁场的共同作用时发生的共振现象。它可以用于测量体磁体材料的g 因子、共振线宽、弛豫时间等性质。通过本实验熟悉微波传输中常用的元件及其作用,掌握传输式谐振腔的工作特性,了解谐振腔观察铁磁共振的基本原理和实验条件。 二、实验原理 1、铁磁共振原理 当铁磁体材料同时受到两个相互垂直的磁场,即恒定磁场0H 和微波交变磁场h ,在0H 的作用下,铁磁体的磁化强度将围绕0H 进动,进动频率为: 00H γω=(1) 其中γ为铁磁体材料的旋磁比,即: m e g 20μγ= (2) 其中g 为朗德因子,0μ为真空磁导率,e 、m 分别电子电量和电子质量。 由于阻尼作用,磁化强度将趋向于0H ,但是如果当微波频率0w w =时,进动的磁矩从微波场中吸收的能量刚好抵消阻尼所损耗的能量,则进动会稳定地进行,发生共振吸收现象,即铁磁共振现象。此时,铁磁体的磁导张量可表示为

铁磁共振实验报告

一、实验背景 早在1935年,著名苏联物理学家兰道(Lev Da vydovich Landa u 1908—1968)等就提出铁磁性物质具有铁磁共振特性.经过十几年,在超高频技术发展起来后,才观察到铁磁共振吸收现象,后来波耳得(Polder )和侯根(Ho gan )在深入研究铁磁体的共振吸收和旋磁性的基础上,发明了铁氧体的微波线性器件,使得铁磁共振技术进入了一个新的阶段.自20世纪40年代发展起来后,铁磁共振和核磁共振、电子自旋共振等一样,成为研究物质宏观性能和用以分析其微观结构的有效手段. 微波铁磁共振现象是指铁磁介质处在频率为?0的微波电磁场中,当改变外 加恒定磁场H 的大小时,发生的共振吸收现象.通过铁磁共振实验,我们可以测量微波铁氧体的共振线宽、张量磁化率、饱和磁化强度、居里点等重要参数.该项技术在微波铁氧体器件的制造、设计等方面有着重要的应用价值. 二、实验目的 1.了解微波谐振腔的工作原理,学习微波装置调整技术. 2.掌握铁磁共振的基本原理,观察铁磁共振现象. 3.测量微波铁氧体的共振磁场B,计算g 因子. 三、实验原理 1.磁共振 自旋不为零的粒子,如电子和质子,具有自旋磁矩.如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂后两能级间的能量差为: 02B h E πγ=? ????(1) (其中,γ为旋磁比,h 为普朗克常数,0B 为稳恒外磁场). 又有e m e g 2=γ,故0022B g B h m e g E B e μπ =?=?。(其中,g 即为要求的朗德g 因子,其值约为2.πμe B m eh 4=为玻尔磁子, 其值为1241074.29--??T J ) 若此时再在稳恒外磁场的垂直方向加上一个交变电磁场,该电磁场的能量为

微波顺磁共振

微波顺磁共振实验(微波段电子自旋共振) 1. 一定要认真阅读微波顺磁共振实验系统中各种仪器设备的说明书,要做到正确 使用,熟练操作。按说明书图四连接系统,将可变衰减器顺时针旋至最大,开启系统中各仪器的电源预热20分钟。 2. 描绘输出电流与磁场强度的曲线。“磁场”调节到最低,“扫场”调节到最大,按下“检波”按钮,此时磁共振仪处于检波状态。先确定磁共振实验仪输出电流与磁场强度H的数值关系曲线:把特斯拉计的探头固定于磁铁中央,从小到大调节“磁场”旋钮,记录一组电流与斯特拉计对应数值,注意读数的单位是T,1T=104高斯,将该数值描绘成曲线,在进行微波顺磁共振实验时,根据电流可得到磁场强度H的数值。 3. 信号源工作于“等幅”工作状态,调节可变衰减器和检波灵敏度旋钮使菜振实验仪的调谐电表批示占满度的2/3。 4. 用波长表测微波信号的频率,要按下“扫场”,本实验系统的工作频率应是9370MHZ,先旋转波长表的测微头,找到电表的跌落点,根据“波长频率刻度对照表”找出9370MHZ对应的波长表读数,然后慢慢耐心调节信号源的振荡频率调节秆,使其工作频率为9370MHZ。这一步一定要认真做好!为了避免波长表的吸收对实验的影响,在测完频率后要将波长表刻度旋开谐振点。 5.按下“检波”,一定要调节磁场为零。为使样品谐振腔对微波信号谐振,一定要细心调节样品谐振腔的可调终端的活塞,使调谐电表的指示为最小。为了提高系统的灵敏度,可减小可变衰减器的衰减量,使调节电表显示尽可能提高。然后调节魔T两支臂中所接样品谐腔上的活塞和单螺匹配器,使调揩电表尽可能向小的方向变化。以上几步一定要细心耐心调节,它是实验是否成功的关键!(这几步教师差不多调好,学生只需在附近细调就行了!不要大调!) 6.按下“扫场”,顺时针调节磁场电流,当电流达到1.7—1.9A之间时,示波器上出现电子共振信号。示波器调到x---y档,X轴的灵敏度为2—5V/DIV,Y轴的灵敏度为1—2V/DIV之间。如果共振波形峰值较小或示波器图形欠佳,可采用说明书是第9、10页的几种方法调整。在调节过程中一定要很认真细心耐心,多次反复,才能调整出稳定清晰的波形! 7.读出共振仪的电流值,根据磁共振实验仪输出电流与磁场强度H的数值的关系的曲线,确定共振时的磁场强度,根据实验时测定的频率,代入电子自旋共振条件的公式,计算出电子g因子。 8.实验完毕,要将“磁场”和“扫场”调到最小。关所有电源

铁磁共振

实验题目:铁磁共振 实验目的:学习用传输式谐振腔法研究铁磁共振现象,测量YIG小球(多晶)的共振线宽和g因子。 实验仪器:微波发生器,隔离器,定向耦合器,晶体检波器,微安计,谐振腔,铁氧体小球,精密衰减器,磁铁,示波器。 实验原理:(点击跳过实验原理和实验内容) 铁磁共振:在微波波段,只有铁氧体对微波吸收最小。当满足一定条件时,铁磁性物质从微波磁场中强烈吸收能量的现象称为铁磁共振。 当外加稳恒磁场B时,铁氧体对微波的吸收剧烈变化,在处吸收最强烈,成为共振吸收,此现象极为铁磁共振。这里为微波磁场的角频率,为铁磁物质的磁旋比: 铁磁共振试验通常采用谐振腔法,该法灵敏度高,但测量频率较窄。本试验用传输式谐振腔,其传输系数与样品共振吸收的关系简单,便于计算,但难以用抵消法提高灵敏度。 将铁氧小球置于谐振腔微波磁场的最大处,使其处于相互垂直的稳恒磁场B和微波磁场Hm 中,保持微波发生器输出功率恒定,调节谐振腔或微波发生器,使谐振腔的频率与微波磁场的频率相等,当改变B的大小时,由于铁磁共振,在谐振腔始终调谐时,在输入功率不变的情况下,输出功率为: (为腔的品质因数)。因而的变化可通过的变化来测量。然后通过P-B曲线可得。 必须注意的是,当B改变时,磁导率的变化会引起谐振腔谐振频率的变化(频散效应),故实验时,每改变一次B都要调节谐振腔(或微波发生器频率),使它与输入微波磁场的频率调谐,以满足上式的关系,这种测量称逐点调谐,可以获得真实的共振吸收曲线,如图2.3.2-5,此时,对应于B1、B2的输出功率为: 式中P0、P r、和P1/2分别是远离共振点、共振点和共振幅度半高处对应的输出功率。因此根据测得曲线,计算出P1/2,既能确定出。 试验时直接测量的不是功率,而是检波电流I。

顺磁共振实验报告

近代物理实验报告顺磁共振实验 学院 班级 姓名 学号 时间2014 年 5 月10 H

顺磁共振实验实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的周有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和周体中的磁矩主要是自旋磁矩的贡獻所以又被称为电子自旋共振。简称“EPR”或“ESR”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋兰闵子,检波 【引言】 顺磁共振(EPR)又称为电子肖旋共振(ESR),这是冈为物质的顺磁性主要来自电子的自旋。电子自'旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子肖旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演巫,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH的g闵子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。

【正文】 一、实验原理 (1)电子的肖旋轨道磁矩与肖旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为:刀儿,负 号表示方向同E相反。在量子力学中E=』(/+1)方,因而均=屮Q+1)-^― = Jo + “B = 4r~ -九,其中2叫称为玻尔磁子。电子除了轨道运动外 “、= y]s(S+\) —还具有自旋运动,因此还具有肖旋磁矩,其数值表示为:m 叫。 由于原子核的磁矩可以忽略不计,原子中电子的轨道磁矩和自旋磁矩合成原子 少 _ & 丄号&=] + 旳+Ta+i)+s(w) 的总磁矩:2他,其中弐是朗德闵子:2山+ 1) 。 在外磁场中原子磁矩要受到力的作用,其效果是磁矩绕磁场的方向作旋进,也e 就是巧绕着磁场方向作旋进,引入回磁比2叫,总磁矩可表示成H严泻。同 时原子角动量巧和原子总磁矩"丿取向是量子化的。勺在外磁场方向上的投影为: Pj =斤谄,m = jJ-\J-2,...-j o其中m称为磁量子数,相应磁矩在外磁场方向 上的投影为:“丿=ymh=-mg“B ; m = j,j-Xj-2、??.一j。 (2)电子顺磁共振

实验8--铁磁共振

实验八 铁磁共振 0 前言 铁磁共振(FMR)是指铁磁介质在恒定外磁场中,对微波电磁场的共振吸收现象。是铁磁物质中未偶电子,也即是铁磁物质中的电子自旋共振。铁磁共振不仅在实验中已可以观察到,而且在研究铁磁体的共振吸收和旋磁性的基础上,人类发明了铁氧体的微波线性器件;铁磁共振也是研究铁磁体宏观性能与微观结构的有效手段。 1 实验目的 1. 初步掌握用微波谐振腔方法观察铁磁共振现象。 2.掌握铁磁共振的基本原理和实验方法。 3.测量铁氧体材料的共振磁场r B ,共振线宽B ?,旋磁比γ以及g 因子和弛豫时间τ。 2 实验原理 根据磁学理论可知,物质的铁磁性主要来源于原子或离子的未满壳层中存在的非成对电子自旋磁矩。一块宏观的铁磁体包含有许多磁畴区域,在每一个区域中,自旋磁矩在交换作用的耦合下彼此平行排列,产生自发磁化,但各个磁畴之间的取向并不完全一致,只有在外磁场的作用下,铁磁体内部的所有自旋磁矩才保持同一方向,并围绕着外磁场方向作进动。当铁磁物 质同时受到两个相互垂直的磁场即恒磁场0B 和微波磁场1B 的作用后,磁矩的进动情况将发生 重要的变化。一方面,恒磁场0B 使铁磁场物质被磁化到饱和状态,当磁矩M 原来平衡方向与0 B 有夹角θ时,0B 使磁矩绕它的方向作进动,频率为h B g B H 0μν=;另一方面,微波磁场1B 强迫进动的磁矩M 随着1B 的作用而改变进动状态,M 的进动频率再不是H ν了,而是以某一频率绕着恒磁场0B 作进动,同时由于进动过程中,磁矩受到阻尼作用,进动振幅逐渐衰减,如图(8—1)所示,微波磁场对进动的磁矩起到不断的补充能量的作用。当维持微波磁场作用时, 且微波频率ν=H ν时,耦合到M 的能量刚好与M 进动时受到阻尼消耗的能量平衡时,磁矩就 维持稳定的进动,如图(8—2)所示。铁磁共振的原理图如图(8—3)所示。 在恒磁场0B (即0H )和微波磁场1B (即h )的作用下,其进动方程可写为: dt M d = -γ(M ×H )+ T ------------------------------- (8-1) 上式中e m e g 2=γ为旋磁比,g 为朗德因子,B (即H )为恒磁场0B (即0H )和微波

电子顺磁共振谱仪

电子顺磁共振谱仪 童伟 (2009-09-06) 强磁场科学中心EPR 性能 仪器型号:EMX-10/12 plus 制造厂商:德国Bruker 公司 主要技术指标: 磁场强度:磁极距72mm 时,最大1.45T 扫场分辨率:128000点 微波频率:X-波段 9.2-9.8GHz 灵 敏 度:1.5×109自旋数/G 液氮变温:100K -700K 液氦变温:1.8K -300K 电子顺磁共振(electron paramagnetic resonance , EPR)又叫电子自旋共振(electron spin resonance , ESR),于1945首次被Zavoisky 在固体中检测到。由于高灵敏度以及对被测对象无破坏和介入的特点,使得它成为理想的分析手段之一。事实上,现在EPR 已经被广泛应用到物理,化学,材料,生物和医学等许多领域。 1. 基本物理 电子顺磁共振是物质中彼此孤立或相互作用很小的未成对电子系统的共振现象,经典的描述方式把电子顺磁共振看成是自由电子磁矩,原子或分子磁矩绕恒定磁场的Larmor 进动。量子力学则描述为由恒定磁场下产生的Zeeman 分裂能级间的量子跃迁。 我们知道,电子具两种自旋量子态1/2s M =±,相应的自旋磁矩也有两种取向-向“上”和向“下”。这样在外加磁场下0B (磁场方向为向上),就形成两个能级为 0012 B s B E g B M g B μμ==± (1.1) 其中g 是朗德因子,B μ是波尔磁子。1/2s M =-对应自旋磁矩平行于外场能量低, 图 1 自旋态能量随外加磁场变化示意图。

图 3 EPR 共振信号。 1/2s M =+对应自旋磁矩反平行于外场能量高。微波可以看成光量子,能量为E h ν=,当微波的能量等于两个自旋态能级差时就发生共振吸收,即 0B h g B νμ= (1.2) 因此对于自由电子自旋,产生电子顺磁共振的角频率为0/(2)B νγπ= ,旋磁比 1111/ 1.7608610e B g rad s T γμ--=-=-???。 由1.2式可以知道,有两种方式来获得共振信号。一种是固定频率,扫场;一种是固定磁场扫频率。商业的EPR 谱仪一般是前者。图一是Zeeman 分裂的能级差随外磁场变化以及共振吸收示意图。 在实际的研究对象中,未成对电子自旋的主要来源有两大类:(1)过渡金属离子或原子,它们具有未填满的d 电子或f 电子壳层,这些离子(原子)称为顺磁离子(原子)。(2)金属或半导体中的导电电子,有机物的自由基,晶体缺陷(如位错)和辐照损伤(如色心)的外层电子或共有化电子。这些电子不再是自由电子,所要满足的共振条件仍是1.2式,不过g 因子不再是自由电子的值,磁场项将包括样品内的等效内场项。这些变化正是需要分析研究的内容。简单来说,研究掺杂顺磁离子的晶体的顺磁共振波谱,可以获得顺磁离子的基态能谱,顺磁离子所在晶位的点对称性,顺磁离子的驰豫以及基质晶体的相变等信息。研究半导体中的施主和受主杂志,顺磁离子掺杂,辐照损伤和晶体缺陷引起的电子顺磁共振可以得到有关半导体能带结构和导电机制的资料。在化学中,自由基或三重态分子具有短寿命,化学活性高,不稳定等特点,电子顺磁共振不仅可以检测它们的存在,测定它们的浓度或含量,确定未成对电子云密度在自由基分子中的分布情况等,并且在研究过程中不改变或不破坏自由基本身。从顺磁共振的超精细分裂还可以获得原子核处或其附件的电子自旋密度及顺磁离子配位络合物的共价键信息。 2. 仪器结构和信号 图2是电子顺磁共振系统的基本结构。其中微波源可以是固态的或电子调速管。商业的 仪器如Bruker 的EPR 系统通常将微波源,隔 离器,衰减器,探测器以及锁相放大器这些信 号产生和测量部件集成一个盒子里称为微波 图 2 电子顺磁共振谱仪基本组成的图示。

关于微波电子顺磁共振实验报告

关于微波电子顺磁共振实验报告 篇一:电子顺磁共振实验报告 一、实验目的 1. 学习电子顺磁共振的基本原理和实验方法;; 2. 了解、掌握电子顺磁共振谱仪的调节与使用; 3. 测定DMPO-OH 的EPR 信号。 二、实验原理 1.电子顺磁共振 电子自旋共振(Electron Spin Resonance, ESR)或电子顺磁共振(Electron Paramagnanetic Resonance,EPR),是指在稳恒磁场作用下,含有未成对电子的原子、离子或分子的顺磁性物质,对微波发生的共振吸收。1944年,苏联物理学家扎沃伊斯基(Zavoisky)首次从CuCl2 、MnCl2等顺磁性盐类发现。电子自旋共振研究主要对象是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测,可了解这些物质中未成对电子状态及所处环境的信息,因而它是探索物质微观结构和运动状态的重要工具。由于这种方法不改变或破坏被研究对象本身的性质,因而对寿命短、化学活性高又很不稳定的自由基或三重态分子显得特别有用。近年来,一种新的高时间分辨ESR技术,被用来研究激光光解所产生的瞬态顺磁物质的电子自旋极化机制,以获得分子激发态和自由基反应动力学信息,成为光物理与光化学研究中了解光与分子相互作的一种重要手段。电子自旋共振技术的这种独特作用,已

经在物理学、化学、生物学、医学、考古等领域得到了广泛的应用。 2.EPR基本原理 EPR 是把电子的自旋磁矩作为探针,从电子自旋磁矩与物质中其它部分的相互作用导致EPR 谱的变化来研究物质结构的,所以只有具有电子自旋未完全配对,电子壳层只被部分填充的物质,才适合作EPR 的研究。不成对电子有自旋运动,自旋运动产生自旋磁矩, 外加磁场后,自旋磁矩将平行或反平行磁场方向排列。经典电磁学可知,将磁矩为μ的小磁体放在外磁场H 中,它们的相互作用能为: E=-μ· H = -μH cosθ 这里θ为μ与H 之间的夹角,当θ= 0 时,E = -μH, 能量最低,体系最稳定。θ=π时,E=μH,能量最高。如果体系从低能量状态改变到高能量状态,需要外界提供能量;反之,如果体系由高能量状态改变为低能量状态,体系则向外释放能量。 根据量子力学,电子的自旋运动和相应的磁矩为: μs=-gβS 其中S 是自旋算符,它在磁场方向的投影记为MS, MS 称为磁量子数,对自由电子的MS 只可能取两个值,MS=±1/2, 因此,自由电子在磁场中有两个不同的能量状态,相应的能量是: E±=±(1/2)geβH 记为: Eα= +(1/2)geβH Eβ= -(1/2)geβH 式中Eα代表自旋磁矩反平行外磁场方向排列,能量最高;Eβ代

电子顺磁共振 实验报告

电子顺磁共振实验报告 一、实验目的 1. 学习电子顺磁共振的基本原理和实验方法;; 2. 了解、掌握电子顺磁共振谱仪的调节与使用; 3.测定DMPO-OH的EPR 信号。 二、实验原理 1.电子顺磁共振(电子自旋共振) 电子自旋共振(Electron Spin Resonance, ESR)或电子顺磁共振(Electron Paramagnanetic Resonance,EPR),是指在稳恒磁场作用下,含有未成对电子的原子、离子或分子的顺磁性物质,对微波发生的共振吸收。1944年,苏联物理学家扎沃伊斯基(Zavoisky)首次从CuCl2、MnCl2等顺磁性盐类发现。电子自旋共振(顺磁共振)研究主要对象是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测(测量因子、线宽、弛豫时间、超精细结构参数等),可了解这些物质中未成对电子状态及所处环境的信息,因而它是探索物质微观结构和运动状态的重要工具。由于这种方法不改变或破坏被研究对象本身的性质,因而对寿命短、化学活性高又很不稳定的自由基或三重态分子显得特别有用。近年来,一种新的高时间分辨ESR技术,被用来研究激光光解所产生的瞬态顺磁物质(光解自由基)的电子自旋极化机制,以获得分子激发态和自由基反应动力学信息,成为光物理与光化学研究中了解光与分子相互作的一种重要手段。电子自旋共振技术的这种独特作用,已经在物理学、化学、生物学、医学、考古等领域得到了广泛的应用。 2.EPR基本原理 EPR 是把电子的自旋磁矩作为探针,从电子自旋磁矩与物质中其它部分的相互作用导致EPR 谱的变化来研究物质结构的,所以只有具有电子自旋未完全配对,电子壳层只被部分填充(即分子轨道中有单个排列的电子或几个平行排列的电子)的物质,才适合作EPR 的研究。不成对电子有自旋运动,自旋运动产生自旋磁矩, 外加磁场后,自旋磁矩将平行或反平行磁场方向排列。经典电磁学可知,将磁矩为μ的小磁体放在外磁场H 中,它们的相互作用能为: E=-μ· H = -μH cosθ 这里θ为μ与H之间的夹角,当θ= 0 时,E = -μH, 能量最低,体系最稳定。θ=π时,E=μH,能量最高。如果体系从低能量状态改变到高能量状态,需要外界提供能量;反之,如果体系由高能量状态改变为低能量状态,体系则向外释放能量。

相关主题
文本预览
相关文档 最新文档