当前位置:文档之家› 电磁场与电磁波试题.

电磁场与电磁波试题.

电磁场与电磁波试题.
电磁场与电磁波试题.

1. 如图所示, 有一线密度 的无限大电流薄片置于平面上,周

围媒质为空气。试求场中各点的磁感应强度。

解: 根据安培环路定律, 在面电流两侧作一对称的环路。则

2. 已知同轴电缆的内外半径分别为 和 ,其间媒质的磁导率 为,且电缆

长度

, 忽略端部效应, 求电缆单位长度的外自感。

解: 设电缆带有电流则

3. 在附图所示媒质中,有一载流为的长直导线,导线到媒质分界面的距离为。 试求载流导线单位长度受到 的作用力。

解: 镜像电流

镜像电流在导线处产生的值为

单位长度导线受到的作用力

力的方向使导线远离媒质的交界面。

4. 图示空气中有两根半径均为a ,其轴线间距离为 d 的平行长直圆柱导体,设它们单位长度上所带的电荷 量分别为和

, 若忽略端部的

边缘效应,试求

(1) 圆柱导体外任意点p 的电场强度的电位的表达式 ; (2) 圆柱导体面上的电荷面密度与值。 解:

以y 轴为电位参考点,则

5. 图示球形电容器的内导体半径

, 外导体内径

,其间充有

两种电介质与, 它们的分界面的半径为。 已知与的相对

6. 电常数分别为

。 求此球形电容器的电 容。

6. 一平板电容器有两层介质,极板面积为,一层电介质厚度,电导率,相对介电常数,另一层电介质厚度,电导率。相对介电常数,当电容器加有电压

时,求

(1) 电介质中的电流;

(2) 两电介质分界面上积累的电荷;

(3) 电容器消耗的功率。

解:

(1)

(2)

(3)

7. 有两平行放置的线圈,载有相同方向的电流,请定性画出场中的磁感应强度分布(线)。

解:线上、下对称。

1. 已知真空中二均匀平面波的电场强度分别为: 和

求合成波电场强度的瞬时表示式及极化方式。

解:

合成波为右旋圆极化波。

8. 图示一平行板空气电容器,其两极板均为边长为a的正方形,板间距离为

d,两板分别带有电荷量与,现将厚度为d、相对介电常数为,边

长为a 的正方形电介质插入平行板电容器内至处,试问该电介质要受多大的电

场力?方向如何?

解: (1) 当电介质插入到平行板电容器内a/2处,

则其电容可看成两个电容器的并联

静电能量

当时,

其方向为a/2增加的方向,且垂直于介质端面。

9. 长直导线中载有电流,其近旁有一矩形线框,尺寸与相互位置如图所示。

设时,线框与直导线共面时,线框以均匀角速度绕平行于直导线的

对称轴旋转,求线框中的感应电动势。

解:长直载流导线产生的磁场强度

时刻穿过线框的磁通

感应电动势

参考方向时为顺时针方向。10. 无源的真空中,已知时变电磁场磁场强度的瞬时矢量为

试求(1) 的值 ; (2) 电场强度瞬时矢量和复矢量(即相量)。解:(1)

故得

(2)

11. 证明任一沿传播的线极化波可分解为两个振幅相等, 旋转方向相反的圆极化波的叠加。

证明:设线极化波

其中 :

和分别是振幅为的右旋和左旋圆极化波。12. 图示由两个半径分别为和的同心导体球壳组成的球形电容器,在球壳间以半径为分界面的内、外填有两种不同的介质,其介电常数分别为和,试证明此球形电容器的电容

证明:设内导体壳外表面所带的电荷量为Q,则

两导体球壳间的电压为

13. 已知求

(1) 穿过面积在方向的总电流

(2) 在上述面积中心处电流密度的模;

(3) 在上述面上的平均值。

解:

(1)

(2) 面积中心 , ,

(3) 的平均值14. 两个互相平行的矩形线圈处在同一平面内,尺寸如图所示,其中,

。略去端部效应,试求两线圈间的互感。

解:设线框带有电流,线框的回路方向为

顺时针。线框产生的为

15. 已知,今将边长为的方形线框放置在坐标原点处,如图,当此线框的法线分别沿、和方向时,求框中的感应电动势。解: (1) 线框的法线沿时由

(2) 线框的法线沿时

线框的法线沿时

16. 无源真空中,已知时变电磁场的磁场强度为;

, 其中、为常数,求位移电流密度。

解:因为

17. 利用直角坐标系证明()()fG f G f G ??=??+?? 2. 证明左边=()()x x y y z z fA fA e fA e fA e ??=??++

()()()y y x x z z

fA e fA e fA e x y z

???=

++??? ()()()()()()y y y x x x

x y

z z z z

A e f e A e f e f A f A x x y y

A e f e f A z z

????=+++??????++??

()()()()[][()()]

y y x x x z z x

y y

y y A e A e f e A e f

f f A x y z x f e f e A A y y

f A A f

????=+++??????+??=??+?? =右边

18. 求无限长直线电流的矢量位A 和磁感应强度B

解:直线电流元产生的矢量位为

02212'

{}4[(')]

z

I dz dA e r z z μπ=+- 积分得

2

022122

22

022

2212

02210'

{}

4[(')]ln[(')(')]4()[()]22ln{}

4()[()]22ln 4l z

l l

z l

z

z

I

dz A e r z z I e z z z z r l l

z z r I

e l l

z z r I l e r

μπ

μπμπμπ

+-

+-=+-=--+-+-+=-++++=?

当,l A →∞→∞.附加一个常数矢量00

ln 4z

I r C e l

μπ=

则00000ln ln ln 444z z z I I r I r

l A e e e r l r

μμμπππ=+=

则由04z

I A B A e e r r

?

?μπ?=??=-=? 19. 图示极板面积为S 、间距为 d 的平行板空气电容器内,平行地放入一块面积为S 、厚度为a 、介电常数为ε的介质板。 设左右两极板上的电荷量分别为Q +与

Q -。若忽略端部的边缘效应,试求

(1) 此电容器内电位移与电场强度的分布; (2) 电容器的电容及储存的静电能量。 解: 1)12x Q

D D e S

==

1100

x D Q

E e S εε==,22x D Q E e S εε==

2) 011()S Q Q

C U E d a d a

ε=

==-- 222Q Q S C U E a a

ε

=== 012

120()

S C C C C C a d a εεεε=

=++-

22

00

()1122a d a Q W Q C S εεεε+-==

20. 在自由空间传播的均匀平面波的电场强度复矢量为

)/(1010)2

20(4204m v e a e a E z j y z j x πππ-----?+?=

求(1)平面波的传播方向;

(2)频率;

(3)波的极化方式; (4)磁场强度;

(5)电磁波的平均坡印廷矢量av S

。 解:(1)平面波的传播方向为+z方向

Q

+x

o Q

+Q -d

εε

x

o

1

E 2

E 1

E

(2)频率为90

3102c

f k Hz π

==? (3)波的极化方式因为410,02

2

xm ym x y E E π

π

??-==-=-

=-

故为左旋圆极化. (4)磁场强度

442000

44200

1

(1010)1

(1010)j z z z x z y j z

y x H a E a a ja a e a ja e ππεμηη------=?=?+?=-

(5)平均功率坡印廷矢量

*442044200

4242

00810211

Re[]Re[(1010)22

1

(1010)1(10)(10)[]211[210]21200.26510(/)

j z av x y j z

y x z z z S E H a ja e a ja e a a a W m ππηηηπ

---------=?=+?-=+=??=?

21. 利用直角坐标,证明f A A f A f ??+??=??

)(

证明:

左边=()()x x y y z z fA fA e fA e fA e ??=??++

()()()y y x x z z

fA e fA e fA e x y z

???=

++??? ()()()()()()y y y x x x

x y

z z z z

A e f e A e f e f

A f A x x y y

A e f e f A z z ????=+++??????++??

()()()()[][()()]

y y x x x z z

x

y y

y y A e A e f e A e f f f A x y z x f e f e A A y y f A A f

????=+++??????+??=??+?? =右边

22. 求矢量22x y z A e x e x e y z =++沿xy 平面上的一个边长为2的正方形回路的线积分,此正方形的两边分别与x 轴和y 轴相重合。再求A ??对此回路所包围的曲面积分,验证斯托克斯定理。 解:

222

2

2

d d d 2d 0d 8

C

x x x x y y =-+-=?????A l

2

222x y z x z yz x x y z x

x y z ?

??

??=

=+???e e e A e e

所以

22

00

d (22)d d 8

x

z

z

S

yz x x y ??=+=???A S e e e

故有

d 8C

=?A l d S

=???A S

23. 同轴线内外半径分别为a 和b ,填充的介质0≠γ,具有漏电现象,同轴线外加电压U ,求 (1)漏电介质内的?;

(2)漏电介质内的E 、J

(3)单位长度上的漏电电导。 解:(1)电位所满足的拉普拉斯方程为

1()0d d r dr dr

?

= 由边界条件,;,0r a U r b ??====所得解为

()[

]ln ln U b

r b r a

?= (2)电场强度变量为()ln r

r d U

E r e e b dr r a ?=-=,

则漏电媒质的电流密度为()ln

r U

J E r e b r a γγ==

(3)单位长度的漏电流为022ln ln

r U U

I r e b b r a a

γπγπ=?=

单位长度的漏电导为002ln I G b U a

πγ

==

24. 如图 所示,长直导线中载有电流 cos m i I t ω=,一 矩形导线框位于其近旁,其两边与直线平行并且共面,求导线框中的感应电动势。 解:载流导线产生的磁场强度的大小为

02i

B r

μπ=

穿过线框的磁通量

00.2cos ln

2c a

c

c a

c

m B ds

i

bdr r bI t c a c

φμπμωπ++=

=

+=??

线框中的感应电动势

参考方向为顺时针方向。

25. 空气中传播的均匀平面波电场为0jk r x E e E e -?=,已知电磁波沿z轴传播,频率为f 。求 (1)磁场H ; (2)波长λ;

(3)能流密度S 和平均能流密度av S ;

(4)能量密度

W 。 解:(1)01

jk r z x H e e E e η

-?=

?

00

jk r y

e E e εμ-?= (2)00

v f f λεμ=

=

(3)0

000

jk r jk r x y S E H e E e e E e εμ-?-?=?=

? 0sin ln 2m d dt bI t c a c

φ

εμωωπ=-

+=

2200

2

2000

cos (2)jk r

z

z

e E e e E ft kz εμεπμ-?==-

*2

0011Re()22av z S E H e E εμ=

?= (4)220011

22

W E H εμ=

+ 26. 平行板电容器的长、宽分别为a 和b ,极板间距离为d 。电容器的一半厚度(0

/2d )用介电常数为ε的电介质填充,

(1)板上外加电压0U ,求板上的自由电荷面密度、束缚电荷; (2)若已知板上的自由电荷总量为Q ,求此时极板间电压和束缚电荷; (3)求电容器的电容量。 解: (1) 设介质中的电场为z E

=E e ,空气中的电场为

0=E 0

z E e 。由=

D 0

D ,

00E E εε=

又由于

002

2U d

E d E

-=+ 由以上两式解得

00

02()U E d εεε=-

+

002()U E d

εεε=-

+

故下极板的自由电荷面密度为

00

02()U E d

εεσεεε==-

+下

上极板的自由电荷面密度为

00

0002()U E d

εεσεεε=-=

+上

电介质中的极化强度

000

002()()()z

U d

εεεεεεε-=-=-+P E e

故下表面上的束缚电荷面密度为

000

02()()p z U d

εεεσεε-=-=

+e P 下

上表面上的束缚电荷面密度为

000

02()()p z U d

εεεσεε-==-

+e P 上

(2)由

002()U Q ab d

εεσεε=

=+ 得到

00()2dQ

U ab

εεεε+=

0()p Q

ab

εεσε-=

(3)电容器的电容为

002()ab Q C U d

εεεε=

=+

26. 频率为100MHz 的正弦均匀平面波在各向同性的均匀理想介质中沿(z +)方向传播,介质的特性参数为4r ε=、1r μ=,0γ=。设电场沿

x 方向,即x x E e E =;当0t =,1

8z m =时,电场等于其振幅值

410/V m - 。试求

(1) (,)H z t 和(,)E z t ; (2) 波的传播速度; (3) 平均波印廷矢量。

解:以余弦形式写出电场强度表示式

(,)(,)

cos()

x x x m xE E z t e E z t e E t kz ωψ=

=-+

把数据代入4

10/m E V m -=

42/3

k f rad m π

ωμεπ===

41386

xE kz rad ππ

ψ==

?= 则

4

8

48484(,)10cos(210)/36

4(,)10cos(210)3614

10cos(210)/60

36

x x y y y y y E z t e t z V m

E H z t e H e e t z e t z A m

ππ

πππ

πημε

ππ

ππ---=?-+===?-+=?-+

(2)波的传播速度

8

8310 1.510/2v m s ?====?

(3)平均坡印廷矢量为*1

Re[]2

av S E H =?

444()()4

3636110Re[10]260j z j z av x y S e e e e πππππ

-----=?

428

2

1(10)Re[]26010/120z z e e W m π

π

--== 27. 在由5r =、0z =和4z =围成的圆柱形区域,对矢量

2

2r z r z =+A e e 验证散度定理。 解: 在圆柱坐标系中

21()(2)32rr z r r r z ??

?=

+=+??A

所以

425

d d d (32)d 1200z r r r πτ

τφπ?=+=????A

2d (2)(d d d )

r z r r z z S

S r z S S S φφ=+++?

?A S e e e e e

42522

00

00

55d d 24d d 1200z r r π

π

φφπ

=?+?=????

故有

d 1200τ

τπ?=?A d S

=?A S

28. 求(1)矢量

222223

24x y z x x y x y z =++A e e e 的散度;(2)求?A 对中心

在原点的一个单位立方体的积分;(3)求A 对此立方体表面的积分,验证散度定理。 解 :(1)

2222232222

()()(24)2272x x y x y z x x y x y z x y z ????=++=++???A

(2)?A 对中心在原点的一个单位立方体的积分为

121212222121212

1

d (2272)d d d 24

x x y x y z x y z τ

τ---?=

++=

????

A

(3)A 对此立方体表面的积分

12121212

2212121212

11

d ()d d ()d d 22S

y z y z

----=--?

????A S

111212

222212121212

11

2()d d 2()d d 22x x z x x z

----+--????

111212232231212121211

24()d d 24()d d 22x y x y x y x y

----+--???? 1

24=

故有

1

d 24τ

τ?=?A d S

=?A S

29. 计算矢量r 对一个球心在原点、半径为a 的球表面的积分,并求?r 对球体积的积分。 解 :

22

3

d d d sin d 4r

S

S

S aa

a ππ

φθθπ===????r S r e

又在球坐标系中

2

2

1()3r r r r ??=

=?r

所以

22

3

000

d 3sin d d d 4a

r r a ππτ

τθθφπ?==????r

30. 求矢量

22x y z x x y z

=++A e e e 沿xy 平面上的一个边长为2的正方形回路

的线积分,此正方形的两边分别与x 轴和y 轴相重合。再求??A 对此回路所包

围的曲面积分,验证斯托克斯定理。

解:

222

2

2

d d d 2

d 0d 8

C

x x x x y y =-+-=?????A l

2

222x y z x z yz x x y z x

x y z ?

??

??=

=+???e e e A e e

所以

22

00

d (22)d d 8

x z z S

yz x x y ??=+=???A S e e e

故有

d 8C

=?A l d S

=???A S

31. 证明(1)3?=R ;(2)0??=R ;(3)()?=A R A 。其中

x y z x y z

=++R e e e ,A 为一常矢量。

解 :(1)

3

x y z

x y z ????=++=???R

20x

y z

x y z x

y

y ??

?

??=

=???e e e R ()

(3)设 x x y y z z

A A A =++A e e e

x y z A x A y A z

=++A R

()()()x

x y z y x y z A x A y A z A x A y A z x y ??

?=+++++??A R e e

()z

x y z A x A y A z z ?

+++?e

x x y y z z A A A =++=e e e A

32. 两点电荷

18C q =位于z 轴上4z =处,24C q =

-位于y 轴上4y =处,

求(4,0,0)处的电场强度。

解 : 电荷1q

在(4,0,0)处产生的电场为

1

113014q πε'-=

=

'-r r E r r

电荷

2q 在(4,0,0)处产生的电场为

22230244

4q πε-'-=

='-e e r r E r r

故(4,0,0)处的电场为

122+-=+=

e e e E E E

33. 两平行无限长直线电流1I 和2I

,相距为d ,求每根导线单位长度受到的安培力

m

F 。

解: 无限长直线电流1I

产生的磁场为

01

12I r φ

μπ=B e

直线电流2I

每单位长度受到的安培力为

1

012

12

21120

d 2m z I I

I z d μπ=?=-?F e B e

式中

12

e 是由电流1I

指向电流2I

的单位矢量。

同理可得,直线电流1I

每单位长度受到的安培力为

012

2112

122m m I I

d μπ=-=F F e

34. 一个半径为a 的导体球带电荷量为Q ,当球体以均匀角速度ω绕一个直径旋转,求球心处的磁感应强度B 。

解: 球面上的电荷面密度为

24Q

a σπ=

当球体以均匀角速度ω绕一个直径旋转时,球面上位置矢量r a =r e 点处的电流

面密度为

S z r a σσσω==?=?J v ωr e e

sin sin 4Q

a a φφ

ωωσθθπ==e e

将球面划分为无数个宽度为d d l a θ=的细圆环,则球面上任一个宽度为

d d l a θ=细圆环的电流为

d d sin d 4S Q

I J l ωθθπ==

细圆环的半径为sin b a θ=,圆环平面到球心的距离

cos d a θ

=,利用电流圆

环的轴线上的磁场公式,则该细圆环电流在球心处产生的磁场为

223002232

222232d sin d d 2()8(sin cos )z

z

b I

Qa b d a a μμωθθ

πθθ==++B e e

30sin d 8z

Q a μωθθπ=e 故整个球面电流在球心处产生的磁场为

300

sin d 86z z Q Q

a a π

μωθμωθππ==?

B e e

35. 半径为a 的球体中充满密度()r ρ的体电荷,已知电位移分布为

32

54

2

()()

r r Ar r a D a Aa r a r ?+≤?

=?+≥?

?

其中A 为常数,试求电荷密度()r ρ。 解 由ρ?=D ,有

2

2

1d ()()d r r r D r r

ρ=?=

D 故在r a <区域

2322

02

1d ()[()](54)d r r r Ar r Ar r r

ρεε=+=+ 在r a >区域

542022

1d ()

()[]0d a Aa r r r r r

ρε+==

36. 一个半径为a 薄导体球壳内表面涂覆了一薄层绝缘膜,球内充满总电荷量为Q 为的体电荷,球壳上又另充有电荷量Q 。已知球内部的电场为

4()r r a =E e ,设球内介质为真空。计算:(1) 球内的电荷分布;(2)球壳外

表面的电荷面密度。

解 :(1) 由高斯定理的微分形式可求得球内的电荷体密度为

4322000022441d 1d [()][()]6d d r r r E r r r r r a a

ρεεεε=?===E

(2)球体内的总电量Q 为

322

0040

d 64d 4a

r Q r r a a τρτεππε===??

球内电荷不仅在球壳内表面上感应电荷Q -,而且在球壳外表面上还要感应电荷

Q ,所以球壳外表面上的总电荷为2Q ,故球壳外表面上的电荷面密度为

02

224Q

a σεπ=

=

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场与电磁波波试卷3套含答案

《电磁场与电磁波》试卷1 一. 填空题(每空2分,共40分) 1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 。另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 。 2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。 3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。 4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件。第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。在每种边界条件下,方程的解是 唯一的 。 5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分 界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ?-=,12()s n H H J ?-=。 6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。 二.简述和计算题(60分) 1.简述均匀导波系统上传播的电磁波的模式。(10分) 答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波。 (2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。因为它只有纵向电场分量,又成为电波或E 波。 (3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。因为它只有纵向磁场分量,又成为磁波或M 波。 从Maxwell 方程和边界条件求解得到的场型分布都可以用一个或几个上述模式的适当幅相组合来表征。 2.写出时变电磁场的几种场参量的边界条件。(12分) 解:H 的边界条件 12()s n H H J ?-= E 的边界条件

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????===??由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明0A ????= 2.

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场与电磁波试题

?电磁场?试卷1 一、单项选择题 1. 静电场是( ) A. 无散场 B. 旋涡场 C.无旋场 D. 既是有散场又是旋涡场 2. 已知(23)()(22)x y z D x y e x y e y x e =-+-+-,如已知电介质的介电常数为0ε,则自由电荷密度ρ为( ) A. B. 1/ C. 1 D. 0 3. 磁场的标量位函数的单位是( ) A. V/m B. A C. A/m D. Wb 4. 导体在静电平衡下,其内部电场强度( ) A.为零 B.为常数 C.不为零 D.不确定 5. 磁介质在外部磁场作用下,磁化介质出现( ) A. 自由电流 B. 磁化电流 C. 传导电流 D. 磁偶极子 6. 磁感应强度与磁场强度的一般关系为( ) A.H B μ= B.0H B μ= C.B H μ= D.0B H μ= 7. 极化强度与电场强度成正比的电介质称为( )介质。 A.各向同性 B. 均匀 C.线性 D.可极化 8. 均匀导电媒质的电导率不随( )变化。 A.电流密度 B.空间位置 C.时间 D.温度 9. 磁场能量密度等于( ) A. E D B. B H C. 21E D D. 2 1B H 10. 镜像法中的镜像电荷是( )的等效电荷。 A.感应电荷 B.原电荷 C. 原电荷和感应电荷 D. 不确定 二、填空题(每空2分,共20分) 1. 电场强度可表示为_______的负梯度。 2. 体分布电荷在场点r 处产生的电位为_______。 3. 一个回路的自感为回路的_______与回路电流之比。 4. 空气中的电场强度5sin(2)x E e t z πβ=-V/m ,则位移电流密度d J = 。 5. 安培环路定律的微分形式是 ,它说明磁场的旋涡源是 。 6. 麦克斯韦方程组的微分形式是 , , , 。 三、简答题(本大题共2小题,每小题5分,共10分) 1.写出电荷守恒定律的数学表达式,说明它揭示的物理意义。 2.写出坡印廷定理的微分形式,说明它揭示的物理意义。 四、计算题(本大题) 1.假设在半径为a 的球体内均匀分布着密度为0ρ的电荷,试求任意点的电场强度。 2.一个同心球电容器的内、外半径为a 、b ,其间媒质的电导率为σ,求该电容器的漏电电导。 3.已知空气媒质的无源区域中,电场强度100cos()z x E e e t z αωβ-=-,其中βα,为常数,求磁场强度。 0ε0ε

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与电磁波试题及答案

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为 ,,0,D B H J E B D t t ρ????=+??=-??=??=??v v v v v v v ,(3分)(表明了电磁场和它们的源之 间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=v v g 、20n E ?=v v 、2s n H J ?=v v v 、20n B =v v g ) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=v v v ;动态矢量位A E t ??=-?-?v v 或A E t ??+=-??v v 。库仑规范 与洛仑兹规范的作用都是限制A v 的散度,从而使A v 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=???v v ò 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量x y z r e x e y e z =++r r r r 的散度,并由此说明矢量场的散度与坐标的选择

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

电磁场与电磁波试题及参考答案

2010-2011-2学期《电磁场与电磁波》课程 彳片?k 8.复数场矢量E = E -e^ je y e Jz,则其极化方式为(A )。 考试试卷参考答案及评分标准命题教师:李学军审题教师:米燕 一、判断题(10分)(每题1分) 1?旋度就是任意方向的环量密度 2.某一方向的的方向导数是描述标量场沿该方向的变化情况 3?点电荷仅仅指直径非常小的带电体 4. 静电场中介质的相对介电常数总是大于1 5. 静电场的电场力只能通过库仑定律进行计算 6. 理想介质和导电媒质都是色散媒质 7. 均匀平面电磁波在无耗媒质里电场强度和磁场强度保持同相位 8. 复坡印廷矢量的模值是通过单位面积上的电磁功率 9. 在真空中电磁波的群速与相速的大小总是相同的 10趋肤深度是电磁波进入导体后能量衰减为零所能够达到的深度 二、选择填空(10分). 4 1.已知标量场u的梯度为G,则勺沿l方向的方向导数为( A. G l B. G l ° C. G l A.左旋圆极化 B.右旋圆极化 C.线极化 9.理想媒质的群速与相速比总是(C)。 A.比相速大 B.比相速小 C.与相速相同 10.导体达到静电平衡时,导体外部表面的场Dn可简化为(B) (: X) (V) (X) (V) (X) (X) (V) (X) (V) (X) B )。 A. Dn=0 B. D n C. D n = q 三、简述题(共10分)(每题5分) 1.给出亥姆霍兹定理的简单表述、说明定理的物理意义是什么(5分) 答:若矢量场F在无限空间中处处单值,且其导数连续有界,而源分布在有限空间区域中, 则矢量场由其散度、旋度和边界条件唯一确定,并且可以表示为一个标量函数的梯度和一个矢量 函数的旋度之和;(3分) 物理意义:分析矢量场时,应从研究它的散度和旋度入手,旋度方程和散度方程构成了矢 量场的基本方 程。 (2 分) 2.写出麦克斯韦方程组中的全电流(即推广的安培环路)定律的积分表达式,并说明其物 2.半径为a导体球,带电量为Q,球外套有外半径为b,介电常数为S的同心介质球壳, 壳外是空气,则介质球壳内的电场强度E等于( C )。理意义。(5分). 答:全电流定律的积分表达式为:J|H d 7 = s(: 工)d S。(3分)全电流定律的物理意义是:表明传导电流和变化的电场都能产生磁场。(2分) 四、一同轴线内导体的半径为a,外导体的内半径为b,内、外导体之间填充两种绝缘材 料,a

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

相关主题
文本预览
相关文档 最新文档