当前位置:文档之家› usb 集线器规范_1

usb 集线器规范_1

usb 集线器规范_1
usb 集线器规范_1

集线器规范

集线器规范包括两大基本部分:集线器转发中继器(Hub Repeater)和集线器控制器(Hub Controller)。同时也描述了集线器的错误恢复,重启和挂起/唤醒操作。最后简述集线器请求行为和集线器描述子。

集线器提供了USB设备和主机之间的电子接口。集线器支持的主要的USB功能有:

?连接行为

?电源管理

?设备连接和未连接检测

?总线错误检测和恢复

?高速和低速设备的支持。

集线器由集线器转发中继器和集线器控制器组成。集线器转发中继器负责连接方面的工作。它也支持像总线错误检测和恢复,连接和未连接检测这样的异常处理。集线器控制器提供主机到集线器的通讯机制。集线器特定的状态和控制命令允许主机配置集线器和监视与控制它的每个下行端口。

集线器根据它们是在传输包、唤醒信号或者是在空闲状态而表现出不同的连接行为。一、包信号连接。包信号连接分为上行连接和下行连接两种。上行连接是面向主机的。当某个使能的下行端口检测到SOP时,就建立了仅到上行端口而不是任何其它下行端口的上行连接。下行连接是面向设备的。当集线器在上行端口上检测到SOP时就建立到所有使能下行端口的连接。未处在使能状态的端口不能向下行方向传送。集线器还有没有任何连接的空闲状态。在空闲态时集线器所有端口都处在接收模式,等待下一个包的开始。二、唤醒连接。挂起的集线器将上行端口接收到的唤醒信号送到所有使能的下行端口。当挂起的集线器检测到来使局部挂起或使能下行端口的唤醒信号时,将反射唤醒信号到上行端口和包括自己在内的所有使能下行端口。唤醒信号不被反射到未使能的或挂起的下行端口。后面将有更详细的讨论。

集线器是主机和设备之间建立连接的极为重要的USB部件。检测和防止任何连错误,尤其是能导致死锁的连接就显得非常重要。集线器必须在转发模式下处理连接错误。集线器必须也能检测和恢复发往集线器控制器的包。

每个集线器都有一个帧计时器。它的时间来自集线器的本地时钟,并通过主机发来的SOF 与主机同步。它提供被用来检测闲置(babbling)设备和防止集线器被上行集线器设为无效的时间参考。集线器必须跟踪主机帧周期并能在即使丢失两个连续SOF令牌的情况下仍然保持同步。在重启或唤醒后,帧计时器未同步。只要接收到两个连续的SOF包,它就必须同步。

EOF1和EOF2是由帧计时器产生的时刻。这些时刻用来确保设备和集线器不干扰来自主机的SOF包的正确传输。这些时刻仅当帧计时器与SOF同步时才有意义。图10-1给出了严格的EOP时刻。表10-1总结了主机和集线器EOF时刻。在EOF2时刻,任何有上行连接的端口将被置为无效。集线器通过在上行集线器EOF2之前发出EOP来防止被设为未使能。(如在EOF1时刻)。

EOF1范围EOF1范围

图10-1. EOF时间点

USB主机控制器应该负责不要设备回应,如果该回应会导致设备在EOF2时刻发出包。这时主机应该发出异常终止序列来保证设备不作回应。而且,因为集线器将在到达EOF1时刻时结束上行方向的包,如果来自设备的响应(数据或握手信号)未定或者集线器到EOF1时刻的过程中,主机不应开始一个事务。

内部接口(Internal port)连接着集线器转发中继器和集线器控制器。除了传送串行数据到集线器控制器或从集线器控制器接收串行数据外,内部端口还是一定唤醒信号的来源。图10-2给出了内部端口状态自动机。表10-2定义了内部端口的信号和事件。

图11-2. 内部端口状态变迁图

表11-2 内部端口信号/事件定义

内部端口就进入挂起延迟状态。该状态有2ms的时间限制。挂起时延状态过期后就进入充分挂起状态,在充分挂起状态时,如果集线器控制器中产生唤醒条件,就进入产生唤醒(Generate Resume)状态。在该状态时,内部端口产生追加SOP_FD到集线器转发中继器。

图10-3给出集线器下行端口的简化状态自动机。事件和信号在表10-3中定义。

表11-3 下行集线器端口信号/事件定义

变。集线器将在端口上驱动SE0。不会有其它的活动信号发生。所有集线器都支持关掉电源(Power-off状态)。对端口的有非零配置值的SetConfiguration()请求将使端口从任何状态进入未供电状态。在除未配置状态外任何状态,并接收到ClearPortFeature(PORT_POWER)时或检测到电流过载条仲时也将进入该状态。在该状态时差分单端发送器和接收器未使能。在未供电状态时接收到SetPortFeature (PORT_POWER)请求或端口的未连接计时器超时,或Restart_S、Restart_E状态过期后就进入未连接状态(discorneeted)。在该状态时仅有连接检测是可能的。表明这时还没有设备接入该端口。该状态有时间限制。在该状态时,只要求接收到SE0信号时计时器就复位,在检测到其它信号时才开始计时。除集线器挂起时钟停止外,该计时器的时限是2.5us到2ms。如果集线器挂起并有远程唤醒功能,在一个未连接端口上从SE0状态变化将使集线器启动时钟并对该事件计时。集线器需能在状态变化后的12ms内起动时钟并对该状态计时,如果挂起的集线器没有远程唤醒功能,集线器将忽略该事件直到集线器被唤醒。在未连接状态过期或对端口有相应请求或检测到错误条件时进入未使能状态。在该状态时,对接收到的SE0信号都要计时。除未供电状态和未连接状态外,对端口发出重启请求时就进入重启状态。此时,集线器在端口上驱动SE0信号。该状态的时限通常10ms至20ms。在重启结束,或SendEOP状态结束,或在发送状态转发中继器离开WFEOPFU状态,或从挂起状态当挂起的上行接收器检测到‘K’时,进入使能(Enable)状态。在该状态时,

从‘J’到‘K’的状态变化就能建立上行连接。在使能状态时,如果上行接收器处在唤醒状

态,或者在Restart-S、Restart-E状态,一检测到‘K’就进入发送状态。对于高速设备,是在

端口处在使能状态且转发中继器进入WFEOPFU状态时进入发送状态。在该状态时,端口将

传送在上行端口上接收的数据。对低速设备来说,是在上行端口上接收到一个高速PRE PID

时从使能状态转入的。在该状态时,端口将对上行端口接收到的数据作适当变换后重新发出。

端口在使能状态时接收到相应的请求时变为挂起(Suspend)状态。在该状态时,端口的差分发

送器被设为未使能。端口在接收到相应的请求,或在接收器未挂起时检测到‘K’就进入唤醒

状态(Resuming)。该状态名义上有20ms的时限。在该状态时,集线器在端口上驱动‘K’。重

启状态结束后就进入SendEOP状态。在使能状态时接收到SOF且有低速设备接在该端口上也

可进入该状态。该状态时,集线器将发送低速的EOP。在EOP结束时该状态也结束。端口处

在使能状态,且接收器处在挂起状态时,在检测到SE0或‘K’时就从挂起状态进入Restart_S

状态,或从使能状态进入Restart_E状态。在这些状态时端口继续监视总线状态,当看见‘K’

时就立刻进入发送状态,否则就进入未连接状态。

集线器未配置

Powered_off::端口(或组)需要显式请求来

转变

图11-6. 下行集线器端口状态变迁图Disabled:端口不能进行任何传输.端口在HiZ Resetting:通过端口驱动SE0 10ms. Enable:上行和下行的传输端口都不能进行. Disconnected:端口在两个方向都不进行传输。端口处在HiZ,正在给J/K计时(2.5μs 到2ms).

Transmit: 端口进行下行方向的传输。Suspended:没有上行或下行的传输。Resuming:驱动‘K’20ms。

SendEOF:发送低速EOP(2个低速位时间的SE0在接一个低速位时间的‘J’。

Restart_S和Restart_E:端口进入这两个状态的任意一个等待时钟重启,延迟时间的长短依赖于实现但不能超过10ms。

每个端口需要一个未连接计时器。该计时器用来连续监视端口的单端接收器,来检测未连接事件。

图10-4给出了集线器上行接收器的状态自动机。表10-4定义了事件和信号。在发送器活跃时或接收器检测到SJ条件时从除挂起状态外的任何状态进入ReceivingJ状态。该状态有3ms 的时间限制。每当进入该状态时计时器复位,且只有在发送器处在不活动状态时该计时器才计时。该状态过期后就进入挂起状态。进入该状态后控制器开始了一个2ms的计时器。如果计时器过期且接收器仍在该状态则控制器挂起。控制器挂起后,它可产生唤醒信号。当在总线上检测到SK条件且转发中继器处在WFSOP或WFSOPEU状态时,接收器从除唤醒状态外的任何状态进入ReceivingK状态。该状态有2.5us到100us的期限。当ReceivingK状态过期后就进入唤醒状态。当发送器处在Sresume状态,或在上行端口上检测到‘K’状态时,从挂起状态也可进入该状态。接收器检测到SE0条件,且转发中继器处在WFSOP或SOPFU状态时,从除总线重启状态外的任何状态进入ReceivingSE0状态。该状态有时间限制,最短2.5ms,最长取决于集线器。当RecevingSE0状态过期后就进入总线重启状态(Bus-Reset)。只要端口上连续接收到SE0就保持该状态不变,该状态也在集线器本地电路产生POR时进入。在POR 活跃时不能离开该状态。

图11-4. 上行端口接收器状态变迁图

表11-5 上行集线器端口发送器信号/事件定义

图10-5是发送器的状态变化图。表10-5定义了图10-5中出现的事件和信号。发送器用来在转发中继器有上行连接时监视上行端口。其目的是防止错误指示被传到上行方向。在接收器处在总线重启状态,或SendJ状态结束时,发送器进入不活动(Inactlve)状态。在Sresume 状态结束时也进入该状态。这时差分和单端接收器都未使能,并置为高阻状态。转发中继器进入WFEOP状态时,发送器从不活动状态进入活动状态(Active)。如果在转发SE0状态时,在SE0后的不是J状态则进入活动状态。在该状态时,来自下行端口的数据在上行端口上被转发。发送器在上行端口上发送一个位时间的SE0时就从活动状态进入转发SE0状态(RepeatingSEO)。这时发送器仍然转发下行端口上的信号。该状态的时限是23个高速位时间。在转发SE0状态时,如果到达位时间23,或转发信号从SE0变为‘J’就进入发送J状态(Send J)。在GEOPTU状态结束时也进入该状态。该状态持续一个高速位时间,在此期间集线器在端口上驱动J。帧计时器到EOF1时刻时发送器从转发SE0或活动状态进入GEOPTU状态。GEOPTU的含义是向上行端口发出EOP。在该状态时,端口发送2个高速位时间的SE0。如果集线器转发中继器进入WFEOP状态且接收器在挂起状态,发送器就从不活动状态进入发送唤醒状态(Send resume,简记为Sresume)。这意味着下行设备(或端口对控制器)产生了唤醒信号,导致建立上行连接。端口在该状态至少停留1ms,但不超过15ms。

图11-5. 集线器上行端口发送器状态变迁图

集线器转发中继器提供的功能有,在包的边界建立连接和确保有序的进入和离开挂起状

态,包括远程唤醒的处理。图10-6是转发中继器的状态自动机。表10-6是相应的信号和事件。一些状态变化是在检测到EOP时发生的,但并不是一检测到EOP就发生,要到集线器转发SE0到‘J’的转变且驱动‘J’至少一个位时间之后发生。一些是由SOP触发的。在上行接收器在总线重启状态,或在WFSOP状态时帧计时器到了或过了EOF1时刻,或在WFEOP状态时到达EOF2时刻,或在WFEOPFU状态且帧计时器未同步时接收到EOP,就进入等待来自上行端口的SOP状态(WFSOPFU)。在该状态时,集线器等待上行接口的SOP并忽略下行端口的状态变化。这时并未建立连接。该状态用来在帧结束(过EOF1时刻)时确保集线器能接收到来自主机的SOF。如果集线器处在WFSOP或WFSOPFU状态并检测到SOP时就进入等待来自上行端口的EOP状态(WFEOPFU)。当接收器进入唤醒状态时集线器也从其它状态进入该状态。在该状态时下行连接建立了,处在使能状态的下行端口在集线器进入该状态时被置为发送状态。集线器在WFEOP状态并检测到EOP,或在WFEOPFU状态且帧计时器已同步时接收到EOP,或在WFSOPFU、WFEOPFU状态时上行接收器进入挂起状态,就进入等待SOP 状态(WFSOP)。该状态时等待来自上行端口,或使能下行端口的SOP。这时连接并未建立。在WFSOP时检测到来自使能下行端口的SOP时就进入等待EOP状态(WFEOP)。该状态时建立了上行连接,上行发送器在集线器进入该状态时就进入活动状态。在该状态时到达EOF2时刻,建立连接的下行端口被设为未使能。

图11-6. 集线器转发中继器状态变迁

集线器需要评估端口上的连接状态来作出正确的状态转换。

当集线器转发中继器处在WFEOP状态而帧计时器到达EOF2时刻;或在EOF2时刻集线器处在WFSOPFU状态,但端口上并没有J状态时出现端口错。接入设备的速度是由设备上拉电阻的位置决定的。当接入一个设备时,集线器期望通过感知总线空闲状态来检测速度。速度检测可在端口离开未使能状态进入重启状态时进行,也可在重启结束时即在重启状态结束和使能状态开始之间进行。当集线器转发中继器处在WFEOP状态时在其它使能端口上检测到SOP,这时就产生冲突条件。集线器有两种相应的处理,第一种,也是首选的一种,是“窜改”信息以使主机能检测问题。集线器通过在上行端口发送‘K’来窜改信息。这个‘K’持续到所有下行端口的传输结束,集线器用最后一个EOP来结束窜改的包。另一种是阻塞第二个包,在第一个结束时使集线器适当的返回到WFSOPFU或WFSOP。这种方式不向主机报告问题。集线器上行连接总是高速的,而下行连接则要支持高速和低速设备。高速设备和低速设备表现出不同的行为。在总线上没有低速的传输时低速设备就会被挂起,为防止低速设备被挂起。必须在每帧中接收到SOF时产生一个打入信号。

集线器作为一个USB设备或为了传输挂起和唤醒信号都要求它支持挂起和唤酲。集线器支持全局挂起和局部挂起或唤醒。全局挂起或唤醒是指整个总线被挂起或唤醒而不影响集线器下行端口的状态;局部挂起和唤醒是指集线器下行端口被挂起或唤醒而不影响集线器状态。全局挂起或唤醒是通过主机的根端口来实现的。局部挂起和唤醒是通过对集线器发出请求来实现的。远程唤醒是指由设备发出的唤醒。

集线器的重启信号仅定义在下行方向即在上行端口上。集线器在检测到2.5ms或更长时间的连续SE0信号时开始重启,并必须在该信号结束时完成重启序列。挂起的集线器必须将重启信号解释为唤醒事件,它必须在重启信号结束之前醒过来并完成重启序列。重启结束后集线器处在下面的状态:

?控制器缺少地位为0;

?集线器状态变化位都为0;

?转发中继器在WFSOPFU状态;

?发送器在不活动状态;

?下行端口在未配置状态并在所有下行端口上驱动SE0信号。

由总线供电的集线器要求有电源开关。自供电的集线器可以有电源开关但并不是必需的。有电源开关的集线器可以控制每组端口的电源,或每个端口的电源或每组有任意个端口的电源。集线器通过设置wHubCharateristic中的逻辑电源开关模式域来指示是否支持电源开关。集线器电流过载保护也类似,可以分组:电流过载保护的分组和电流开关的分组是独立的。

集线器的所有端口必须都能检测和生成所有的总线信号状态。这就要求集线器能在它的每个端口上驱动和监视D+和D-的输出。每个集线器端口必须有单端的接收器和发送器。集线器和接在它上的设备使用上拉电阻和下拉电阻的组合在D+和D-未被积极驱动时来控制D+和D-。每个集线器下行端口在每根数据线上需要一个下拉电阻(Rpd),上行端口则需要上拉电阻(Rpu)。集线器下行端口必须支持低速和高速信号斜率(Edge rate)的传送和接收。下行端口上的信号斜率必须是可选择的,要看接入端口的设备是高速的还是低速的。上行端口总是使用高速的信号。

集线器逻辑结构如图10-7所示。

集线器类(Hub Class)定义了除缺省控制管道外的附加的所有设备都需要的端点(endport):状态变化端点。主机系统通过该端点接收集线器状态变化通知。它是一个中断的端点。如果没有状态变化位被设置时,集线器在被轮询时返回NAK。如果状态变化位被设置时就返回数据。USB系统软件能用该数据来决定读哪些寄存器能判断状态变化的确切原因。图10-8给出了状态,状态变化和控制信息是怎样与设备发生连系的。集线器描述子和集线器/端口状态和

控制是通过缺省控制管道读取。集线器描述子随时可读取。当集线器在端口上检测到变化或它自身状态变化时,状态变化端点就以指定的形式向主机发出数据。集线器状态变化位能由于硬件或软件事件而设置。设置后一直保持直到被USB 系统软件清除。USB 系统软件用与状态变化位相连的中断管道来检测集线器或端口的状态变化。USB 系统软件通过消除集线器报告的相应位来确认端口的变化。USB 设备必须被设置为符合一定的安全标准。通常这意味着自供电和集线器在下行端口上实现电流限制。当出现电流过载条件时,它导致一个或多个端口的状态变化。这种变化被报告给USB 系统软件以采取正确的行动。集线器是通过标准的USB 设备配置命令配置的。USB 系统软件检查集线器描述子信息来决定集线器的特征。

集线器描述子是源自USB 设备框架。集线器描述子定义了集线器上的集线器设备和端口。主机通过集线器缺省管道来读取集线器描述子。USB 规范定义了下面的描述子:

? Device ;

? Configuration ;

? Interface ;

? Endpoint ;

? String(可选的)

集线器对请求处理过程的时间有比标准设备更严格的要求。下面列出最坏情况下的请求时间。

1 没有数据阶段的完成时间:50ms

2 有数据阶段的标准请求的完成时间

从装配包到第一个数据阶段的时间:50ms

每两个相继数据阶段间的时间:50ms

最后数据阶段和状态阶段之间的时间:50ms 上行连接 端口2 图11-7. 集线器控制器组织示例

状态变化端点 端点0:

配置信息

端口1 端口3 端口N

硬件事件 状态信息 (静态) 变化信息 (由硬件事件引发) 控制信息 (改变设备状态) 设备控制 主机软件(如集线器驱动器) 软件设备控制 改变设备状态 硬件事件 所有状态变化

路由器、集线器、交换机的工作原理

路由器、集线器、交换机的工作原理 号称网络硬件三剑客的集线器(hub)、交换机(switch)与路由器(router)一直都是网络界的活跃分子,但让很多初入网络之门的菜鸟恼火的是,它们三者不仅外观相似,而且经常呆在一起,要想分清谁是谁,感觉有点难!就让我们一起来看看它们之间有什么区别和联系吧! 三剑客的工作原理 一、集线器 1.什么是集线器 在认识集线器之前,必须先了解一下中继器。在我们接触到的网络中,最简单的就是两台电脑通过两块网卡构成“双机互连”,两块网卡之间一般是由非屏蔽双绞线来充当信号线的。由于双绞线在传输信号时信号功率会逐渐衰减,当信号衰减到一定程度时将造成信号失真,因此在保证信号质量的前提下,双绞线的最大传输距离为100米。当两台电脑之间的距离超过100米时,为了实现双机互连,人们便在这两台电脑之间安装一个“中继器”,它的作用就是将已经衰减得不完整的信号经过整理,重新产生出完整的信号再继续传送。 中继器就是普通集线器的前身,集线器实际就是一种多端口的中继器。集线器一般有4、8、16、24、32等数量的rj45接口,通过这些接口,集线器便能为相应数量的电脑完成“中继”功能。由于它在网络中处于一种“中心”位置,因此集线器也叫做“hub” 2.集线器的工作原理 集线器的工作原理很简单,以图2为例,图中是一个具备8个端口的集线器,共连接了8台电脑。集线器处于网络的“中心”,通过集线器对信号进行转发,8台电脑之间可以互连互通。具体通信过程是这样的:假如计算机1要将一条信息发送给计算机8,当计算机1的网卡将信息通过双绞线送到集线器上时,集线器并不会直接将信息送给计算机8,它会将信息进行“广播”--将信息同时发送给8个端口,当8个端口上的计算机接收到这条广播信息时,会对信息进行检查,如果发现该信息是发给自己的,则接收,否则不予理睬。由于该信息是计算机1发给计算机8的,因此最终计算机8会接收该信息,而其它7台电脑看完信息后,会因为信息不是自己的而不接收该信息。 3.集线器的特点 (1)共享带宽

联轴器 标准

联轴器标准 一、基本概况 20世纪80年代以前我国原一机部、纺织部、二机部有为数不多的几项部级联轴器标准,经过20年的发展,至20世纪末,已形成由基础标准、产品标准、质量分等标准组成的联轴器专业标准体系。纵观我国联轴器标准发展史,联轴器标准的级别,即国家标准和机械行业标准,基本上是以时间来划分。1989年以前无论是联轴器基础通用标准或产品标准,几乎都是国际,1989年至1990年之间是专业标准(ZB),1991年以后全部都是机械行业标准(JB),1999年起全部为推荐标准 (JB/T)。1998年国家质量技术监督局废止专业标准和清理整顿后应转化的国家标准,从1999年3月1日起,专业标准(代号ZB)、清理整顿后应转化为其他标准,全部停止按专业标准和国家标准使用,新制修订的标准不得引用以上标准。 虽然多数行业的专业标准和需转化的国家标准1999年以前有关行业主管部门已进行了转化,但还有一些行业的专业标准和需要转化的国家标准没有进行转化。因此,有关行业主管部门对还没有转化但仍需继续使用的专业标准、部标准和国家标准进行了重新编号,即转化为行业标准。 了解以上背景情况有益于联轴器的选用,联轴器标准的级别并不反映标准本身和标准产品水平的先进性。长期以来联轴器没有统一归口,造成联轴器标准的名称、型号混乱,产品结构的先进性,产品标准的构成等都存在不少问题。我国现有"全国机器轴及附件标准化技术委员会"与国际标准TC14对口,联轴器作为轴的附件理应与TC14一样归于该标委会,但事实上并未如此。 二、联轴器基础通用标准 1.GB/T3507-1983机械式联轴器公称转矩系列 2.GB/T3852-1997联轴器轴孔和联接型式及尺寸(代替GB3852-83)

(完整版)联轴器装配标准

联轴器装配 一、凸缘联轴器的装配,两个半联轴器端面间(包括半圆配合圈)应紧密接触,两 轴的径向位移不应大于0.03mm 。 二、十字滑块联轴器和挠性爪型联轴器的装配,其同轴度应符合表 1.5.3—1的规 定,端面间隙应符合表1.5.3—2的规定。 联轴器的同轴度(mm) 表1.5.3—1 联轴器外形最大直径 (D) 两轴的同轴度 径向位移倾斜 ≤300 0.1 0.8/1000 300~600 0.2 1.2/1000 2 联轴器外形最大直径 (D) 端面间隙 十字滑块联轴器挠性爪型联轴器 ≤190 0.5~0.8 2±0.2 >190 1~1.5 2±0.2 三、蛇形弹簧联轴器的装配,其同轴度和端面间隙应符合表 1.5.3—3的规定。 四、齿轮联轴器的装配,两轴的同轴度和外齿轴套端面处的间隙,应符合表1.5.3

—4的规定。 联轴器的同轴度和端面间隙(mm) 表1.5.3—3 联轴器外形最大直径 (D) 两轴的同轴度 端面间隙 径向位移倾斜 D≤300 0.1 1.0/1000 1.0~1.5 2002500 1.0 3.5~4.0 联轴器的同轴度及外齿轴套端面间隙(mm) 表1.5.3—4 联轴器外形最大直径 (D) 两轴的同轴度外齿轴套 端面间隙 径向位移倾斜 170≤D<300 0.30 0.5/1000 2.5~5.0 220≤D<290 0.45 290≤D<490 0.65 1.0/1000 5.0~7.5 490≤D<680 0.90 1.5/1000 680≤D<900 1.20 7.5~10.0 900≤D<1250 1.50 2.0/1000 10.0~15.0 D≥1250 15.0~20.0 五、弹性圆柱销联轴器的装配,两轴的同轴度应符合表1.5.3—5的规定,两个半联 轴器端面间隙,应符合表 1.5.3—6的规定,且不应小于实测的轴向窜动。 联轴器的同轴度(mm)表 1.5.3—5

03137计算机网络基本原理选择题

1.在星型局域网结构中,连接文件服务器与工作站的设备是() A、调制解调器 B、交换器 C、路由器 D、集线器 2.在OSI七层结构模型中,处于数据链路层与运输层之间的是() A、物理层 B、网络层 C、会话层 D、表示层 3.完成路径选择功能是在OSI模型的() A、物理层 B、数据链路层 C、网络层 D、运输层 4.在TCP/IP协议簇的层次中,解决计算机之间通信问题是在() A、网络接口层 B、网际层 C、传输层 D、应用层 5.在中继系统中,中继器处于() A、物理层 B、数据链路层 C、网络层 D、高层 6.规定了信号的电平、脉宽、允许的数据传输速率和最大传输距离的物理层特性是( ) A.机械特性 B.电气特性 C.功能特性 D.规程特性 7.PPP协议提供的3类功能分别是:成帧、链路控制和( ) A.通信控制 B.网络控制 C.存储控制 D.安全控制 8.路由选择包括的两个基本操作分别为( ) A.最佳路径的判定和网内信息包的传送 B.可能路径的判定和网间信息包的传送 C.最优选择算法和网内信息包的传送 D.最佳路径的判定和网间信息包的传送 9. 路由信息协议(RIP)使用的路由算法是( ) A.最短路由选择算法 B.扩散法 C.距离矢量路由算法 D.链路状态路由算法 10. 在Internet中,路由器的路由表通常包含( ) A.目的网络和到达该网络的完整路径 B.所有目的主机和到达该主机的完整路径 C.目的网络和到达该网络的下一个路由器的IP地址 D.互联网中所有路由器的地址 11.TCP段结构中,端口地址的长度为 ( ) A.8比特 B.16比特 C.24比特 D.32比特 12.在TCP/IP协议的传输层将数据传送给用户应用进程所使用的地址形式是( ) A.IP地址 B.MAC地址 C.端口号 D.socket地址 13.如果两台主机在同一子网内,则它们的IP地址与子网掩码进行( ) A.“与”操作,结果相同 B.“或”操作,结果相同 C.“与非”操作,结果相同 D.“异或”操作,结果相同 14.下列关于网桥的说法中,不正确的是 ( )

(完整版)交换机与集线器工作机理分析

一、实验名称:交换机与集线器工作机理分析 二、实验目的:(1)观察交换机处理广播和单播报文的过程;(2)比较交换机与集线器的工作过程;(3)掌握使用PacketTracer模拟网络场景的基本方法,加深对网络环境、网络设备和网络协议交互过程等的理解。 三、实验内容和要求:(1)在PacketTracer模拟器中配置网络拓扑;(2)观察交换机如何处理广播和单播报文;(3)观察交换机和集线器的工作过程。 四、实验环境:windows7下的PacketTracer环境 五、操作方法与实验步骤: (一)交换机是如何处理单播的 用一个集线器hub将PC4、PC5连接起来再与PC1、PC2、PC3、PC4连接到同一个交换机上 用PC0为例,配置PC机的ip地址,5台PC机的ip地址地址分别为192.168.1.10、192.168.1.11、192.168.1.12、192.168.1.13、192.168.1.14、192.168.1.15,网关都为192.168.1.1,掩网子码为255.255.255.0 从PC0发送ping到PC1 在平操作没有完成时PC0、PC1的ARP表和交换机的mac表都为空 这是还未完成ping操作时Event list的内容 点击ICMP的info图标,可知源ip地址是PC0的ip地址,目的地址是PC1的ip地址 点击ARP的info图标可以看到它的源ip地址是PC0的ip地址,并且它想努力获得PC1的ip地址PC1的mac地址和ip地址 然后开始Capture/Foward 操作,一直点击Capture/Foward,知道ping完成可以发现如下图所示PC0、PC1的ARP表和交换机的mac表不再为空,交换机的mac表获得了PC0和PC1两者的mac地址。一开始PC0的ARP表是没有PC1的内容的所有它要发出一个ARP请求以完成ping操作,交换机从ARP请求中获得PC0的mac地址以及其连接的端口,从ARP回复中获得PC1的mac地址以及其连接的端口。交换机获得了这些信息之后就完成了ping操作。从以上操作我们不难发现ping这个操作从交换机的角度来看是单播过程。 (二)交换机如何处理未知广播 进入交换机的CLI选项中,对交换机的mac表进行清空,操作语句如下所示 完成了上面语句可以看到交换机的mac表已经清楚了 因为mac表被清空,所以交换机像处理广播一样,将数据包向除接收端口以外的所有端口泛洪出去, (三)、进行PC4到PC0ping操作 进行从PC4发出到PC0的ping操作,完成整个ping操作Event List的内容是这样的 完成整个ping操作后PC4和PC0的ARP表入下所示 在完成PC4到PC0的平操作时我发现凡是hub接受到的数据包hub它都没有像我想象的那样转发给我想要的特定的目标。 例如:这是PC4想要通过hub发送数据包给交换机的情况,可见它不仅把数据包转发给了交互机它也把

联轴器新旧标准表

1.联轴器命名原则 a 联轴器名称应具有科学性、准确性; b 联轴器名称应简短易记; c 按联轴器的结构特点命名,但要与现有其它类似联轴器有所区别; d 按联轴器中具有特征的主要零件(形状、特点等)命名; e 按联轴器中主要零件特殊材料命名; f 按传统习惯命名; g 按上述综合因素命名; h联轴器品种名称不得重复是联轴器命名最基本的原则。 2.联轴器型号 联轴器的型号由组别代号、品种代号、型式代号、规格代号组成。 联轴器的组别代号、品种代号、型式代号,取其名称的第一汉语拼音字母代号,如有重复时,则取第二个字母,或名称中第二、三个字母的第一、第二汉语拼音字母,或选其名称中具有特点字的第一、第二汉语拼音字母,以在同一组别、品种、型式中相互之间不得重复为原则。 联轴器的主参数为公称转矩Tn,单位为N·m。公称转矩系列顺序号,为联轴器规格代号。

联轴器新旧标准对照表 序号现行标准号产品型号旧标准号 1 JB/T8854.1-2001 GCLD JB/T8854.1-1999 ZBJ19012-89 JB/ZQ4380-86 2 JB/T8854.2-2001 GⅠCL JB/T8854.2-1999 ZBJ19013-89 JB/ZQ4378-86 GⅡCLZ JB/T8854.3-1999

ZBJ19014-89 JB/ZQ4379-86 3 JB/T8854.3-2001 GⅠCL JB/T8854.2-1999 ZBJ19013-89 JB/ZQ4222-86 GⅠCLZ JB/T8854.3-1999 ZBJ19014-89 JB/ZQ4223-86 4 JB/ZQ4644-1997 NGCL JB/ZQ4644-86 5 JB/ZQ4645-1997 NGCLZ JB/ZQ4645-86 6 JB/ZQ4186-199 7 WG / 7 JB/T7001-1993 WGP / 8 JB/T7002-1993 WGC / 9 JB/T7003-1993 WGZ / 10 JB/T7004-1993 WGT / 11 JB/ZQ4218-86 CL Q/ZB104-73 12 JB/ZQ4219-86 CLZ Q/ZB105-73 13 GB/T5272-2002 LM LMD LMS LMZ-Ⅰ LMZ-Ⅱ GB5272-85 ML M 14 GB/T4323-2002 LT LTZ GB4323-84 15 GB/T5014-2003 LX LXZ GB5014-85 16 GB/T515-2003 LZ LZJ LZD LZZ GB5015-85 ZL 17 GB/T6069-2002 GL GB6069-86 18 GB/T5843-2003 GY GYS GYH GB5843-86 19 GB/T5844-2002 UL GB5844-86 20 JB/ZQ4376-1997 YL JB/ZQ4376-86 21 JB/ZQ4384-1997 WHL JB/ZQ4384-86 22 JB/ZQ4018-1997 LLA LLB JB/ZQ4018-86 23 JB/T5514-1991 TGL / 24 JB/ZQ4389-1997 制动轮JB/ZQ4389-86

实验4--交换机与集线器工作机理分析

实验4:交换机与集线器工作机理分析 1. 实验目的 1) 观察交换机处理广播和单播报文的过程。 2) 比较交换机与集线器工作过程。 3) 掌握使用PacketTracer模拟网络场景的基本方法,加深对网络环境、网络设备和网络协议交互过程等方面的理解。 2. 实验环境 1) 运行Windows 2008 Server/Windows XP/Windows 7操作系统的PC一台。 2) 下载CISCO公司提供的PacketTracer版本。 3. 实验步骤 1)在PacketTracer模拟器中配置网络拓扑 在PacketTracer模拟器中配置如图所示的网络拓扑,其中通用交换机连接4台普通PC,通用集线器hub连接2台普通PC。 实验网络拓扑图 点击PC,在每台PC的配置窗口中配置合理的IP地址和子网掩码,设置IP 地址由左到右为,,,,,,子网掩码都为。无需为交换机和集线器配置IP地址(为什么)。因为交换机和集线器主要是处于数据链路层,不涉及转发IP数据包,所以不必设置IP地址。 2)观察交换机如何处理广播和单播报文

(1) 在实时与模拟模式之间切换4次,完成生成树协议。所有链路指示灯应变为绿色。最后停留在模拟模式中。 (2) 使用Inspect(检查)工具(放大镜)打开PC 0 和PC 1 的ARP 表以及交换机的MAC 表。本练习不关注交换机的ARP 表。将选择箭头移到交换机上,查看交换机端口及其接口MAC 地址的摘要。注意,这不是交换机获取的地址表。将窗口排列在拓扑上方。 (3) 添加简单PDU 以从PC 0发送ping到PC 1也可以在PC 0的DeskTop窗口中打开模拟命令行“Command Prompt”,运行PING命令)。 使用Add Simple PDU(添加简单PDU)(闭合的信封)从PC 0 发送一个ping 到PC 1。点击PC 0(源),然后点击PC 1(目的)。Event List(事件列表)中将会显示两个事件:一个ICMP 回应请求和一个ARP 请求,用以获取PC 1 的MAC 地

HUB(集线器)

HUB,也就是集线器。它的作用可以简单的理解为将一些机器连接起来组成一个局域网。而交换机(又名交换式集线器)作用与集线器大体相同。但是两者在性能上有区别:集线器采用的式共享带宽的工作方式,而交换机是独享带宽。这样在机器很多或数据量很大时,两者将会有比较明显的。而路由器与以上两者有明显区别,它的作用在于连接不同的网段并且找到网络中数据传输最合适的路径,可以说一般情况下个人用户需求不大。路由器是产生于交换机之后,就像交换机产生于集线器之后,所以路由器与交换机也有一定联系,并不是完全独立的两种设备。路由器主要克服了交换机不能路由转发数据包的不足。 总的来说,路由器与交换机的主要区别体现在以下几个方面: (1)工作层次不同 最初的的交换机是工作在OSI/RM开放体系结构的数据链路层,也就是第二层,而路由器一开始就设计工作在OSI模型的网络层。由于交换机工作在OSI的第二层(数据链路层),所以它的工作原理比较简单,而路由器工作在OSI的第三层(网络层),可以得到更多的协议信息,路由器可以做出更加智能的转发决策。 (2)数据转发所依据的对象不同 交换机是利用物理地址或者说MAC地址来确定转发数据的目的地址。而路由器则是利用不同网络的ID号(即IP地址)来确定数据转发的地址。IP地址是在软件中实现的,描述的是设备所在的网络,有时这些第三层的地址也称为协议地址或者网络地址。MAC地址通常是硬件自带的,由网卡生产商来分配的,而且已经固化到了网卡中去,一般来说是不可更改的。而IP地址则通常由网络管理员或系统自动分配。 (3)传统的交换机只能分割冲突域,不能分割广播域;而路由器可以分割广播域 由交换机连接的网段仍属于同一个广播域,广播数据包会在交换机连接的所有网段上传播,在某些情况下会导致通信拥挤和安全漏洞。连接到路由器上的网段会被分配成不同的广播域,广播数据不会穿过路由器。虽然第三层以上交换机具有VLAN功能,也可以分割广播域,但是各子广播域之间是不能通信交流的,它们之间的交流仍然需要路由器。 (4)路由器提供了防火墙的服务 路由器仅仅转发特定地址的数据包,不传送不支持路由协议的数据包传送和未知目标网络数据包的传送,从而可以防止广播风暴。 交换机一般用于LAN-WAN的连接,交换机归于网桥,是数据链路层的设备,有些交换机也可实现第三层的交换。路由器用于W AN-WAN之间的连接,可以解决异性网络之间转发分组,作用于网络层。他们只是从一条线路上接受输入分组,然后向另一条线路转发。这两条线路可能分属于不同的网络,并采用不同协议。相比较而言,路由器的功能较交换机要强大,但速度相对也慢,价格昂贵,第三层交换机既有交换机线速转发报文能力,又有路由器良好的控制功能,因此得以广泛应用。

路由器和交换机_集线器的工作原理,区别和联系

路由器,交换机,集线器工作原理,区别和联系 工作原理 一、集线器 1.什么是集线器 在认识集线器之前,必须先了解一下中继器。在我们接触到的网络中,最简单的就是两台电脑通过两块网卡构成“双机互连”,两块网卡之间一般是由非屏蔽双绞线来充当信号线的。由于双绞线在传输信号时信号功率会逐渐衰减,当信号衰减到一定程度时将造成信号失真,因此在保证信号质量的前提下,双绞线的最大传输距离为100米。当两台电脑之间的距离超过100米时,为了实现双机互连,人们便在这两台电脑之间安装一个“中继器”,它的作用就是将已经衰减得不完整的信号经过整理,重新产生出完整的信号再继续传送。 中继器就是普通集线器的前身,集线器实际就是一种多端口的中继器。集线器一般有4、8、16、24、32等数量的RJ45接口,通过这些接口,集线器便能为相应数量的电脑完成“中继”功能。由于它在网络中处于一种“中心”位置,因此集线器也叫做“Hub”。 2.集线器的工作原理 集线器的工作原理很简单,以图2为例,图中是一个具备8个端口的集线器,共连接了8台电脑。集线器处于网络的“中心”,通过集线器对信号进行转发,8台电脑之间可以互连互通。具体通信过程是这样的:假如计算机1要将一条信息发送给计算机8,当计算机1的网卡将信息通过双绞线送到集线器上时,集线器并不会直接将信息送给计算机8,它会将信息进行“广播”--将信息同时发送给8 个端口,当8个端口上的计算机接收到这条广播信息时,会对信息进行检查,如果发现该信息是发给自己的,则接收,否则不予理睬。由于该信息是计算机1 发给计算机8的,因此最终计算机8会接收该信息,而其它7台电脑看完信息后,会因为信息不是自己的而不接收该信息。 3.集线器的特点 1)共享带宽 集线器的带宽是指它通信时能够达到的最大速度。目前市面上用于中小型局域网的集线器主要有10Mbps、100Mbps和10/100Mbps自适应三种。 10Mb带宽的集线器的传输速度最大为10Mbps,即使与它连接的计算机使用的是100Mbps网卡,在传输数据时速度仍然只有10Mbps。10/100Mbps自适应集线器能够根据与端口相连的网卡速度自动调整带宽,当与10Mbps的网卡相连时,其带宽为10Mb;与100Mbps的网卡相连时,其带宽为100Mb,因此这种集线器也叫做“双速集线器”。 集线器是一种“共享”设备,集线器本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以集线器为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。 由于集线器在一个时钟周期中只能传输一组信息,如果一台集线器连接的机器数目较多,并且多台机器经常需要同时通信时,将导致集线器的工作效率很差,如发生信息堵塞、碰撞等。

联轴器技术要求1

新建能量回收机组中与烟机相连的联轴器选型技术要求: 一般要求 ●联轴器可选用齿式联轴器、带有备齿保护结构的膜片式联轴器或膜盘式联轴器。 ●联轴器的设计、制造应符合美国石油协会标准API671的要求。 ●联轴器的使用系数至少应取:1.75, ●联轴器至少应能承受最大瞬态扭矩的1.15倍。 ●联轴器的设计应能在下述条件同时发生时连续运行: ?传递最大连续扭矩 ?轴向位移为稳态或最大瞬态位移的1.25倍 ?角不对中为用户规定值的1.25倍 ?轴偏移量为用户规定值的1.25倍 制造厂检验 齿式联轴器 化学成分机械 性能 X射 线 超声 波 磁粉 探伤 液体 渗透 尺寸 检查 组装 检查 外观 检查 法兰盘Y Y Y Y Y Y Y 内(或外) 齿圈 Y Y Y Y Y Y Y 中间节Y Y Y Y Y Y Y 联接螺栓Y Y Y Y Y Y Y 膜片式联轴器 化学成分机械 性能 X射 线 超声 波 磁粉 探伤 液体 渗透 尺寸 检查 组装 检查 外观 检查 法兰盘Y Y Y Y Y Y Y 膜片按制造厂标准的检验程序 中间节Y Y Y Y Y Y Y 联接螺栓Y Y Y Y Y Y Y 膜盘式联轴器 化学成分机械 性能 X射 线 超声 波 磁粉 探伤 液体 渗透 尺寸 检查 组装 检查 外观 检查 法兰盘Y Y Y Y Y Y Y 膜盘Y Y Y Y Y Y Y 中间节Y Y Y Y Y Y Y 联接螺栓Y Y Y Y Y Y Y

现存能量回收机组中与烟机相连的联轴器较核与检验要求: 较核 对于正在运行的能量回收机组,可按上述对联轴器的“一般要求”进行较核,如果不能完全满足要求,可组织有关技术人员和专家进行评审,必要时停机进行更换。 检验: 在装置大修期间对联轴器主要零件的表面及内部缺陷进行无损探伤。 齿式联轴器 超声波磁粉 探伤 外观 检查 法兰盘Y Y Y 内(或外) 齿圈 Y Y Y 中间节Y Y Y 联接螺栓Y Y Y 膜片式联轴器 超声波磁粉 探伤 外观 检查 法兰盘Y Y Y 膜片着色Y 中间节Y Y Y 联接螺栓Y Y Y 膜盘式联轴器 超声波磁粉 探伤 外观 检查 法兰盘Y Y Y 膜盘Y着色Y 中间节Y Y Y 联接螺栓Y Y Y

集线器HUB基本工作原理

集线器(HUB)的基本工作原理 我们知道在环型网络中只存在一个物理信号传输通道,都是通过一条传输介质来传输的,这样就存在各节点争抢信道的矛盾,传输效率较低。引入集线器这一网络集线设备后,每一个站是用它自己专用的传输介质连接到集线器的,各节点间不再只有一个传输通道,各节点发回来的信号通过集线器集中,集线器再把信号整形、放大后发送到所有节点上,这样至少在上行通道上不再出现碰撞现象。但基于集线器的网络仍然是一个共享介质的局域网,这里的"共享"其实就是集线器内部总线,所以当上行通道与下行通道同时发送数据时仍然会存在信号碰撞现象。当集线器将从其内部端口检测到碰撞时,产生碰撞强化信号(Jam)向集线器所连接的目标端口进行传送。这时所有数据都将不能发送成功,形成网络"大塞车"。 出现这种网络现象我们可以用一个形象的现实情形来说明,那就是单车道上同时有两个方向的车驰来.。 我们知道,单车道上通常只允许一个行驶方向的车通过,但是在小城镇,条件有限通常没有这样的规定,单车道也很有可能允许两个行驰方向的车通过,但是必须是不同时刻经过。在集线器中也一样,虽然各节点与集线器的连接已有各自独立的通道,但是在集线器内部却只有一个共同的通道,上、下行数据都必须通过这个共享通道发送和接收数据,这样有可能像单车道一样,当上、下行通道同时有数据发送时,就可能出现塞车现象。很好理解吧? 正因为集线器的这一不足之处,所以它不能单独应用于较大网络中(通常是与交换机等设备一起分担小部分的网络通信负荷),就像在大城市中心不能有单车道一样,因为网络越来,出现网络碰撞现象的机会就越大。也正因如此,集线器的数据传输效率是比较低的,因为它在同一时刻只能有一个方向的数据传输,也就是所谓的"单工"方式。如果器网络中要选用集线器作为单一的集线设备,则网络规模最好在10台以内,而且集线器带宽应为10/100Mbps以上。 集线器除了共享带宽这一不足之处外,还有一个方面在选择集线器时必须要考虑到,那就是它的广播方式。因为集线器属于纯硬件网络底层设备,基本上不具有"智能记忆"能力,更别说"学习"能力了。它也不具备交换机所具有的MAC 地址表,所以它发送数据时都是没有针对性的,而是采用广播方式发送。也就是说当它要向某节点发送数据时,不是直接把数据发送到目的节点,而是把数据包发送到与集线器相连的所有节点,图示如图2所示。 这种广播发送数据方式有两方面不足:(1)用户数据包向所有节点发送,很可能带来数据通信的不安全因素,一些别有用心的人很容易就能非法截获他人的数据包;(2)由于所有数据包都是向所有节点同时发送,加上以上所介绍的共享带宽方式,就更加可能造成网络塞车现象,更加降低了网络执行效率。 编辑:明卓科技 Jsamine QQ:1239886238

联轴器标准汇总

刚性联轴器标准 GB/T 5843-1986 凸缘联轴器 JB/T 7006-1993 平行轴联轴器型式基本参数尺寸 无弹性元件挠性联轴器标准 JB/T 3241-1991 SWP型部分轴承座十字轴式万向联轴器(代替JB 3241-83)JB/T 3242-1993 SWZ型整体轴承座十字轴式万向联轴器(代替JB 3242-83)JB/T 5513-1991 SWC型整体叉头十字轴式万向联轴器 JB/T 7341-1994 SWP、SWC型十字轴式万向联轴器十字包型式与尺寸 JB/T 5901-1991 十字轴万向联轴器 GB/T 7549-1987 球笼式同步万万向联轴器型式、基本参数和主要尺寸 BG/T 7550-1987 球笼式同步万向联轴器试验方式 JB/T 6140-1992 重型机械用球笼式同步万向联轴器 JB/T 6139-1992 球铰式万向联轴器 JB/T 5514-1991 TGL鼓形齿式联轴器 JB/T 7001-1993 WGP型带制动盘鼓形齿式联轴器型式、参数和尺寸 JB/T 7002-1993 WGC型带制动盘鼓形齿式联轴器型式、参数和尺寸 JB/T 7003-1993 WGZ型带制动盘鼓形齿式联轴器型式、参数和尺寸 JB/T 7004-1993 WGT型带制动盘鼓形齿式联轴器型式、参数和尺寸 JB/T 8854.1-1999 GCLD型鼓形齿式联轴器(代替ZBJ 19013-89) JB/T 8854.2-1999 GICL、GIICL型鼓形齿式联轴器(代替ZBJ 19013-89)JB/T 8854.3-1999 GICLZ、GIICLZ型鼓形齿式联轴器(代替ZBJ 19014-89)JB/T 8821-1998 WGJ型接中间轴鼓形齿式联轴器 GB/T 6069-1985 滚子链联轴器 金属弹性元件弹性联轴器标准 GB/T 12922-1991 弹性阻尼簧片联轴器 GB/T 14653-1993 挠性杆联轴器 JB/T 9147-1999 膜片联轴器(代替ZB/T J19022-90) JB/T 8869-2000 蛇形弹簧联轴器(代替ZB/T J19023-90) 非金属弹性元件弹性联轴器标准 GB /T 2496-1996 弹性环联轴器(代替GB 2496-81) GB T 4323-1984 弹性套柱销联轴器 GB /T 5014-1985 弹性柱销联轴器 GB /T 5015-1985 弹性柱销齿式联轴器 GB/T 5272-1985 梅花形弹性联轴器 GB /T 5844-1986 轮胎式联轴器

集线器与交换机的对比实验

集线器与交换机的对比实 验 Last updated on the afternoon of January 3, 2021

计算机科学与技术学院计算机网络实验实验报告 实验项目集线器与交换机的对比实验实验日期 2016/4/22 一实验目的 了解集线器和交换机的如何转发数据。 理解冲突域和广播域的概念。 对比单播以太网帧和广播以太网帧的目标MAC地址。 二实验原理 冲突域与广播域 冲突域:在该域内某一时刻只能有一个站点发送数据,如果两个站点同时发送数据会引起冲突,则这两个站点处于同一个冲突域内。 广播域:在以太网中,能够接收到任意站点发送的广播帧的所有站点的集合称为一个广播域。 集线器和交换机 集线器和交换机都是为了扩大以太网覆盖范围而使用的连接设备,但二者的工作原理存在很大差异。 集线器工作在OSI体系结构的物理层。集线器的主要功能是对接收到的信号进行放大、转发,从而扩展以太网的覆盖范围。由于物理层传输的信号是无结构的,因此集线器无法识别接收方,只能将从一个端口接收到信号放大后复制到所有其他端口,即向与该集线器连接的所有站点转发。 交换机工作在OSI参考模型的第二层数据链路层。交换机使用以太网帧中的MAC地址进行数据帧转发,从而有效地过滤数据帧。交换机可以在多个端口对之间

同时建立多条并发连接,使得与不同端口连接站点同时发送数据时,各连接线路彼此互不影响。 三实验要求 拓扑图 该实验用到4个拓扑图。其中拓扑图1和拓扑图2是以集线器为中心的共享式以太网;拓扑图3和拓扑图4是以交换机为中心的交换式以太网。其中拓扑图1和拓扑图2主要用于观察集线器的运行及理解冲突域的概念;拓扑图3和拓扑图4主要用于观察交换机的运行及理解交换机隔离冲突域但不隔离广播域的特性。在对应的实验步骤中,我们需要将拓扑图1和拓扑图2使用交叉双绞线连接起来,将拓扑图3和拓扑图4使用交叉双绞线连接起来,从而观察使用集线器和交换机进行以太网扩展时对冲突域和广播域的影响,从而理解两类设备在扩展以太网时的作用和局限性。 IP地址配置 四实验步骤、结果(程序+注释+截图)及分析

电机联轴器找正的方法及标准 (1)

电机联轴器找正的方法及标准 一、联轴器 1、什么是联轴器: 联轴器属于机械通用零部件范畴,用来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件。在高速重载的动力传动中,有些联轴器还有缓冲、减振和提高轴系动态性能的作用。联轴器由两半部分组成,分别与主动轴和从动轴联接。一般动力机大都借助于联轴器与工作机相联接,是机械产品轴系传动最常用的联接部件。20世纪后期国内外联轴器产品发展很快,在产品设计时如何从品种甚多、性能各异的各种联轴器中选用能满足机器要求的联轴器,对多数设计人员来讲,始终是一个困扰的问题。常用联轴器有膜片联轴器鼓形齿式联轴器,万向联轴器,安全联轴器,弹性联轴器及蛇形弹簧联轴器。 2、联轴器工作原理及用途 (1)联轴器功能 用来把两轴联接在一起,机器运转时两轴不能分离,只有机器停车并将联接拆开后,两轴才能分离。 (2)联轴器的类型 联轴器所联接的两轴,由于制造及安装误差,承载后的变形以及温度变化的影响等,会引起两轴相对位置的变化,往往不能保证严格的对中。根据联轴器有无弹性元件、对各种相对位移有无补偿能力,即能否在发生相对位移条件下保持联接功能以及联轴器的用途等,联轴器可分为刚性联轴器,挠性联轴器和安全联轴器。联轴器的主要类型、特点及其在作用类别在传动系统中的作用备注 刚性联轴器:只能传递运动和转矩,不具备其他功能包括凸缘联轴器、套筒联轴器、夹壳联轴器等。 挠性联轴器:无弹性元件的挠性联轴器,不仅能传递运动和转矩,而且具有不同程度的轴向、径向、角向补偿性能包括齿式联轴器、万向联轴器、链条联轴器、滑块联轴器等。有弹性元件的挠性联轴器,能传递运动和转矩;具有不同程度的轴向、径向、角向补偿性能;还具有不同程度的减振、缓冲作用,改善传动系统的工作性能,包括各种非金属弹性元件挠性联轴器和金属弹性元件挠性联轴器,各种弹性联轴器的结构不同,差异较大,在传动系统中的作用亦不尽相同. 二、电机联轴器找正方法 联轴器的找正是电动机安装的重要工作之一.找正的目的是在电动机工作时使主动轴和从动轴两轴中心线在同一直线上.找正的精度关系到机器是否能正常运转,对高速运转的机器尤其重要。 两轴绝对准确的对中是难以达到的,对连续运转的机器要求始终保持准

联轴器GB 标准号

国内机械式联轴器标准概况 一、基本概况 我国现有“全国机器轴及附件标准化技术委员会”与国际标准TC14对口,联轴器作为轴的附件理应与TC14一样归于该标委会,但事实上并未如此。20世纪80年代以前我国原一机部、纺织部、二机部有为数不多的几项部级联轴器标准,经过20年的发展,至20世纪末,已形成由基础标准、产品标准、质量分等标准组成的联轴器专业标准体系。纵观我国联轴器标准发展史,联轴器标准的级别,即国家标准和机械行业标准,基本上是以时间来划分。1989年以前无论是联轴器基础通用标准或产品标准,几乎都是国际,1989年至1990年之间是专业标准(ZB),1991年以后全部都是机械行业标准(JB),1999年起全部为推荐标准(JB/T)。1998年国家质量技术监督局废止专业标准和清理整顿后应转化的国家标准,从1999年3月1日起,专业标准(代号ZB)、清理整顿后应转化为其他标准,全部停止按专业标准和国家标准使用,新制修订的标准不得引用以上标准。 虽然多数行业的专业标准和需转化的国家标准1999年以前有关行业主管部门已进行了转化,但还有一些行业的专业标准和需要转化的国家标准没有进行转化。因此,有关行业主管部门对还没有转化但仍需继续使用的专业标准、部标准和国家标准进行了重新编号,即转化为行业标准。 了解以上背景情况有益于联轴器的选用,联轴器标准的级别并不反映标准本身和标准产品水平的先进性。长期以来联轴器没有统一归口,造成联轴器标准的名称、型号混乱,产品结构的先进性,产品标准的构成等都存在不少问题。 二、联轴器基础通用标准 1.GB/T 3507—1983 机械式联轴器公称转矩系列 2.GB/T 3852—1997 联轴器轴孔和联接型式及尺寸(代替GB 3852—83) 3.GB/T 3931—1997 联轴器术语(代替GB 3931—83) 4.GB/T 12458—1990机械式联轴器分类 5.JB/T 7511—1994 机械式联轴器选用计算 6.JB/T 7937—1995 用户和制造厂对弹性联轴器技术性能项目要求(代替GB 11227—89) 7.JB/T 8556—1997 选用联轴器的技术资料 8.JB/T 8557—1997 挠性联轴器平衡分类 9.JB/T 8461—1996 液压锥套 10.JB/T 7934—1999 胀紧联接套套式与基本尺寸(代替JB/T 7934—95、GB 5867—86) 11.SJ/T 10359—1993 精密联轴器技术条件 三、联轴器产品标准(通用) 1.刚性联轴器标准 (1)GB/T 5843—1986 凸缘联轴器 (2)JB/T 7006—1993 平行轴联轴器型式基本参数与尺寸 2.无弹性元件挠性联轴器标准 (1)JB/T 3241—1991 SWP型部分轴承座十字轴式万向联轴器(代替JB 3241—83)

集线器连接与安装要点

网络学堂之九:集线器的安装与连接 在上一篇我们介绍了集线器的有关基础知识,本篇继续要介绍与集线器的另一些重要方面,就是集线器的安装与连接。我们通过上一篇的学习已经知道,集线器是一种最为基础的网络集线设备,它主要工作于OSI的数据链路层。同时我们也已经知道它几乎是不需任何软件配置,一种完全即插即用的纯硬件式设备。尽管如此,由于它经历了较长的历史发展时期,其技术也得到了一步步的发展,在网络的应用也有许多需要特别注意的地方。 要正确使用集线器,首先要了解的是集线器的基本工作原理,只有这样才能正确选择、安装、连接集线器。 一、集线器的基本工作原理 我们知道在环型网络中只存在一个物理信号传输通道,都是通过一条传输介质来传输的,这样就存在各节点争抢信道的矛盾,传输效率较低。引入集线器这一网络集线设备后,每一个站是用它自己专用的传输介质连接到集线器的,各节点间不再只有一个传输通道,各节点发回来的信号通过集线器集中,集线器再

把信号整形、放大后发送到所有节点上,这样至少在上行通道上不再出现碰撞现象。但基于集线器的网络仍然是一个共享介质的局域网,这里的"共享"其实就是集线器内部总线,所以当上行通道与下行通道同时发送数据时仍然会存在信号碰撞现象。当集线器将从其内部端口检测到碰撞时,产生碰撞强化信号(Jam)向集线器所连接的目标端口进行传送。这时所有数据都将不能发送成功,形成网络"大塞车"。 出现这种网络现象我们可以用一个形象的现实情形来说明,那就是单车道上同时有两个方向的车驰来,如图1所示。 图1 我们知道,单车道上通常只允许一个行驶方向的车通过,但是在小城镇,条件有限通常没有这样的规定,单车道也很有可能允许两个行驰方向的车通过,但是必须是不同时刻经过。在集线器中也一样,虽然各节点与集线器的连接已有各自独立的通道,但是在集线器内部却只有一个共同的通道,上、下行数据都必须通过这个共享通道发送和接收数据,这样有

联轴器找正标准

联轴器找正标准 找正参数包括:轴线径向位移、轴线倾斜、端面间隙,其中轴线倾斜可以通过对轮端面间隙差来测量,具体标准如下:对轮端面间隙差(b-a) =两轴线倾斜*对轮直径 (1)、凸缘联轴器(图5.3.1)装配时,两个半联轴器端面应紧密接触,两轴心的径向位移不应大于0.03mm。 (2)、弹性套柱销联轴器(图5.3.2)装配时,两轴心径向位移、两轴线倾斜和端面间隙的允许偏差应符合表5.3.2的规定。

(3)、弹性柱销联轴器(图5.3.3)装配时,两轴心径向位移、两轴线倾斜和端面间隙的允许偏差应符合表5.3.3的规定 (4)、弹性柱销齿式联轴器(图5.3.4)装配时,两轴心径向位移、两轴线倾斜和端面间隙的允许偏差应符合表5.3.4的规定。 (5)、齿式联轴器(图5.3.5)装配时应符合下列要求:装配时两轴心径向位移、两轴线倾斜和端面间隙的允许偏差应符合表5.

3.5规定。联轴器的内、外齿的啮合应良好,并在油浴内工作,其中小扭矩、低转速的应选用符合国家现行标准《锂基润滑脂》的ZL/4润滑脂,大扭矩、高转速的应选用符合国家现行标准《齿轮油》的HL20、HL30润滑油,并不得有漏油现象。 (6)、滑块联轴器(图5.3.6)装配时,两轴心径向位移、两轴线倾斜和端面间隙的允许偏差应符合表5.3.6规定。 (7)、蛇形弹簧联轴器(图5.3.7)装配时,两轴心径向位移、两轴线倾斜和端面间隙的允许偏差应符合表5.3.7规定。

(8)、梅花形弹性联轴器(图5.3.8)装配时,两轴心径向位移、两轴线倾斜和端面间隙的允许偏差应符合表5.3.8的规定。 (9)、滚子链联轴器(图5.3.9)装配时应符合下列要求:装配时,两轴心径向位移、两轴线倾斜和端面间隙的允许偏差应符合表5.3.9的规定。联轴器的滚子链应按要求加注润滑油。 (10)、轮胎式联轴器(图5.3.10)装配时,两轴心径向位移、两轴线倾斜和端面间隙的允许偏差应符合表5.3.10的规定。

USB Hub、集线器、分线器的工作原理及选购时的注意事项

USB Hub(USB集线器)的工作原理及选购时的注意事项 无论你是一名电脑初学者,还是资深发烧友,有一种电脑设备你几乎每天都在与其打交道,这就是各种基于USB接口的外设,例如USB鼠标、USB键盘、USB摄像头、USB 打印机、移动硬盘、闪盘等…… 实际上,USB接口自诞生以来,其具有可热插拔、即插即用两大优异的特性,很快便赢得了用户的青睐。一时间各种基于USB接口的外设层出不穷,逐步将过去采用并口及串口的老旧设备淘汰出局。然而,这些品种繁多的USB设备的出现,却使得用户不得不面临着一个新的问题——USB接口不够用了。 带太阳能功能的四口USB Hub 聪明的读者看到这已经想到了解决办法——利用USB Hub(即USB集线器)。没错,使用USB Hub就可以很方便地通过一个USB接口扩展出4个甚至更多的USB接口,从而解决一些对供电要求不高的USB设备的扩展需求。

使用带外接电源接口的USB Hub,可以解决USB接口供电不足的问题。 如果需要用到USB硬盘之类对供电要求较高的设备时,那么就要选择具有外接电源的USB Hub。 “三看一摸”助你识好坏 由于功能简单,品牌繁多(寻修网https://www.doczj.com/doc/0017169126.html,/注:我们在市场上见到的多为杂牌产品),加之外壳多为封闭塑料外壳,玩家很难对产品好坏进行仔细鉴别,以致买回后,在使用中经常出现意外。那么,一款USB Hub的品质究竟体现哪些方面呢?简单来说,我们通过“三看一摸”就可以加以快速辨别。 一看传输速率 在购买USB Hub时,最需要注意的是其标准的版本,其他USB设备也是如此。目前USB 2.0标准分为高速(Hi-Speed,480Mb/s)、全速(Full-Speed,12Mb/s) 和低速(Low-Speed,1.5Mb/s)三个版本。

USB端口的工作原理

USB端口的工作原理 人们购买的所有计算机的后面几乎都配有一个或多个通用串行总线接口。通过这些USB接口,您可以将从鼠标到打印机的各种设备连接到计算机上,既方便又快捷。此外,操作系统也支持USB,这使设备驱动程序的安装变得快捷而简单。与其他将设备与计算机相连的方式相比(包括并行接口、串行接口以及您在计算机机箱内安装的特殊卡),USB设备真是简单至极! 下面从用户和技术这两个角度来介绍USB接口。您将了解到USB系统为何如此灵活,它如何能够支持如此多的设备。 如果您使用计算机已有两三年时间,那么一定知道,过去将设备连接到计算机上是一件让人十分头痛的事情,而这也正是通用串行接口在努力解决的问题。 ?过去,打印机都是连接到并行打印接口,而大多数计算机只有一个接口。诸如Zip 驱动器之类的装置需要与计算机建立高速连接,它们也要使用并行接口,但通常成 功率很低,且速度不快。 ?调制解调器使用的是串行接口,而一些打印机以及诸如掌上电脑和数码相机等的特 殊设备也使用串行接口。大多数计算机最多有两个串行接口,而且在多数情况下它 们的速度都很慢。 ?那些需要高速数据传输的设备会被制成专用硬卡,这就需要将它们装在计算机机箱 的卡槽中。遗憾的是,这些卡槽的数目也是有限的,而且为某些硬卡安装驱动程序 非常复杂,恐怕需要请一位专家帮忙才能搞定。 USB的目标就是结束这些令人头痛的麻烦。通用串行总线提供的方法单一、规范且易于使用,它可以将多达127台设备连接到计算机上。 将USB设备连接到计算机上非常简单——您只需在计算机上找到USB接口,然后插入USB接头即可。 个人计算机背面的典型USB插孔为方型插孔称为“A”接口的典型USB接头

相关主题
文本预览
相关文档 最新文档