2014二次根式单元测验
- 格式:doc
- 大小:76.50 KB
- 文档页数:1
第3章 二次根式 单元测试题(1)一、选择题 1. 在根式15、22b a -、3ab 、631、b a a221中,最简二次根式有( )A.1个B.2个C.3个D.4个 2.能使2)5(--x 有意义的实数x 的值有( )A.0个B.1个C.2个D.无数个 3. 若a+962+-a a =3成立则a 的范围是( )A 、a ≤0B 、a ≤3C 、a ≥-3D 、a ≥3 4.在下列各式的化简中,化简正确的有( )①3a =a a ②5x x -x =4x x ③6a2ba =ab 2b3a ④24+61=106A.1个B.2个C.3个D.4个 5. 已知a <0,化简:aaa22+的结果是 ( )A.1B.-1C.0D.2a6. 若33=43k,则k 是( )A.1B.21 C.3 D.347. 设7的小数部分为b ,那么(4+b)b 的值是( )A.1B.是一个有理数C.3D.无法确定 8. 当x <2y 时,化简:xxyy x y x 322344+-得( )A.x(x-2y)yB.y x2y -x C.(x-2y)y D.(2y-x)y9. 若x <1且y =11)-(x 2-x +3,则y 3y ÷y1×y1的值是( )A.331 B.43 C.163 D.64310.225+·225-的积为( )A.1B.17C.17D. 21 二、填空题1. 试写出和为2的两个无理数 、 .2.化简:3121+=________.3. 化简:(m-n)·m-n 2=________.4.当a=25-1时,化简:a 2-2a+11的结果为________.5.式子32-x 122-的最大值是________.6.计算:(a+2ab +b)÷(a +b )-(b -a )=________.7. 已知-2<m <-1,化简:1214m 4m2+++m -112m -m 2-+m =________.8.若菱形两对角线长分别为(25+32)和(25-32),则菱形面积=________. 9.已知b <0,化简:2a-ba -ab +2++ba ab =________.10. 若238x x +=-x 8+x 则x 的范围是 .三、计算题 1.6÷(31+21)+50 2. (2+23-6)(2-23+6)四、化简下列各式 1.xx2+22x +x 18 2.)(abb b aba a ab a --+⋅-五、解答题1.已知x 、y 为实数,且y =2134124312+--+--x x xx ,求5x-3y 的值.2.已知x 、y 为正数,且x (x +y )=3y (x +5y ),求yxy x y xy x -+++32的值.3.设x 、y 是实数,且x 2+y 2-2x+4y+5=0,求2)3212(1y x +.4. 已知10=m 、试用m 表示518598+的值.5.观察下列各式312311=+,413412=+,514513=+按照上述三个等式及其变化过程, ①猜想561= 。
二次根式高频考点16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+()2005_____________a b -=。
13. 在式子)()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )15. 若23a ) A. 52a - B. 12a - C. 25a - D. 21a -16. 若A ==( ) A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥ 19.)A. 0B. 42a -C. 24a -D. 24a -或42a -20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()421.2440y y -+=,求xy 的值。
22. 当a 1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
人教版数学八年级下册第十六章测试(含解析答案)一、选择题1.下列各式中,属于二次根式的有( )①; ②;③;④;⑤;⑥(a≤0).A.2个B.3个C.4个D.5个2. (2014·聊城模拟)函数y=中自变量x的取值范围是( )A.x>2B.x<2C.x≠2D.x≥23. (2014·广州模拟)已知|a-1|+=0,则a+b=( )A.-8B.-6C.6D.84.若1≤a≤,则+|a-2|的值是( )A.6+aB.-6-aC.-aD.15.化简×+的结果是( )A.5B.6C. D.56.下列根式中不是最简二次根式的是( )A. B. C. D.7.若x-y=-1,xy=,则代数式(x-1)(y+1)的值等于( )A.2+2B.2-2C.2D.28.(2013·昆明)下列运算正确的是( )A.x6+x2=x3B.=2C.(x+2y)2=x2+2xy+4y2D.-=9.(2014·杭州模拟)已知m=×(-2),则有( )A.5<m<6B.4<m<5C.-5<m<-4D.-6<m<-510.计算÷的结果是( )A.-B.C.D.二、填空题11.如图所示,矩形内两相邻正方形的面积分别是3和8,那么矩形内阴影部分的面积是 (结果可用根号表示).12.当x 时,=1-2x.13.计算:-= .14.我们赋予“※”一个实际含义,规定a ※b=·+,则3※5= . 15.(7-5)2 012×(-7-5)2 013= .16.将一组数,2,,2,,…,2按如下方法进行排列:2 2 23 2 22 4 6若3在第2行第3列的位置记为(2,3),2在第3行第2列的位置记为(3,2),则这组数中最大的有理数的位置记为 .三、解答题17.计算下列各题: (1)÷×;(2)(-2)(+2);(3)--+.18.先化简,再求值:÷,其中a=5-,b=-3+.19.若x,y为实数,且y=++,求-的值.20.已知M=-,N=.甲、乙两个同学在y=++18的条件下分别计算了M和N的值.甲说M的值比N 大,乙说N的值比M大.请你判断谁的结论是正确的,并说明理由.21.阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上形如,,的式子,其实我们还可以将其进一步化简:==;(一)==;(二)===-1.(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====-1.(四)(1)请用不同的方法化简.①参照(三)式得= ;②参照(四)式得= .(2)化简:+++…+.参考答案1.答案:D 解析:属于二次根式的有①②③⑤⑥,共5个.2.答案:A 解析:根据题意得x-2≥0且x-2≠0.解得x>2.3.答案:B 解析:因为|a-1|+=0,所以a-1=0,7+b=0,解得a=1,b=-7,所以a+b=-6.4.答案:D 解析:原式=|a-1|+|a-2|=a-1-(a-2)=1.5.答案:D 解析:×+=+=+=3+2=5.6.答案:C 解析:==2,被开方数中含有开得尽方的因数,因此不是最简二次根式.7.答案:B 解析:(x-1)(y+1)=xy+x-y-1=+-1-1=2-2.8.答案:D解析:A.本选项不能合并,错误;B.=-2,本选项错误;C.(x+2y)2=x2+4xy+4y2,本选项错误;D.-=3-2=,本选项正确.9.答案:A 解析:m=×(×)=×()2×=2,因为25<28<36,所以<2<,即5<2<6.10.答案:A 解析:原式=÷=-÷=-.11.答案:2-3 解析:S阴影=(-)×=2-3.12.答案:≤解析:由题意得1-2x ≥0,解得x≤.13.答案:2 解析:原式=2+-=2.14.答案:解析:3※5=×+=+=.15.答案:-7-5解析:原式=[(7-5)×(-7-5)]2 012×(-7-5)=(50-49)2 012×(-7-5)=-7-5.16.答案:(17,2) 解析:将各个数都还原为带有根号的式子,不难发现,被开方数是连续的偶数.2=,因为204÷2÷6=17,即2是(17,6),所以是最大的有理数,即(17,2).17.解:(1)÷×==;(2)(-2)(+2)=2-12=-10;(3)--+=2-3-+=-.18.解:化简得原式=,因为a=5-,b=-3+,所以原式===1.19.答案: 解:由已知可得x=,y=,化简得原式=2,把x,y的值代入,可得原式=2=.20.解:乙的结论正确.理由:由y=++18,可得x=8,y=18.因此,M=-==-=-=-;N===0.所以M<N,即N的值比M大.21.解:(1)①===-;②====-.(2)原式=+++…+=+++…+=.人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版(湖北)八年级数学下册:第十六章单元检测题一、选择题(每小题3分,共30分)1.下列式子一定是二次根式的是(C)A.3-xB.-5C.x2+1D.3 42.下列二次根式中,x的取值范围是x≥3的是(C)A.3-xB.6+2xC.2x-6D.1 x-33.下列二次根式中,是最简二次根式的是(A)A.2xy B.ab2 C.0.1 D.x4+x2y24.下列二次根式,不能与12合并的是(B)A.48B.0.3C.113D.-755.下列各式运算正确的是(C) A.2+3= 5 B.2+2=2 2C.3 2-2=2 2 D.18-82=9-4=3-2=16.设5=a,6=b,用含a,b的式子表示 2.7,则下列表示正确的是(A) A.0.3ab B.3ab C.0.1ab2D.0.1a2b7.化简(-4)2+32-(-2 3)2的结果是(A)A.-5 B.18 C.-13 D.118.等式x+1x-1=x+1x-1成立的条件是(A)A.x>1 B.x<-1 C.x≥1 D.x≤-19.已知y<2x-6+6-2x+3,化简(y-3)2+2x-y2-8y+16为(C)A.2y-13 B.13-2y C.5 D.310.已知正整数a,m,n满足a2-42=m-n,则这样的a,m,n的取值(A)A.有一组B.有两组C.多于两组D.不存在二、填空题(每小题3分,共18分)11.化简:18x2y3(x>0,y>0)=.12.比较大小:2 3__<__3 2.13.如果最简二次根式3a-8与17-2a能够合并,那么a的值为__5__.14.若(2a-1)2=1-2a,则a的取值范围为________.15.观察下列式子:1+112+122=112,1+122+132=116,1+132+142=1112……根据此规律,若1+1a2+1b2=1190,则a2+b2=__181__.16.已知a ,b ,c 满足a =2b +2,且ab +32c 2+14=0,则bc a 的值为__0__. 三、解答题(共72分)17.(8分)计算:(1) 27-12+13; (2) (48-75)×113; 【解析】原式=4 33. 【解析】原式=-2.(3) (48+4 6)÷27; (4) (23-5)(23+5)-(5-3)2.【解析】原式=43+432. 【解析】原式=-1+2 15.18.(8分)先化简,再求值:(a -1+2a +1)÷(a 2+1),其中a =2-1. 【解析】原式=1a +1=22.19.(8分)已知a +1a =6,求a -1a ,a 2-1a2的值. 【解析】(a +1a )2=a 2+1a 2+2=6,∴a 2+1a 2=4.∴(a -1a )2=a 2+1a 2-2=2.∴a -1a=±2.∵(a 2+1a 2)2=a 4+1a 4+2=16,∴a 4+1a 4=14.∴(a 2-1a 2)2=a 4+1a 4-2=12,∴a 2-1a 2=±2 3.20.(8分)一个三角形的三边长分别为23 27x ,24 x 12,1x75x 3,其中x >0. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.【解析】(1)周长=113x.(2)当x =3时,周长=33.21.(8分)化简求值:(1)已知x =5-12,求x 2+x -1的值; 【解析】原式=0.(2)已知x +y =-4,xy =2,求x y +y x的值. 【解析】原式=(x +y )xy xy=-2 222.(10分)已知长方形的长a =1232,宽b =1318. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.【解析】(1)2(a +b)=2×(1232+1318)=2×(2 2+2)=6 2.故长方形的周长为6 2.(2)4 ab =4 12 32×13 18=4 2 2×2=4×2=8.因为6 2>8,所以长方形的周长大.23.(10分)全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下的关系式:d =7×t -12(t ≥12).其中d 代表苔藓的直径,单位是厘米;t 代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,请问冰川约是多少年前消失的?【解析】(1)d =7×t -12,当t =16时,d =7×16-12=14.即冰川消失16年后苔藓的直径为14厘米.(2)在d =7×t -12中,当d =35时,35=7×t -12,即t -12=5,解得t =37.即苔藓的直径是35厘米时,冰川约是37年前消失的.24.(12分)解答下列各题:(1)已知x =3+23-2,y =3-23+2,求x 3-xy 2x 4y +2x 3y 2+x 2y 3的值; 【解析】x =(3+2)2=5+2 6,y =(3-2)2=5-2 6,∴x -y =4 6,xy =1,x +y =10.∴原式=x -y xy (x +y )=2 65.(2)当x =1-2时,求x x 2+a 2-x x 2+a 2+2x -x 2+a 2x 2-x x 2+a 2+1x 2+a 2的值. 【解析】令m =x 2+a 2,则x 2+a 2=m 2.原式=x m (m -x )+2x -m x (x -m )+1m =(m -x )2mx (m -x )+1m =1x=-1- 2.。
二次根式单元测试题(卷)经典3套二次根式单元测试题一一、填空题(每题2分,共20分)1、当a=0时,有意义1-a=12、计算:(-3/2)^2=9/432)^2=10241-1/2)×(1+1/2)=3/43、计算:(1)×(-27)=-272)8a^3b^2c=8abc^2×a^2b4、计算:(a>0,b>0,c>0)5、计算:(1)=1/42)=3a/86、如果xy>0,化简-xy^2=-y^2x7、32+42=25,332+442=221,3332+4442= 则33×(32+44)×(42+25)=8、(2-1)2005×(2+1)2006=3×(3^2005)9、观察以下各式:1=2-1。
1/2=3-2。
1/3=4-3利用以上规律计算:1+1/2+1/3+…+1/2007)/[(2+1)+(3+2)+(4+3)+…+(2006+2005 )]=2007/401310、已知x=3+√2,y=3-√2,则(y/x+1)/(x/y+1)=1二、选择题(每题3分,共30分)11、若2x+3有意义,则x≤-3或x≥212、化简(2-a)^2+a^-2的结果是4+2a13、能使等式x/(x-3)=x/x成立的条件是x≠0且x≠314、下列各式中,是最简二次根式的是y/215、已知x+1/x=5那么x-1/x的值是2或-216、如果a^2-2ab+b^2=-1,则a≠b17、已知xy>0,化简二次根式√(x-y^2/x^2)的正确结果为(y/|x|)√(x-y^2)18、如图,Rt△AMC中,∠C=90°,∠AMC=30°,AM∥BN,MN=23cm,XXX=1cm,则AC的长度为3cm。
19、下列说法正确的个数是()①2的平方根是同类二次根式;②2-1与2+1互为倒数;③2^3/2与(2/3)^-2互为倒数;④3√2是同类三次根式。
二次根式单元测试题及答案word一、选择题1. 计算下列二次根式的结果:A. √16 = 4B. √25 = 5C. √36 = 6D. √49 = 7答案:A2. 以下哪个表达式是正确的?A. √(-4) = 2iB. √(-9) = 3iC. √(-16) = 4iD. √(-25) = 5i答案:C3. 根据二次根式的乘法法则,下列哪个等式是正确的?A. √2 * √8 = √16B. √3 * √3 = √9C. √5 * √5 = √20D. √7 * √7 = √49答案:D二、填空题4. 计算√(2x^2) 的结果,其中 x = 3。
答案:3√25. 如果√(a^2) = a,那么 a 的取值范围是:答案:a ≥ 06. 将下列二次根式化为最简形式:√(48) = √(16 * 3) = 4√3答案:4√3三、计算题7. 计算下列表达式的值:(5√2 + 3√3)^2答案:79 + 30√68. 简化下列二次根式:√(2/9) * √(18/4)答案:√(2 * 2) = 2四、解答题9. 证明:√(a^2 + b^2) = √a^2 + √b^2 只有在 a = b = 0 时成立。
答案:略(根据二次根式的性质进行证明)10. 解下列方程:x^2 - 4√3x + 12 = 0答案:x = 2√3五、综合题11. 已知 a, b 是正整数,且√a + √b = 9,求 a 和 b 的值。
答案:a = 1, b = 64 或 a = 4, b = 4912. 一个直角三角形的两条直角边分别是3√2 和 6,求斜边的长度。
答案:斜边长度为 9六、附加题13. 如果√(2x + 1) + √(2 - 2x) = 2,求 x 的值。
答案:x = 0注意:本试题及答案仅供参考,具体题目和答案可能会根据教学大纲和教材内容有所变动。
二次根式单元测试题及答案题目1. 化简下列根式:$\sqrt{12}$答案:$\sqrt{12} = \sqrt{4 \cdot 3}=2\sqrt{3}$题目2. 计算下列各根式的值并化简:$\sqrt{9}+\sqrt{16}$答案:$\sqrt{9}+\sqrt{16} = 3+4=7$题目3. 计算下列各根式的值:$\sqrt{25} - \sqrt{9}$答案:$\sqrt{25} - \sqrt{9} = 5 - 3 = 2$题目4. 计算下列各根式的值:$2\sqrt{8} - 3\sqrt{18}$答案:$2\sqrt{8} - 3\sqrt{18} = 2\sqrt{4 \cdot 2} - 3\sqrt{9 \cdot 2} \\ = 2 \cdot 2\sqrt{2} - 3 \cdot 3\sqrt{2} \\= 4\sqrt{2} - 9\sqrt{2} \\= -5\sqrt{2}$题目5. 求下列各根式的值:$(\sqrt{5}+2)^2$答案:$(\sqrt{5}+2)^2 = (\sqrt{5}+2)(\sqrt{5}+2) \\= 5 + 2\sqrt{5} + 2\sqrt{5} + 4 \\= 9 + 4\sqrt{5}$题目6. 将下列各根式化为最简根式:$\sqrt{72}$答案:$\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{6^2 \cdot 2} \\= 6\sqrt{2}$题目7. 将下列各根式化为最简根式:$2\sqrt{50}$答案:$2\sqrt{50} = 2 \cdot \sqrt{25 \cdot 2} = 2 \cdot 5\sqrt{2} \\ = 10\sqrt{2}$题目8. 将下列各根式化为最简根式:$3\sqrt{27}$答案:$3\sqrt{27} = 3\sqrt{9 \cdot 3} = 3 \cdot 3\sqrt{3} \\= 9\sqrt{3}$题目9. 求解下列方程:$x^2 - 4 = 0$答案:$x^2 - 4 = 0 \\(x - 2)(x + 2) = 0 \\x - 2 = 0 \quad \text{或} \quad x + 2 = 0 \\x = 2 \quad \text{或} \quad x = -2$题目10. 求解下列方程:$2x^2 - 16 = 0$答案:$2x^2 - 16 = 0 \\2(x^2 - 8) = 0 \\x^2 - 8 = 0 \\(x - \sqrt{8})(x + \sqrt{8}) = 0 \\x - \sqrt{8} = 0 \quad \text{或} \quad x + \sqrt{8} = 0 \\x = \sqrt{8} \quad \text{或} \quad x = -\sqrt{8} \\x = 2\sqrt{2} \quad \text{或} \quad x = -2\sqrt{2}$题目11. 求解下列方程:$x^2 + 5x + 6 = 0$答案:$x^2 + 5x + 6 = 0 \\(x + 2)(x + 3) = 0 \\x + 2 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -2 \quad \text{或} \quad x = -3$题目12. 求解下列方程:$2x^2 + 7x + 3 = 0$答案:$2x^2 + 7x + 3 = 0 \\(2x + 1)(x + 3) = 0 \\2x + 1 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -\frac{1}{2} \quad \text{或} \quad x = -3$题目13. 解方程组:$$\begin{cases}x^2 + y^2 = 25 \\x + y = 7\end{cases}$$答案:将第二个方程展开得到 $y = 7-x$,代入第一个方程得到:$$x^2 + (7-x)^2 = 25 \\x^2 + 49 - 14x + x^2 = 25 \\2x^2 - 14x + 24 = 0 \\x^2 - 7x + 12 = 0 \\(x - 3)(x - 4) = 0 \\x - 3 = 0 \quad \text{或} \quad x - 4 = 0 \\x = 3 \quad \text{或} \quad x = 4$$代入第二个方程可得:当 $x = 3$ 时,$y = 7 - 3 = 4$;当 $x = 4$ 时,$y = 7 - 4 = 3$。
二次根式 单元测试题一、选择题1、如果-3x+5是二次根式,则x 的取值范围是( ) A 、x≠-5 B 、x>-5 C 、x<-5 D 、x≤-52、等式x 2-1 =x+1 ·x -1 成立的条件是( )A 、x>1B 、x<-1C 、x ≥1D 、x ≤-13、已知a= 15 -2 ,b=15 +2,则a 2+b 2+7 的值为( ) A 、3 B 、4 C 、5 D 、64、下列二次根式中,x 的取值范围是x ≥2的是( )A 、2-xB 、x+2C 、x -2D 、1x -25、在下列根式中,不是最简二次根式的是( )A 、a 2 +1B 、2x+1C 、2b 4D 、0.1y 6、下面的等式总能成立的是( )A 、a 2 =aB 、a a 2 =a 2C 、 a · b =abD 、ab = a · b7、m 为实数,则m 2+4m+5 的值一定是( )A 、整数B 、正整数C 、正数D 、负数8、已知xy>0,化简二次根式x -y x2 的正确结果为( ) A 、y B 、-y C 、-y D 、--y9、若代数式(2-a)2 +(a -4)2 的值是常数2,则a 的取值范围是( )A 、a ≥4B 、a ≤2C 、2≤a ≤4D 、a=2或a=410、下列根式不能与48 合并的是( )A 、0.12B 、18C 、113D 、-75 11、如果最简根式3a -8 与17-2a 是同类二次根式,那么使4a -2x 有意义的x 的范围是( )A 、x ≤10B 、x ≥10C 、x<10D 、x>1012、若实数x 、y 满足x 2+y 2-4x -2y+5=0,则x +y3y -2x 的值是( )A 、1B 、32+ 2 C 、3+2 2 D 、3-2 2 二、填空题1、要使x -13-x 有意义,则x 的取值范围是 。
本word文档可编辑修改新课标2013-2014学年度(下)二次根式综合测试题一、选择题(每小题 3 分,共 30 分).下列各式中① a ;② b 1 ;③a 2;④a23;⑤x21;1⑥x 2 2x 1 一定是二次根式的有()个。
A . 1 个 B. 2 个 C. 3 个 D. 4 个2.若b b2 6b 9 3 ,则b的值为()A . 0B . 0 或 1 C. b≤ 3 D. b≥ 33.已知已知:20n 是整数,则满足条件的最小正整数n 的值是()A . 0 B. 1 C.2 D. 34. 已知xy>0,化简二次根式xy的正确结果为()x2A. yB. yC. yD. y5.能使等式x x 成立的x的取值范围是()x 2 x 2A. x 2B. x 0C. x f 2D. x 26. 小明做了以下四道题:①16a 4 4a 2;②5a 10a 5 2a ;③a 1 a 2 ? 1 a ;a a④3a 2a a 。
做错的题是()A.① B .② C .③ D .④7.1 1 的结果为()化简6511B.30 330330D .30 11 A .C.30 30本w o rd 文档可编辑修改1关注我实时更新最新资本word 文档可编辑修改8.下列各式中,一定能成立 的是()A . x 2 9x 3 ? x 3B . a 2 ( a) 2C .x 2 2x 1 x 1D . (2.5) 2( 2.5) 29.化简82 ( 2 2) 得()A .— 2B . 2 2C . 2D . 4 2 210.如果数轴上表示a 、b 两个数 的点都在原点 的左侧,且a 在b 的左侧,则a b(a b)2 的值为() A .2b B . 2b C . 2aD . 2a二、填空题(每小题 3 分,共 30 分)11.① (0.3) 2;②( 25 ) 2。
12.二次根式1有意义 的条件是。
x313.若 m<0,则 | m | m 23m 3 =。
二次根式单元测试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. \( \sqrt{4} \)B. \( \sqrt[3]{8} \)C. \( \sqrt[4]{16} \)D. \( \sqrt{-1} \)答案:A2. 计算 \( \sqrt{9} \) 的值是多少?A. 3B. -3C. 3或-3D. 0答案:A3. 化简 \( \sqrt{49} \) 的结果是?A. 7B. -7C. 7或-7D. 0答案:A4. 已知 \( a > 0 \),那么 \( \sqrt{a^2} \) 等于?A. \( a \)B. \( -a \)C. \( |a| \)D. \( a^2 \)答案:C5. 计算 \( \sqrt{16} \) 的值是多少?A. 4B. -4C. 4或-4D. 0答案:A6. 化简 \( \sqrt{25} \) 的结果是?A. 5B. -5C. 5或-5D. 0答案:A7. 已知 \( b < 0 \),那么 \( \sqrt{b^2} \) 等于?A. \( b \)B. \( -b \)C. \( |b| \)D. \( b^2 \)答案:B8. 计算 \( \sqrt{81} \) 的值是多少?A. 9B. -9C. 9或-9D. 0答案:A9. 化简 \( \sqrt{36} \) 的结果是?A. 6B. -6C. 6或-6D. 0答案:A10. 已知 \( c = 0 \),那么 \( \sqrt{c^2} \) 等于?A. \( c \)B. \( -c \)C. \( |c| \)D. \( c^2 \)答案:C二、填空题(每题4分,共20分)1. 计算 \( \sqrt{144} \) 的值是 ________。
答案:122. 化简 \( \sqrt{64} \) 的结果是 ________。
答案:83. 已知 \( d > 0 \),那么 \( \sqrt{d^2} \) 等于 ________。
新华师大版九年级上册数学第21章 二次根式单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 若二次根式15-x 有意义,则x 的取值范围是 【 】(A )51>x (B )x ≥51(C )x ≤51 (D )51<x2. 化简()221-的结果是 【 】(A )12- (B )21- (C )()12-±(D )()21-±3. 下列二次根式中是最简二次根式的是 【 】 (A )32(B )2 (C )9 (D )12 4. 下列运算正确的是 【 】 (A )x x x 32=+ (B )3223=- (C )3232=+ (D )25188=+5. 下列二次根式中能与32合并的是 【 】 (A )8 (B )31(C )18 (D )9 6. 等式1313+-=+-x x x x 成立的x 的取值范围在数轴上可表示为 【 】 A. B. C. D.7. 已知a 为整数,且53<<a ,则a 等于 【 】 (A )1 (B )2 (C )3 (D )48. 计算()5452-515-÷⎪⎪⎭⎫⎝⎛的结果为 【 】(A )5 (B )5- (C )7 (D )7-9. 已知21,21-=+=n m ,则代数式mn n m 322-+的值为 【 】 (A )9 (B )3± (C )5 (D )3 10. 已知0>xy ,则化简二次根式2x yx -的结果是 【 】 (A )y (B )y - (C )y -(D )y --二、填空题(每小题3分,共15分)11. 计算:=--124_________. 12. 化简:()=--7177_________.13. 菱形的两条对角线的长分别为()1210+cm 和()3210-cm,则该菱形的面积为_________cm 2.14. 12与最简二次根式15+a 是同类二次根式,则=a _________.15. 对于任意的正数n m ,定义运算※为:m ※⎪⎩⎪⎨⎧<+≥-=nm n m nm n m n ,,,计算(3※2)⨯(8※12)的结果为_________.三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;(2)()()()2217373---+.17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围; (2)当15=x 时,求该二次根式的值.20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长.21.(10分)已知c b a ,,满足()023582=-+-+-c b a . (1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由.22.(11分)规律探究: 观察下列各式:()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+(1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫⎝⎛++++++++ .新华师大版九年级上册数学摸底试卷(一)第21章 二次根式单元测试卷C 卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11.2312. 7 13. 44 14. 2 15. 2 三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;解:原式23212--+-=33332-=--=(2)()()()2217373---+. 解:原式()222179+---=1222232-=+-=17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;解:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x()()xx x x x x x x x x 3223222212=-⋅-=--÷-+-+=当3=x 时原式333=.(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .解:11112-÷⎪⎭⎫⎝⎛-+x x x ()()()()x x x x x x x xx x 11111111-+⋅+-=-+÷+--=()xx -=--=11当12+=x 时原式2121-=--=.18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.解:(1)由二次根式有意义的条件可知:x 21-≥0解之得:x ≤21; ……………………………………3分 (2)∵x 21-≥0,12-x ≥0∴x ≤21,x ≥21 ∴21=x……………………………………6分∴21211210022=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-++=y……………………………………8分 ∴()112121100100100==⎪⎭⎫⎝⎛+=+y x .……………………………………10分 19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围;(2)当15=x 时,求该二次根式的值.解:(1)由题意可得:⎪⎩⎪⎨⎧=+=+362b a b a ∴⎩⎨⎧=+=+964b a b a ……………………………………4分解之得:⎩⎨⎧==31b a……………………………………6分 ∴该二次根式为3+x 由二次根式有意义的条件可知:3+x ≥0 解之得:x ≥3-;……………………………………8分 (2)当15=x 时23183153==+=+x .……………………………………10分 20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长. 解:xx x x C 5445202155++=∆ x x x 52155++=x 525=; ……………………………………7分 (2)答案不唯一.……………………………………10分 21.(10分)已知c b a ,,满足()023582=-+-+-c b a .(1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由. 解:(1)∵()023582=-+-+-c b a()28-a ≥0,5-b ≥0,23-c ≥0∴023,05,08=-=-=-c b a ∴23,5,228====c b a ; ……………………………………7分 (2)能.……………………………8分52523522+=++=∆C .……………………………………10分 22.(11分) 解:(1)11310-;……………………………………2分 (2)n n n n -+=++111……………………………………4分证明:()()nn nn n n n n -+++-+=++11111 nn n n nn -+=-+-+=111……………………………………7分 (3) 2016.(过程略)……………………………………11分。