当前位置:文档之家› 二重积分积分区域的对称性

二重积分积分区域的对称性

二重积分积分区域的对称性
二重积分积分区域的对称性

情形一:积分区域关于坐标轴对称

定理4设二元函数在平面区域连续,且关于轴对称,则

1)当(即就是关于得奇函数)时,有

2)当(即就是关于得偶函数)时,有

其中就是由轴分割所得到得一半区域.

例5 计算,其中为由与围成得区域。

解:如图所示,积分区域关于轴对称,且

即就是关于得奇函数,由定理1有、

类似地,有:

定理5设二元函数在平面区域连续,且关于轴对称,则

其中就是由轴分割所得到得一半区域。

例6 计算其中为由所围。

解:如图所示,关于轴对称,并且,即被积分函数就是关于轴得偶函数,由对称性定理结论有:、

定理6设二元函数在平面区域连续,且关于轴与轴都对称,则

(1)当或时,有

(2)当时,有

其中为由轴与轴分割所得到得1/4区域。

9例7 计算二重积分,其中: 、

解:如图所示,关于轴与轴均对称,且被积分函数关于与就是

偶函数,即有

,由定理2,得

其中就是得第一象限部分,由对称性知,,

故、

情形二、积分区域关于原点对称

定理7 设平面区域,且关于原点对称,则当上连续函数满足

1)时,有

2)时,有、

例8 计算二重积分,为与所围区域、

解:如图所示,区域关于原点对称,对于被积函数,有

,有定理7,得

情形三、积分区域关于直线对称

定理8 设二元函数在平面区域连续,且,关于直线对称,

1);

2)当时,有、

3)当时,有、

例9 求,为所围、

解:积分区域关于直线对称,由定理8,得

类似地,可得:

定理9设二元函数在平面区域连续,且,关于直线对称,则(1)当,则有;

(2)当,则有、

例10 计算,其中为区域:, 、

解:如图所示,积分区域关于直线对称,且满足,

由以上性质,得:

注:在进行二重积分计算时,善于观察被积函数得积分区域得特点,注意兼顾被积函数得奇偶性与积分区域得对称性,恰当地利用对称方法解题,可以避免繁琐计算,使二重积分得解答大大简化。

二重积分对称性定理的证明及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 前言 (1) 1.预备知识 (1) 2.二重积分对称性定理在不同条件下的证明及其应用 (2) 2.1 积分区域D关于坐标轴对称 (2) 2.2 积分区域D关于坐标区域内任意直线对称 (5) 2.3 积分区域D关于坐标原点对称 (9) 2.4 积分区域D关于坐标区域内任意一点对称 (11) 2.5 积分区域D同时关于坐标轴和坐标原点对称 (12) 结束语 (12) 参考文献 (13) 二重积分对称性定理的证明及应用

摘 要:本文归纳利用对称性来计算二重积分的方法,给出了二重积分对称性定理的证明并举出了相应例题. 关键词:对称性;积分区城;被积函数 The Application of Symmetry in Double Integral Calculating Abstract :It is introduced in the thesis some ways of how to calculate double integral with the application of symmetry. It is also put forward in it how to simplify the calculating methods with symmetry. Keywords :Symmetry; Integral region; Integrated function 前言 利用对称性计算二重积分,不但可以使计算简化,有时还可以避免错误.在一般情况下,必须是积分区域D 具有对称性,而且被积函数对于区域D 也具有对称性,才能利用对称性来计算.在特殊情况下,虽然积分区域D 没有对称性,或者关于对称区域D 被积函数没有对称性,但经过技巧性的处理,化为能用对称性来简化计算的积分.这些都是很值得我们探讨的问题. 1 预备知识 对于二重积分(,)D f x y dxdy ??的计算,我们总是将其化为二次定积分来完成的,而在 定积分的计算中,若遇到对称区间,则有下面非常简洁的结论: 当()f x 在区间上为连续的奇函数时,()0a a f x dx -=?. 当()f x 在区间上为连续的偶函数时,0 ()2()a a a f x dx f x dx -=??. 这个结论,常可简化计算奇、偶函数在对称于原点的区间上的定积分. 在计算二重积分时,若积分区域具有某种对称性,是否也有相应的结论呢?回答是肯定的.下面,我们将此结论类似地推广到二重积分. 2 二重积分对称性定理在不同条件下的证明及其应用 定理1[]1 若二重积分(,)D f x y dxdy ??满足

对称性在积分中应用

对称性在积分中的应用 摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系,小到分子原子.根据对称性,我们就可以把复杂的东西简单化,把整体的东西部分化.本文介绍运用数学中的对称性来解决积分中的计算问题,主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性,从而简化定积分、重积分、曲线积分、曲面积分的计算方法.另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算.积分的计算是高等数学教学的难点,在积分计算时,许多问题用“正规”的方法解决,反而把计算复杂化,而善于运用积分中的对称性,往往能使计算简捷,达到事半功倍的效果. 关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称

目录 一、引言 二、相关对称的定义 (一)区域对称的定义 (二)函数对称性定义 (三)轮换对称的定义 三、重积分的对称性 (一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性 (一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性 (一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结 参考文献 谢词

一、 引言 积分的对称性包括重积分、曲线积分、曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨.本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义. 二、相关的定义 定义1: 设平面区域为D ,若点),(y x ),2(y x a D -?∈,则D 关于直线a x =对 称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ?)2,(y b x - ),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然 当0=a ,0=b 对D 关于y ,x 轴对称). 定义2: 设平面区域为D ,若点),(y x D ∈?),(a x a y --,则D a x y +=对称, 称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈?),(x a y a -- D ∈,则D 关于直线z y ±=对称. 注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线 对称;平面曲面以平行于坐标面对称,也有以上类似的定义. 空间对称区域. 定义3:(1)若对Ω∈?),,(z y x ,?点Ω∈-),,(z y x ,则称空间区域Ω关于xoy 面对 称;利用相同的方法,可以定义关于另外两个坐标面的对称性. (2)若对Ω∈?),,(z y x ,?点Ω∈-),,(z y x ,则称空间区域Ω关于z 轴对称;利用相同 的方法,可以定义关于另外两个坐标轴的对称性. (3)若对Ω∈?),,(z y x ,?点Ω∈---),,(z y x , 则称空间区域Ω关于坐标原点对称. (4)若对Ω∈?),,(z y x ,?点Ω∈),,(),,,(y x z x z y ,则称空间区域Ω关于z y x ,,具有 轮换对称性. 定义4:若函数)(x f 在区间()a a ,-上连续且有)()(a x f a x f +=-,则)(x f 关于 a x =对称当且仅当0=a 时)()(x f x f =-,则)(x f 为偶函数.若)()(x a f x a f +-=-,

二重积分积分区域的对称性

情形一:积分区域关于坐标轴对称 定理4设二元函数在平面区域连续,且关于轴对称,则 1)当(即就是关于得奇函数)时,有 、 2)当(即就是关于得偶函数)时,有 、 其中就是由轴分割所得到得一半区域. 例5 计算,其中为由与围成得区域。 解:如图所示,积分区域关于轴对称,且 即就是关于得奇函数,由定理1有、 类似地,有: 定理5设二元函数在平面区域连续,且关于轴对称,则 其中就是由轴分割所得到得一半区域。 例6 计算其中为由所围。 解:如图所示,关于轴对称,并且,即被积分函数就是关于轴得偶函数,由对称性定理结论有:、 定理6设二元函数在平面区域连续,且关于轴与轴都对称,则 (1)当或时,有 、 (2)当时,有 其中为由轴与轴分割所得到得1/4区域。 9例7 计算二重积分,其中: 、 解:如图所示,关于轴与轴均对称,且被积分函数关于与就是 偶函数,即有 ,由定理2,得

其中就是得第一象限部分,由对称性知,, 故、 情形二、积分区域关于原点对称 定理7 设平面区域,且关于原点对称,则当上连续函数满足 1)时,有 2)时,有、 例8 计算二重积分,为与所围区域、 解:如图所示,区域关于原点对称,对于被积函数,有 ,有定理7,得 、 情形三、积分区域关于直线对称 定理8 设二元函数在平面区域连续,且,关于直线对称, 则 1); 、 2)当时,有、 3)当时,有、 例9 求,为所围、 解:积分区域关于直线对称,由定理8,得 , 故 、 类似地,可得: 定理9设二元函数在平面区域连续,且,关于直线对称,则(1)当,则有; (2)当,则有、 例10 计算,其中为区域:, 、 解:如图所示,积分区域关于直线对称,且满足, 由以上性质,得:

积分对称性定理

关于积分对称性定理 1、 定积分: 设)(x f 在[],a a -上连续,则 ()()()()-0 0,d 2d ,a a a f x x f x x f x x f x x ?? =???? ?为的奇函数,为的偶函数. 2、 二重积分: 若函数),(y x f 在平面闭区域D 上连续,则 (1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分 ()()()()1 0,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ?? =???????为的奇函数,为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。 (2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分

()()()()2 0,,,d d 2,d d , ,D D f x y x f x y x y f x y x y f x y x ?? =????? ??为的奇函数,为的偶函数. 其中:2D 为D 满足0x ≥的右半平面区域。 (3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即 ),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分 ()()()()2 0,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ?? =???????为的奇函数,为的偶函数. 其中:1D 为D 在0≥y 上半平面的部分区域。 (4)如果积分区域D 关于直线x y =对称,则二重积分 ()()y x x y f y x y x f D D d d ,d d ,????=.(二重积分的轮换对称 性) (5)如果积分区域D 关于直线y x =-对称,则有 1 0,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-?? =?--=??????当时当时 利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特

积分中的对称性

积分中的对称性 作者:刘建康 【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。【关键词】积分;轮换对称性;奇对称;偶对称 在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi+1, … , xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。 在一元函数积分学中,我们有下面所熟悉结论: 若f(x)在闭区间[-a,a]上连续,则有 ∫a-af(x)dx= 0, f(-x)=-f(x) 2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x) 利用这一性质,可以简化较复杂的定积分的计算。对重积分、曲线积分及曲面积分也有类似的结论。下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。 1 对称性在重积分计算中的应用 对称性在计算二重积分Df(x,y)dσ方面的应用。 结论1 若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有 ①Df(x,y)dσ=0, f(x)为关于x(或y)的奇函数 ②Df(x,y)dσ=2D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。 其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。 结论2 若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有: ①Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称; ②Df(x,y)dσ=2D1f(x,y)dσ=2D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1+D2=0。

二重积分积分区域的对称性

情形一:积分区域D 关于坐标轴对称 定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D f x y dxdy =?? . 2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有 1 (,)2(,)D D f x y dxdy f x y dxdy =?? ?? . 其中1D 是由x 轴分割D 所得到的一半区域。 例5 计算3()D I xy y dxdy = +??,其中D 为由2 2y x =与2x =围成的区域。 解:如图所示,积分区域D 关于x 轴对称,且 3(,)()(,)f x y xy y f x y -=-+=- 即(,)f x y 是关于y 的奇函数,由定理1有 3()0D f xy y dxdy +=?? . 类似地,有: 定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 2 2(,),(,)(,). (,)0,(,)(,).D D f x y dxdy f x y f x y f x y dxdy f x y f x y ?-=?=??-=? ???? 当当 其中2D 是由y 轴分割D 所得到的一半区域。 例 6 计算2,D I x ydxdy = ??其中D 为由22;-220y x y x y =+=+=及所围。 解:如图所示,D 关于y 轴对称,并且 2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴 的偶函数,由对称性定理结论有:

积分对称性

重积分计算中对称性的应用 二重积分的对称性质 一般的本科教材中都末具体给出,但在计算积分中经常用到,现补充如下: 结论1:如果积分区域D 关于y 对称,}0,),(),{(1≥∈=x D y x y x D 则 ?? ????? ??=--=-=D D y x f y x f d y x f y x f y x f d y x f 1 ),(),(),(2),(),(0),(时当时当σ σ 结论2:如果积分区域D 关于x 轴对称,}0,),(),{(1≥∈=y D y x y x D 则 ?? ????? ??=--=-=D D y x f y x f d y x f y x f y x f d y x f 1 ),(),(),(2),(),(0),(时当时当σ σ 结论3:如果积分区域D 关于坐标原点O 对称,则 ?? ????? ??=---=--=D D y x f y x f d y x f y x f y x f d y x f 1 ),(),(),(2),(),(0),(时当时当σ σ 其中}0, ),(),{(1≥∈=x D y x y x D 结论4:如果积分区域D 关于直线x y ,对称,则 ????=D D d x y f d y x f σσ),(),( 三重积分的对称性,可类似给出。 二、补充例题 例1. 利用二重积分性质,估计积分 ??++= D d y x I σ)94(22的值,其中D 是图形区域:42 2≤+y x 解法1. 首先求94),(2 2++=y x y x f 在D 上的最小值m 和最大值M 由于 x x f 2=??,y y f 8=??,令0=??x f ,0=??y f 得驻点),00(,9)0,0(=f D 的边界42 2 =+y x ,此时94494),(2 2 2 2 ++-=++=y y y x y x f

关于积分对称性定理

关于积分对称性定理 1、 定积分: 设)(x f 在[],a a -上连续,则 ()()()()-0 0,d 2d ,a a a f x x f x x f x x f x x ?? =???? ?为的奇函数,为的偶函数. 2、 二重积分: 若函数),(y x f 在平面闭区域D 上连续,则 (1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分 ()()()()1 0,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ?? =???????为的奇函数, 为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。 (2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分 ()()()()2 0, ,,d d 2,d d , ,D D f x y x f x y x y f x y x y f x y x ?? =????? ??为的奇函数,为的偶函数.

其中:2D 为D 满足0x ≥的右半平面区域。 (3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即 ),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分 ()()()()2 0,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ?? =???????为的奇函数,为的偶函数. 其中:1D 为D 在0≥y 上半平面的部分区域。 (4)如果积分区域D 关于直线x y =对称,则二重积分 ()()y x x y f y x y x f D D d d ,d d ,????=.(二重积分的轮换对称性) (5)如果积分区域D 关于直线y x =-对称,则有 1 0,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-?? =?--=??????当时当时 利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特性。 3、三重积分: (1)若()z y x f ,,为闭区域Ω上的连续函数,空间有界闭区域Ω关于xoy 坐标面对称,1Ω为Ω位于xoy 坐标面上侧0≥z 的部分区域,则

曲面积分对称性

2 对称性在曲线积分计算中的应用 2.1 对称性在第一类曲线积分计算中的应用 结论1 若积分曲线L关于x轴(或y轴)对称,记L1为曲线L被坐标轴所分割的两个对称区域之一,则有: ①∫Lf(x,y)ds=0,f(x,y)为关于y(或x)的奇函数; ②∫Lf(x,y)ds=2∫L1f(x,y)ds,f(x,y)为关于y(或x)的偶函数。 结论2 若积分曲线L关于直线y=x对称,则当点(x,y)∈L时,有(y,x)∈L,即L关于x,y具有轮换对称性,这时有: ∫Lf(x,y)ds=∫Lf(y,x)ds=12∫L[f(x,y)+f(y,x)]ds 若f(x,y)=-f(y,x),即f(x,y)关于直线y=x奇对称,则∫Lf(x,y)ds=0; 若f(x,y)=(y,x),即f(x,y)关于直线y=x偶对称,则∫Lf(x,y)ds=2∫L1f(y,x)ds。 其中L1为曲线L被直线y=x所分割的两个对称区域之一。 2.2 对称性在第二类曲线积分计算中的应用 设有曲线积分I=∫L P(x,y)dx,其中L为光滑的有向曲线弧,如果L关于某条直线(包括坐标轴)对称,这时利用对称性计算上述曲线积分时,不仅要考虑P(x,y)的大小和符号,还要考虑投影元素dx的符号。当积分方向和坐标轴正向之夹角小于π2时,投影元素为正,否则为负。一般地,我们有: 结论若积分曲线L关于某直线对称,记L1为曲线L被这条直线所分割的两个对称区域之一,则有: ①∫Lf(x,y)ds=0,P(x,y)dx在对称点上取相反的符号; ②∫Lf(x,y)ds=2∫L1f(x,y)ds,P(x,y)dx 在对称点上取相同的符号。 对于积分∫L Q(x,y)dy也有类似地结论。上述结论都可推广到空间曲线的情形。 3 对称性在曲面积分计算中的应用 3.1 对称性在第一类曲面积分计算中的应用

积分中的对称性

积分中的对称性 个结论。 【关键词】积分;轮换对称性;奇对称;偶对称 在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi+1, … , xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。 在一元函数积分学中,我们有下面所熟悉结论: 若f(x)在闭区间[-a, a]上连续,则有 ∫a-af(x)dx= 0, f(-x)=-f(x) 2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x) 利用这一性质,可以简化较复杂的定积分的计算。对重积分、曲线积分及曲面积分也有类似的结论。下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。 1 对称性在重积分计算中的应用 对称性在计算二重积分Df(x, y)dσ方面的应用。 结论1: 若f(x, y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有 ① Df(x, y)dσ=0, f(x)为关于x(或y)的奇函数。 ② Df (x, y)dσ=2D1f(x, y)dσ,f(x, y)为关于x(或y)的偶函数。 其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。 结论2: 若f(x, y)在区域D内可积,且区域D关于原点成中心对称,则有: ① Df(x, y)dσ=0,f(-x,-y)=-f(x, y),即f(x, y)关于原点成奇对称; ② Df(x, y)dσ=2D1f(x, y)dσ=2 D2f(x, y)dσ,f(-x,-y)=f(x, y),即f(x, y)关于原点成偶对称,其中D1、D2关于原点对称,且D1+D2=0。 结论3 若f(x, y)在区域D内可积,且区域D关于直线L对称,则有: ① Df(x, y)dσ=0,f(x, y)关于直线L奇对称; ② Df(x, y)dσ=2 D1f(x, y)dσ,f(x, y) 关于偶对称。 其中D1为区域D被直线L所分割的两个对称区域之一。 说明:若对D内关于直线L对称的任意两点P、Q,都有f(P)=-f(Q),(f(P)=f(Q)),则称f(x, y)关于直线L奇(偶)对称。 特别地,若区域D关于直线y=x对称,则当点(x, y)∈D时,有(y, x)∈D,这时积分区域D关于x、y具有轮换对称性。这时我们有: Df(x, y)dσ=12D[f(x, y)+f(y, x)]dσ

对称性在各种积分中的定理

对称性在积分计算中的应用 定理2.1.1[3] 设函数),(y x f 在xoy 平面上的有界区域D 上连续,且D 关于 x 轴对称.如果函数),(y x f 是关于y 的奇函数, 即),(),(y x f y x f -=-,D y x ∈),(, 则(,)0D f x y d σ=??;如果),(y x f 是关于y 的偶函数,即),(),(y x f y x f =-, D y x ∈),(,则1 (,)2(,)D D f x y d f x y d σσ=????. 其中1D 是D 在x 轴上方的平面区域. 同理可写出积分区域关于y 轴对称的情形. 则由定理2.1.1知32sin 0D y xd σ=??. 由定理2.1.1可得如下推论. 推论2 设函数),(y x f 在xoy 平面上的有界区域D 上连续,若积分区域D 既关于x 轴对称,又关于y 轴对称,则 ⑴ 若函数),(y x f 关于变量y x ,均为偶函数,则1 (,)4(,)D D f x y d f x y d σσ=????. 其中1D 是区域D 在第一象限的部分,{}1(,)|0,0D x y D x y =∈≥≥. ⑵ 若函数),(y x f 关于变量x 或变量y 为奇函数,则(,)0D f x y d σ=??. 当积分区域关于原点对称时,我们可以得到如下的定理. 定理 2.1.2[]4 设函数),(y x f 在xoy 平面上的有界区域D 上连续,且D 关于 原点对称.如果),(),(y x f y x f -=--,(,)x y D ∈,则(,)0D f x y d σ=??;如果),(),(y x f y x f =--,(,)x y D ∈,则1 2(,)2(,)2(,)D D D f x y d f x y d f x y d σσσ==??????,其中{}1(,)|0D x y D x =∈≥,{}2(,)|0D x y D y =∈≥. 为了叙述的方便,我们给出区域关于y x ,的轮换对称性的定义. 定义 2.1.1 设D 为一有界可度量平面区域(或光滑平面曲线段),如果对于任意(,)x y D ∈,存在(,)y x D ∈,则称区域D (或光滑平面曲线段)关于y x ,具

重积分积分区域的对称性

重积分积分区域的对称 性 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

情形一:积分区域D 关于坐标轴对称 定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D f x y dxdy =?? . 2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有 1 (,)2(,)D D f x y dxdy f x y dxdy =?? ?? . 其中1D 是由x 轴分割D 所得到的一半区域。 例5 计算3()D I xy y dxdy =+??,其中D 为由22y x =与2x =围成的区域。 解:如图所示,积分区域D 关于x 轴 对称,且 3(,)()(,)f x y xy y f x y -=-+=- 有 即(,)f x y 是关于y 的奇函数,由定理13()0D f xy y dxdy +=?? . 类似地,有: 定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 其中2D 是由y 轴分割D 所得到的一半区域。 例6 计算2,D I x ydxdy =??其中D 为由 22;-220y x y x y =+=+=及所围。 解:如图所示,D 关于y 轴对称,并且 2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴的 偶函数,由对称性定理结论有: 1 1 22 22200 22215 x D D I x ydxdy x ydxdy dx x ydxdy -+==== ?????? .

高等数学-积分对称性

二重积分的对称性: ??=D d y x f I σ),( ⑴若D 关于y 轴)0(=x 对称, ①若),,(),(y x f y x f -=-则0=I , ②若),,(),(y x f y x f =-则??=1 ),(2D d y x f I σ,1 D :0≥x ⑵若D 关于x 轴)0(=y 对称, ①若),,(),(y x f y x f -=-则0=I , ②若),,(),(y x f y x f =-则??=2 ),(2D d y x f I σ,2 D :0≥y 三重积分的对称性: ???Ω =dv z y x f I ),,( ⑴若Ω关于xoy 面)0(=z 对称, ①若),,,(),,(z y x f z y x f -=-则0=I , ②若),,,(),,(z y x f z y x f =-则1 ,),,(21 Ω=???Ωdv z y x f I :0≥z ⑵若Ω关于yoz 面)0(=x 对称, ①若),,,(),,(z y x f z y x f -=-则0=I , ②若),,,(),,(z y x f z y x f =-则2 ,),,(22 Ω =???Ωdv z y x f I :0≥x ⑶若Ω关于xoz 面)0(=y 对称, ①若),,,(),,(z y x f z y x f -=-则0=I , ②若),,,(),,(z y x f z y x f =-则3,),,(2 3 Ω =???Ωdv z y x f I : 0≥y 轮换对称性: 设Ω关于z y x ,,具有轮换对称性(既若Ω∈),,(z y x ,则将 z y x ,,任意互换后的点也属于Ω),则被积函数中的自变量可以任意轮换 而不改变积分值: ???Ω dv z y x f ),,(???Ω =dv x z y f ),,(???Ω =dv x y z f ),,( 特别:???Ω dv x f )(???Ω =dv y f )(???Ω =dv z f )( 从而 3)]()()([=++???Ω dv z f y f x f ???Ω dv x f )(

二重积分积分区域的对称性

情形一:积分区域D 关于坐标轴对称 定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 就是关于y 的奇函数)时,有 (,)0D f x y dxdy =?? 、 2)当(,)(,)f x y f x y -=(即(,)f x y 就是关于y 的偶函数)时,有 1 (,)2(,)D D f x y dxdy f x y dxdy =?? ?? 、 其中1D 就是由x 轴分割D 所得到的一半区域。 例5 计算3()D I xy y dxdy = +??,其中D 为由2 2y x =与2x =围成的区域。 解:如图所示,积分区域D 关于x 轴对称,且 3(,)()(,)f x y xy y f x y -=-+=- 即(,)f x y 就是关于y 的奇函数,由定理1有 3()0D f xy y dxdy +=?? 、 类似地,有: 定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 2 2(,),(,)(,). (,)0,(,)(,).D D f x y dxdy f x y f x y f x y dxdy f x y f x y ?-=?=??-=? ???? 当当 其中2D 就是由y 轴分割D 所得到的一半区域。 例 6 计算2,D I x ydxdy = ??其中D 为由22;-220y x y x y =+=+=及所围。 解:如图所示,D 关于y 轴对称,并且 2(,)(,)f x y x y f x y -==,即被积分函数就是关于x 轴的偶函数,由对称性定理结论有:

二重积分积分区域的对称性资料讲解

二重积分积分区域的 对称性

情形一:积分区域D 关于坐标轴对称 定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D f x y dxdy =?? . 2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有 1 (,)2(,)D D f x y dxdy f x y dxdy =???? . 其中1D 是由x 轴分割D 所得到的一半区域。 例5 计算3()D I xy y dxdy =+??,其中D 为由22y x =与2x =围成的区域。 解:如图所示,积分区域D 关于x 轴对 称,且 3(,)()(,)f x y xy y f x y -=-+=- 即(,)f x y 是关于y 的奇函数,由定理1有 3()0D f xy y dxdy +=??. 类似地,有: 定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 22(,),(,)(,).(,)0,(,)(,).D D f x y dxdy f x y f x y f x y dxdy f x y f x y ?-=?=??-=? ????当当 其中2D 是由y 轴分割D 所得到的一半区域。 例6 计算2,D I x ydxdy =??其中D 为由 22;-220y x y x y =+=+=及所围。

解:如图所示,D 关于y 轴对称,并且2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴的偶函数,由对称性定理结论有: 11222220022215 x D D I x ydxdy x ydxdy dx x ydxdy -+====??????. 定理6 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴和y 轴都对称,则 (1)当(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-时,有 (,)0D f x y dxdy =?? . (2)当(,)(,)(,)f x y f x y f x y -=-=时,有 1 (,)4(,)D D f x y dxdy f x y dxdy =???? 其中1D 为由x 轴和y 轴分割D 所的到的1/4区域。 9例7 计算二重积分()D I x y dxdy = +??,其中D :1x y +≤ . 解:如图所示,D 关于x 轴和y 轴均对称,且被积分 函数关于x 和y 是偶函数,即有 (,)(,)(,)f x y f x y f x y -=-=,由定理2,得 1 ()4()D D I x y dxdy x y dxdy =+=+???? 其中1D 是D 的第一象限部分,由对称性 知,11D D x dxdy y dxdy = ????, 故14()D I x y dxdy =+??14()D x x dxdy =+??1 8D x dxdy =??43= . 情形二、积分区域D 关于原点对称 定理7 设平面区域12D D D =+,且1,D 2D 关于原点对称,则当D 上连续函数满足 1)(,)(,)f x y f x y --=时,有1 (,)2(,)D D f x y dxdy f x y dxdy =????

重积分积分区域的对称性

重积分积分区域的对称 性 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

情形一:积分区域D 关于坐标轴对称 定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D f x y dxdy =?? . 2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有 1 (,)2(,)D D f x y dxdy f x y dxdy =?? ?? . 其中1D 是由x 轴分割D 所得到的一半区域。 例5 计算3()D I xy y dxdy =+??,其中D 为由22y x =与2x =围成的区域。 解:如图所示,积分区域D 关于x 轴对称, 且3(,)()(,)f x y xy y f x y -=-+=- 有 即(,)f x y 是关于y 的奇函数,由定理1 3()0D f xy y dxdy +=?? . 类似地,有: 定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 其中2D 是由y 轴分割D 所得到的一半区域。 例6 计算2,D I x ydxdy =??其中D 为由 22;-220y x y x y =+=+=及所围。 解:如图所示,D 关于y 轴对称,并且 2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴 的偶函数,由对称性定理结论有: 1 1 22 22200 22215 x D D I x ydxdy x ydxdy dx x ydxdy -+==== ?????? .

积分中的对称性

积分中的对称性 【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。 【关键词】积分;轮换对称性;奇对称;偶对称 在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi 1, … , xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。 在一元函数积分学中,我们有下面所熟悉结论: 若f(x)在闭区间[-a,a]上连续,则有 ∫a-af(x)dx= 0, f(-x)=-f(x) 2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x) 利用这一性质,可以简化较复杂的定积分的计算。对重积分、曲线积分及曲面积分也有类似的结论。下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。

1 对称性在重积分计算中的应用 对称性在计算二重积分Df(x,y)dσ方面的应用。 结论1 若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有 ① Df(x,y)dσ=0, f(x)为关于x(或y)的奇函数 ② Df(x,y)dσ=2D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。 其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。 结论2 若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有: ① Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称; ② Df(x,y)dσ=2D1f(x,y)dσ=2D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1 D2=0。 结论3 若f(x,y)在区域D内可积,且区域D关于直线L对称,则有: ① Df(x,y)dσ=0,f(x,y)关于直线L奇对称;

二重积分积分区域的对称性

二重积分积分区域的对 称性 Document number:BGCG-0857-BTDO-0089-2022

情形一:积分区域D 关于坐标轴对称 定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D f x y dxdy =?? . 2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有 1 (,)2(,)D D f x y dxdy f x y dxdy =?? ?? . 其中1D 是由x 轴分割D 所得到的一半区域。 例5 计算3()D I xy y dxdy =+??,其中D 为由22y x =与2x =围成的区 域。 解:如图所示,积分区域D 关于x 轴对称,且 3(,)()(,)f x y xy y f x y -=-+=- 即(,)f x y 是关于y 的奇函数,由定理1有3()0D f xy y dxdy +=??. 类似地,有: 定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 2 2(,),(,)(,).(,)0,(,)(,). D D f x y dxdy f x y f x y f x y dxdy f x y f x y ?-=?=??-=? ???? 当当 其中2D 是由y 轴分割D 所得到的一半区域。 例6 计算2,D I x ydxdy =??其中D 为由 22;-220y x y x y =+=+=及所围。

解:如图所示,D 关于y 轴对称,并且2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴的偶函数,由对称性定理结论有: 1 1 22 22200 22215 x D D I x ydxdy x ydxdy dx x ydxdy -+==== ?????? . 定理6 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴和y 轴都对称,则 (1)当(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-时,有 (,)0D f x y dxdy =?? . (2)当(,)(,)(,)f x y f x y f x y -=-=时,有 1 (,)4(,)D D f x y dxdy f x y dxdy =?? ?? 其中1D 为由x 轴和y 轴分割D 所的到的1/4区域。 9例7 计算二重积分()D I x y dxdy =+??,其中D :1x y +≤ . 解:如图所示,D 关于x 轴和y 轴均对称,且被积分函数关于x 和y 是偶函数,即有 (,)(,)(,)f x y f x y f x y -=-=,由定理2,得 1 ()4()D D I x y dxdy x y dxdy = +=+???? 其中1D 是D 的第一象限部分,由对称性知,1 1 D D x dxdy y dxdy = ???? , 故1 4()D I x y dxdy =+??1 4()D x x dxdy =+??1 8D x dxdy =??4 3 =. 情形二、积分区域D 关于原点对称

积分运算与对称性原则

积分运算与对称性原则 【摘要】本文介绍了积分运算中的一类对称性原则,并将它进行了推广。利用这些原则巧妙地解决了一些问题。 【关键词】重积分;积分区域;被积函数;对称性 Integral operation and symmetric principle Li Yuewei Liu Ruilou Feng Bingshen 【Abstract】Some symmetric principles about integral operation are introduced and improved in this paper. By using it, some problems are solved easily. 【Key words】Multiple integral; Integral domain; A function to be integrated; Symmetric principle 命题1:设积分区域是x轴上关于点x=0对称的闭区间[-a,a],f(x)在[-a,a]上连续,则当f(-x)=f(x)时, ∫ a -a f(x)dx=2 ∫ a 0 f(x)dx;当f(-x)=-f(x)时, ∫ a -a f(x)dx=0。 命题1′:设积分区域是x轴上关于点x=0对称的闭区间[-a,a],f(x)在[-a,a]上连续,则当f(-x)≠f(x)且f(-x)≠-f(x)时,可利用下式计算积分,有时较方便: ∫ a -a f(x)dx=12 ∫ a -a [f(x)+f(-x)]dx= ∫ a 0 [f(x)+f( -x)]dx. 证明:令x=-t,则 I= ∫ a -a f(x)dx=- ∫ -a a f(-t)dt= ∫ a -a f(-t)dt 2I= ∫ a -a [f(x)+f(-x)]dx,而f(x)+f(-x)为偶函数,故 ∫ a -a f(x)dx=12 ∫ a -a [f(x)+f(-x)]dx= ∫ a 0 [f(x)+f(

相关主题
文本预览
相关文档 最新文档