当前位置:文档之家› 乳化设备及乳化工艺

乳化设备及乳化工艺

乳化设备及乳化工艺
乳化设备及乳化工艺

乳化设备及乳化工艺

乳化设备及乳化工艺

一、乳化设备

乳化方法包括物理化学乳化法和机械法。目前常用的机械乳化方法包括多种,诸如管动,射流,搅拌,均质等,不同的乳化方法对应不同的设备,适用不同的需求。下面择要介绍几种:

表一乳化方法

方法作用原理能量密度操作方法

摇动湍流低间歇

管动

层流层流滞应力低-中等连续

湍流湍流低-中等连续

射流低-中等连续

搅拌简单搅拌层流滞应力、湍流低间歇、连续转子—定子混合器层流滞应力、湍流中-高间歇、连续刮刀式搅拌层流滞应力低-中等间歇、连续振荡式低间歇、连续

胶体磨层流滞应力中-高连续

高压均质机层流滞应力、湍流及气穴形成高连续

超声均质器

振动叶片湍流、气穴形成中-高连续

磁致收缩气穴形成中-高间歇、连续1、搅拌

指借助于流动中的两种或两种以上物料在彼此之间相互散布的一种操作,以实现物料的均匀混合,同时还可以促进气体溶解、强化热交换等。

1.1 搅拌混合机理

搅拌混合机理主要包括对流混合,扩散混合,剪切混合。

(1)对流混合是在搅拌容器中,通过搅拌器的旋转把机械能传给液体物料造成液体的流动,属强制对流。包括主体对流—物料大范围的循环流动;涡流对流—漩涡的对流运动。

(2)扩散混合指互溶组分中存的的混合现象,是液体分子间的均匀分布,对流混合可促进扩散混合。(3)搅拌桨将物料组分拉成愈来愈薄的料层,使某一组分原来占有区域的尺寸越来越小,达到混合的目的。高粘度物料混合过程主要靠剪切作用。

1.2 搅拌器的构造和类型

1.2.1 搅拌器的构造

搅拌器是通过搅拌使物料均匀混合的装置,主要由搅拌装置、搅拌罐和轴与轴封三大部分组成。

1.2.2 搅拌器的类型

搅拌器主要包括小面积叶片高速运转的搅拌器,诸如涡轮式、桨式搅拌器等,多适用于低粘度的物料;另外就是大面积低速运转的搅拌器,诸如框式、螺带式及行星式搅拌器等。

桨式搅拌器

桨式搅拌器是最常用的一种,桨叶由条钢制造,有平桨式和斜桨式两种。平桨式搅拌器由两片叶片平直桨叶构成,主产生径向流和切向流;斜桨式搅拌器的两叶相反折转一定角度,这样不仅可以产生轴向流,还可以减小阻力。桨式搅拌器结构简单,适用于低粘度物料的混合,当容器内液位较高时,可在同一轴上同时安装几个桨叶。

桨叶固定轴上的方式主要有三种:

(1)焊接法:桨叶和轴整体焊接在一起,此结构不可拆卸清洗及更换,强度也不大,且容易打滑,主要适用小容器。

(2)螺钉连接法:通过螺钉将桨叶连接在轴上,中间有垫片。当轴式圆形的时候,主要靠桨叶和轴的摩擦力而使桨叶运动,此结构拆卸方便,但功率大时易产生滑动,故多用小功率设备中。

(3)方轴连接法:这方法主要是客服焊接法容易打滑的缺点,但轴的加工困难。

(4)方轴、螺钉连接法:为了克服焊接法的易打滑及方轴连接法的难于制造等缺点而设计的,被广泛采用。旋桨式搅拌器

旋桨式搅拌器类似于无壳的轴流泵,由2~3片旋转桨组成不同形式(见下图),桨叶是用螺母固定在轴上,螺母的拧紧方向与桨叶旋转方向相反,这样才能借阻力作用使螺母在搅拌器运转时愈来愈紧。旋转直径约为容器直径的0.2~0.3倍,以轴流混合为主,伴有切向流和径向流,但湍流程度不高。搅拌桨转速高,循环量大,适用于大容器低粘度物料的混合,该搅拌不适用粘稠物料。

涡轮式搅拌器

涡轮式搅拌器类似于无壳的离心泵,由圆盘、轴、及多块叶片组成,结构复杂,种类较多,主要有开启涡轮式和圆盘涡轮式两种(见下图)

涡轮式搅拌器转速高,一般转速为100~2000rpm,平直叶片产生强烈的径向和切线流动,通常加挡板以减小中央旋涡,同时增强因折流而引起的轴向流,工作时,搅拌液沿轴线由中心孔而进入轮内,有各小叶片工作因而加热,然后再以高速度偶轮抛出,湍流程度强,剪切力大,可将微团细化。涡轮式搅拌器适合处理中低粘度物料,混合生产能力较高,按一定的设计形式,具有较高的局部剪力效应,且易清洗,但价格

较高。

框式和锚式搅拌器

框式和锚式搅拌器适用于高粘度物料的搅拌,其外形轮廓与容器壁形状相似,底部形状为适应罐底轮廓,多为椭圆或锥形等,桨叶外缘至容器底部的距离要适当,以30~50mm为宜,但由于高浓度物料搅拌时只能取5mm,这时要求加工及安装的精度却高,否则外片可能碰上器壁而损坏设备。

如上图所知,框式和锚式搅拌器的结构简单坚固,制造方便,而且在搅动时能搅动大量的物料,不会产生死区。此类搅拌器的转速较慢,所产生的液流的径向速度较大,而轴向速度甚低,为了加强轴向混合,并减小因切线速度所产生的表面旋涡,通常加装挡板。

螺带式与螺杆式搅拌器

螺带式搅拌器是由一定宽度的带材或圆柱棒材制作成螺带形状。它可以有单条或双条螺带结构。一般螺带的外廓尺寸接近容器内壁,使搅拌操作遍及整个罐体。螺杆式搅拌器四用支撑杆使螺带固定在搅拌轴上。每个螺距设置杆件2~3根。支撑杆一端与螺带焊接,另一端夹紧在搅拌轴上,也可以采用支撑杆与轴的连接的形式(见下图)。

螺带式与螺杆式搅拌器,转速慢,适用于高粘度的物料的搅拌。

行星式搅拌器

行星式搅拌器旋转桨的轴不仅自转,还能绕容器旋转,搅拌速度高,适用于高粘度液体的搅拌,但是结构复杂,制作繁琐。

2、均质机

均质是一种特殊的操作,通过均质,可使两种互不相容的的液体进行密切混合,是一种液体粉碎为极细小微粒或液滴分散在另一液体中的过程,像乳状液。目前主要有以下几种均质机:

2.1 高压均质机

2.1.1 高压均质机结构

高压均质机主要由泵体和均质阀或安全阀、电动机、传动机与机架几个部分组成。

高压泵多采用三柱塞式往复泵,由共用一根轴的三个作用泵组成,三个单作用泵的曲柄互相错开120度,其吸液泵和排液泵也是三个泵共用。这样,在曲轴旋转一周的周期里,各泵的吸液或排液依次相差1/3周期,大大提高排液泵流量的均匀性。三作用泵的流量各为单作用泵的三倍。均质阀安装在高压泵的排出路上,由阀座、阀杆和冲击环组成,国外多采用钨钴铬合金(用于牛奶均质)或硬质合金(腐蚀性强的液料)等制成,而国内多采用4Cr13。目前多数高压均质机均采用二级均质阀,以获得更均匀更细小的乳化粒子。以下即为一级、二级均质阀的结构图及双击均质阀工作示意图。

2.2.2 高压均质机的工作原理

高压均质机是基于对物料的挤压、剪切、涡流、泄压、空穴作用,从而达到颗粒减小、分散均匀的目的。(1)剪切学说:当高压物料在阀盘与阀座间流过时,在缝隙中心流速最大,而在缝隙避面处液体流速最小,促使了速度梯度的产生,液滴之间相互挤压、剪切,从而达到乳化均质。

(2)撞击学说:由于三柱塞往复泵的高压作用,液滴与均质阀发生高速撞击,从而导致液滴破裂变小,起到均质的作用。

(3)空穴学说:高压作用下,液料高频振动,导致液料交替压缩与膨胀,引起空穴小泡的产生,这些小泡破裂时会在流体中释放出很强的冲击波,如果这种冲击波发生在大液滴的附近,就会造成液滴的破裂,乳液得到进一步细化。

2.2 高剪切均质机

高剪切均质机是目前用的最广泛的均质机,由转子或转子-定子系统构成,工作时高速回转,在叶片作用下流入的液体通过窄小的缝隙,在很高的剪切力作用下破碎、分散、混合。经过高剪切均质机的物料粒径可达到1μm,且稳定性好,能耗低,对材质也无特殊要求。

2.2.1 高剪切均质机的分类

高剪切均质机可分为轴流式和径流式。结构如图所示:

2.2.2 高剪切均质机的工作原理

2.2.3 高剪切均质机的工作流程

2.3 胶体磨

胶体磨和高剪切均质机一样均属于定子-转子系统,由一可高速旋转的磨盘(转动件)与一固定的磨面(固定件)所组成。两表面间有可调节的微小间隙,通常为50~150 m,当物料从此间隙通过时,由于磨盘高速旋转,附于旋转面上的物料速度最大,而附于固定面上的物料速度为零,其间产生较高的速度梯度,从而使物料受到强烈的剪切摩擦和湍动骚扰,产生微粒化分散化作用。

胶体磨有卧式和立式两种,一般用于中低等粘度的料液。

2.4 超声波均质机

超声波均质可以由于振动叶片或磁致收缩而使物料变细,达到均质的效果。下面我简要介绍一下由于振动叶片而产生的均质作用,下图为超声波发生器的简要结构。

当物料从供液管经喷出口高速流入管路时,调节频率,使激发频率与簧片的固有频率相当,从而产生超声波共振。(其中,激发频率与液体的流速成正比,而与喷嘴和簧片间的距离成反比。)使得物料在舌簧片附近产生空穴作用,液滴得以破碎;破碎后的物料可以再一次经过供液管进入管路,进行再一次的破碎,如此反复即可。

搅拌促使物料之间的均匀混合,不同粘度的物料应选择使用不同类型的搅拌。由于搅拌能量较低,通过搅拌进行乳化只能得到粒径较大的乳液,而通过均质机可以乳液液滴的大小达到0.1 m,甚至更小(见下图)其中“1”为搅拌,“2”为胶体磨,“2”超声波,“4”高剪切均质,“5”高压均质。

此外,近来开发了一种新型乳化技术—膜乳化技术。微孔膜的膜乳化技术采用微孔膜乳化设备,其乳化方式是在压力作用下,使分散相穿过微孔膜的孔道进人连续相而形成乳剂。当连续相在膜表面流动时,分散相在压力作用下通过嫩孔膜孔在膜表面形成液滴,此液滴的直径达到某一值时就从膜表面剥离进人连续相,溶解在连续相里的乳化剂分子将吸附到液滴界面上.

二、乳化工艺的控制和调整

不同的工艺和不同的设备,即使同样的配方,也有可能在产品黏度、稳定性和乳剂剂型等方面产生不同的结果。

1 搅拌强度和搅拌时间

在制备中,超声或搅拌时间及速率等会直接影响乳剂的稳定性、黏度等性能。当将初乳乳滴分散到水相制备复乳时,若搅拌过久或过猛,油滴可能会部分破裂,内外水相合并。kochi等发现初乳乳滴粒径大小随超声时间的延长而减小,存120 S时达到最小,但其稳定性相当差,若再在20 000 r?min下匀化10 min,所得初乳在4℃下可稳定1个月。Kim等 I在(36±1)℃下同定第一次超声时间为120 s,研究第二次超声时间对复乳稳定性的影响,实验发现第二次超声时间越长,复乳相转变越慢。

2 温度

每种乳化剂都其最适温度,低于或高于此温度,乳化剂的乳化性能或HLB值也会发生变化,另外,温度还可以影响油脂的黏度及界面膜的稳定性。温度过高使非离子表面活性剂亲水基的水化程度减少,疏水基周围的结构破坏,影响了界面膜稳定性,使乳状液稳定性降低;温度过低,油粘度大,所以较低温度下乳化剂和水难以很好分散,也不利于细小液滴的形成。马宁等探讨了杏仁油乳佐剂的制备工艺,分别研究了25℃,40-60℃,80℃对乳剂制作的影响,发现40-60℃制作的佐剂的稳定性明显优于25℃或80℃时制作的乳剂。杨晓东等也考察了温度对司班-80和脂肪醇聚氧乙烯醚复配乳化剂乳化性能的影响,分别设了60℃、70℃、80℃、90℃四个不同温度,结果表明乳化温度为80℃时乳化效果最好。

3 加料方式

在实际操作时还发现,同样的组成和配比,因为操作顺序的不同,乳液粒子大小或分布也会有差异。鹭谷氏在制造O/W乳液时发现:水分3次加入,那么乳液的粒子细而均匀;而已一定速度连续加入的话,就会出现大小不一,即使再使用均质器也达不到分次加入时的水平。

4 油相和水相的比例

油相所占比例在一定程度上决定复乳的稳定性。I.augel等以异己烷为油相,以3.1%氯化钠溶液为内水相,1.3%氯化钠溶液为外水相,研究发现,当控制油量占复乳总量的19%~22%时,复乳的稳定性随油相比例的增加而提高。

5 乳剂生产工艺示例

5.1 示例一

本部分将以一个配方为例,简单的介绍一下相同的配方,不同的工艺制作不同类型(w/o、o/w或w/o/w)的乳剂。乳剂中包含0.2%(w/v)的吐温-80,0.5% (w/v)Arlacel P135,其中吐温-80添加在水相,Arlacel P135于60℃时添加于油相,水相和油相的比例60:40(w/w)。

5.1.1 W/O型乳剂的制备

此乳剂是将水相缓缓加入油相,然后利用Ultra TurraxType T25 (IKA, Germany).乳化设备在20,000rpm 高剪切力下制作而成。

5.1.2 O/W型乳剂的制作

此型乳剂的制作需要用到高压均质机。具体操作如下:部分油相加入pH7.2 0.01M的磷酸盐缓冲液中,高压均质机800-850bar时高压均质混匀,加入剩余的水相,继续混匀。最后加入剩余的油相,Ultra TurraxType T25 11,000rpm混匀。

5.1.3 W/O/W型乳剂的制作

其中内水相 :油相 :外水相=30 :40 :30,佐剂的制作分两步。

第一步:按w/o型乳剂的制作方法制作w/o初乳;

第二步:使用Eurostar mixer(螺旋桨叶片)(IKA,Germany) 1000rpm乳化即可。

5.2 实例二:双相乳剂A5的制作

双相佐剂的制备有一步法和两步法,这里双相佐剂A5的制作采取的是一步乳化法,在二步乳化法的基础上简化了工艺。具体如下:

5.2.1 双相A5佐剂的制备

在室温条件下,先将兽用注射级白油在乳化罐中进行乳化,得轻质液体石蜡油;在轻质液体石蜡油中加入亲油基司班-80,以75-85rpm速度搅拌3-7min至澄清汽泡消失透明,然后在搅拌状态下加入亲水基吐温-80搅拌3-7min,进行搅拌混合均匀,再加入稳定剂至澄清汽泡消失透明后,静置25-35 min即可。

5.2.2 疫苗乳剂的配置

两种佐剂在配制前均经121℃ 60 min高压灭菌。双向疫苗配置比例为油相(佐剂):水相(抗原)=50:50(经多次实验验证,此比例乳化效果最佳)。双相佐剂疫苗乳化,先将佐剂加入乳化机料桶内,室温状态下边搅拌(100 r/min)边缓缓(速度不宜快,否则形成乳剂粒径大小不均一,乳剂剂型不整)将抗原水相滴入佐剂中,滴完后,继续搅拌5 min,混匀形成初乳。接着用乳化机5600 r/min,循环乳化4 min(乳化速度不宜过大,时间不宜过长,否则双相佐剂易破乳)。

废乳化液处理

废乳化液处理 Prepared on 22 November 2020

废乳化液 机械制造工业中,金属切削加工使用大量乳化液作为润滑冷却之用,乳化液经过一段时间使用后,就会变成废水排出。 乳化液中主要含有机油和表面活性剂,是用乳化油根据需要用水稀释再加入乳化剂配制而成的。在机床切削使用的乳化液中为了提高乳化液的防锈性,还加入了亚硝酸钠等。 由于乳化剂都是表面活性剂,当它加入水中,使油与水的界面自由能大大降低,达到最低值,这时油便分散在水中。同时表面活性剂还产生电离,使油珠液滴带有电荷,而且还吸附了一层水分子固定着不动,形成水化离子膜,而水中的反离子又吸附再其外表周围,分为不动的吸附层和可动的扩散层,形成双电层.这样使油珠外面包围着一层有弹性的、坚固的、带有同性电荷的水化离子膜,阻止了油珠液滴互相碰撞时可能的结合,使油珠能够得以长期地稳定在水中,成为白色的乳化液。 配制的乳化液pH值一般再8~9之间,有的甚至高达10~11. 乳化液废水水质如表1-1所示:

2. 乳化液废水处理原理 根据乳化液的性质,进行乳化液废水的处理需经过二个步骤: 破乳剂油;(2)水质净化去除表面活性剂等物质。 破乳方法种类较多,有盐析法、乳酸法、凝聚法、顶替法、高压电法、吸附法等等。一般常用的采用盐析凝聚混合法,现介绍如下 在乳化液中加入电解质,电解质的离子在乳化液中发生强烈的水化作用即争水作用,使乳化液中的自由水分子减少了,对油珠产生脱水作用,从而破坏了乳化液油珠的水化层,中和了油珠的电性,破坏了它的双电层结构,因而油珠失去了稳定性,产生凝聚现象(电解质一般分为二、三价的钙、镁、铝等盐类),其反应式如下: 2C17H33COONa+2MgCl2-→(C17H33COO)2Mg+2NaCl 油酸皂镁皂 2C17H33(OSO3Na)COONa+2CaCl2-→(C17H32)2(OSO3)2Ca(COO)2+4NaCl 磺化蓖麻油 2R-SO3Na+CaCl2-→[R-SO3]2Ca+2NaCl(R为烷基) 石油酸钠石油磺酸钙 加入混凝剂,则加快起到油水分离的目的。 在实际使用中,应注意调整水的pH值,将pH值调整为较好。 四种破乳方法比较见表2-1:

乳化柴油

乳化柴油 乳化柴油(微乳化柴油)是水(或甲醇)和柴油通过乳化剂、助乳化剂在一定乳化设备经乳化而形成的油包水(W/O)型(透明)乳液。 一、性质 微乳化柴油是视觉透明的,乳化油则是不透明的; 乳化油的粒径约为0.1~10微米; 微乳的乳化剂用量远大于乳化的用量; 微乳化油的稳定性较乳化油的好。 二、应用特点 操作简单(只需机械搅拌); 原料充足(乳化剂为植物油厂下脚料活炼油厂副产物等) 能耗低(油燃烧释放热的减少低于水量的比重,即燃烧率提高); 污染少(乳化后其燃烧排放的颗粒物(PM10)、氮氧化物(NOx)明显减少); 提高燃油效率等优点(二次雾化的结果等); 税收优惠(产品为节能减排项目,享受税收减免政策,政府部门大力支持)。 三、研发背景 随着经济的不断发展和世界人口的急剧增加,能源危机日益凸显,并逐渐成为制约各国经济发展的主要因素,开源和节流成为人类应对能源危机的两大主要措施。柴油作为传统能源具有高热值、难挥发等特点,在人类活动中占有重要地位。2006年中国柴油消费量为10 962万t,缺口840万t,国内柴油供不应求。因此,柴油燃烧节能问题日益重要。燃油的乳化是指在乳化剂的存在下,通过机械搅拌、超声等手段形成油包水型乳液的过程。由于乳化柴油具有乳化过程简单、乳化油燃烧效率高、燃烧过程污染物排放少等诸多优点而备受关注。乳化柴油的应用研究已成为燃料节能减排研究领域中的热点。乳化柴油适用于各种拖拉机、农用运输车、抽水机、发电机、燃油热风炉、烘干炉、柴油机轮船等。此种新型燃料与柴油性能相当,并且能大大提高燃烧效率,不污染环境,这种清洁柴油经权威机构检测,环保指标还优于柴油,价格比原柴油低1000元/吨以上,是一种经济高效的新型燃料。 四、效益分析 环境效益: 有赖于其独特的燃烧特性,乳化柴油发挥的环境效益远超柴油。视乎发动机的类型、机龄和条件、服务历史、维护、占空比、驱动程序行为和水含量,广泛的测试证明了乳化柴油常见的减排幅度为: · 氮氧化物 --- 10% 至 30% · 一氧化碳 --- 10% 至 60% · 二氧化碳 --- 1% 至 3% · 颗粒物 --- 高达 60% · 烟 --- 基本上消除

乳化沥青透层知识

乳化沥青透层知识介绍(一) 乳化沥青透层 《湖南公路工程预算补充定额库》(2005版)工程内容:乳化沥青配制,清理下承层、洒油。2-5-1 乳化沥青透层1000㎡编码名称型号规格单位定额单价定额消耗 乳化沥青简介 乳化沥青是将通常高温使用的道路沥青,经过机械搅拌和化学稳定的方法(乳 化),扩散到水中而液化成常温下粘度很低、流动性很好的一种道路建筑材料。 乳化沥青因此可以常温使用, 且可以和冷的和潮湿的石料一起使用。 当乳化沥青 破乳凝固时

还原为连续的沥青并且水分完全排除掉,道路材料的最终强度才能 形成。 在众多的道路建设应用中,乳化沥青提供了一种比热沥青更为安全、节能和环保的系统,因为这种工艺避免了高温操作、加热和有害排放。 乳化沥青主要用于道路的升级与养护, 如石屑封层, 还有多种独特的、 其它沥青 材料不可替代的应用,如冷拌料、稀浆封层。乳化沥青亦可用于新建道路施工,如粘层油、透层油等。 乳化沥青的质量关键在于四个方面: 产品的乳化特性; 2、产品的工作性(是否易操作); 3、产品的应用特性; 4、产品在路面的耐久性。

乳化沥青透层知识介绍(二) 307.02 材料 1.透层 透层的沥青材料宜采用慢裂的洒布型乳化沥青, 也可采用中、 慢凝液体石油沥青 或煤沥青。透层油使用之前应按照《公路工程沥青及 沥青混合料试验规程》 (JTJ 052—2000)的方法进行试验,且满足规范的要求。透层沥青的规格和质量,应符合《公路沥青路面施工技术规范》(JTJ032—94)附录C表C.3、表C.4、及表C.5的要求。沥青标号应根据基层的种类、当地气候等条件确定。307.03 施工要求 1.准备工作: 准备浇沥青的工作面,应整洁而无尘埃。监理工程师对已准备好的工作面进行检查,在未批准前不得喷洒沥青材料。 2.气候条件

含油废水处理工艺简述

一、含油废水简述 在含油废水中,油以4种状态存在:浮油、分散油、乳化油和溶解油。进入水体的油大部分以浮油的形式存在,这种油的粒径较大,一般大于100um,占含油量的70%~80%,静置后能较快上浮,铺展在污水表明形成油膜,用一般重力分离设备即能去除;分散油以小油滴形状悬浮在污水中,油滴粒径在25~100um 之间,当其受到机械外力或较长时间静置时,油滴较为稳定,会聚合成较大的油滴上浮到水面,此状态的油也较易去除;溶解油是以分子状态或化学状态分散于水相中,非常稳定,用一般的物理方法无法去除,但其在水中的溶解度很小,大概为5~15mg/L。 乳化油一般呈碱性,油滴粒径大部分是2~3um,呈乳浊状或乳化状。由于表面活性剂的存在,使得原本是非极性憎水性的油滴变成了带负电荷的胶核,带负电荷的胶核会吸附水中的正电荷离子或极性水分子形成胶体双电层结构。这些油滴外面包有弹性的、一定厚度的双电层,与彼此所带的同性电荷相互排斥,阻止了油滴间相互聚合变大,使油滴能长期稳定的存在于水中,所以乳化液废水是属于比较难分离的一类。 不同型号的钢帘线拉丝产生的废水成分略有不同,多为高浓度乳化液,基本成分为合成油与水,通常也会有大量重金属的带入。乳化液废水COD浓度一般较高,能达到40000~80000mg/L,油剂含量一般为20000~40000mg/L,并且含有较高浓度的锌和络合铜。 二、含油废水处理方法 目前,乳化液废水的处理方法有物理法、物理化学法、化学法、生化法和膜分离等。 物理法 物理法主要是利用油和水的密度差,在重力的作用下,对乳化液废水中的浮油和分散油进行重力分离。物理分离法具体有重力分离法、粗粒化法和过滤法。 重力分离法:利用油水密度差和和油水互不相溶性进行油水分离。包括浮上分离法、机械分离法和离心分离法。 浮上分离法为分散在水中的油珠在借助浮力作用下缓慢上浮、分层,油珠的上浮速度与油珠的粒径大小、油水密度差、流动状态及流体的粘度有关。此类处

微乳柴油实验报告

柴油微乳液拟三元相图的绘制及燃烧性能测定 1.实验背景 Schulman 在1959 年首次报道微乳液以来,微乳的理论和应用研究获得了迅速发展。1985年,Shah定义微乳液为两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系。由于微乳液能形成超低界面张力,具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注。 燃油掺水是一个既古老又新兴的课题。早在一百多年前就有人使用掺水燃油。由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应用受到了很大的限制。 微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按 合适的比例混合在一起就可以自发形成稳定的微乳燃料。微乳燃油可长期稳定,不分层,且制备简单, 并能使燃烧更完全,燃烧效率更高,其节油率可达5 %~15 % ,排气温度下降20 %~60 % ,烟度下降40 %~77 % ,NO x 和CO 的排放量降低25 %,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。 近年来,随着我国农业和交通运输业的飞速发展,对石油的需求量增大,而石油资源有限,于是出现了石油供应不足、价格上涨的趋势。2004全年我国进口原油12,272吨,2005年中国的石油日需求量比去年增11%;2006年石油消费量增长了%。我国进口原油的30%用于汽车消耗,据预测,中国未来能源供需缺口将越来越大,即使在采用先进技术、推进节能,加速可再生能源开发利用以及依靠市场力量优化资源配置的条件下,2010年仍将短缺能源8%,石油进口依存度,预计2010年将上升为23%。现在我国年耗汽油和柴油总量约为亿吨,进口原油及成品油已成为国家财政的沉重负担而且天然石油的储备是有限的,人类面临日益严峻的能源危机。但经济的可持续发展必须是在保护生存环境、节约宝贵资源和降低能耗的前提下的发展。因此,如何提高燃油燃烧效率和减少环境污染,研究新型节油防污染技术,包括最为人们青睐并具有节能效率高,减少尾气污染的燃料乳化以及微乳化技术,己成为人们十分关心的问题。 2.微乳柴油与燃烧减排机理 乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W), 在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内 相,燃料油则包在水珠的外层,被称为连续相或外相。我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。一些燃烧机理包括: 物理作用—“微爆现象”

乳化沥青透层、粘层、封层施工-详细对比说明

乳化沥青透层、粘层、封层施工 一、透层、黏层一般规定 1、先将下承层表面进行全面清扫,吹净浮尘,必要时用水冲洗。 2、气温低于10℃或遇大风或即将降雨时不得喷洒透层与黏层沥青。 3、黏层、封层中所用的预拌碎石油石比为0.3%~0.5%。材料及设备要求 1、材料 (1)透层和粘层使用之前应按照《公路工程沥青及沥青混合料试验规程》的方法进行试验,且满足规范的要求。 (2)透层材料主要为高渗透乳化沥青和煤油稀释沥青,其质量应符合《公路沥青路面施工技术规范》的要求。采用其它材料时,应报监理工程师批准。透层油的粘度宜通过调节稀释剂的用量或乳化沥青的浓度并经试验确定,水稳层透层油渗透深度应不小于5mm,级配碎石层透层油渗透深度应不小于10mm。 (3)透层油的洒布量应通过试洒确定,不宜超出《公路沥青路面施工技术规范》要求的范围。 (4)黏层沥青材料采用快裂或中裂乳化沥青、改性乳化沥青,也可采用快、中凝液体石油沥青,所使用的基质沥青的种类、标号应采用与面层相同的道路石油沥青。 (5)黏层油品种和用量,应根据下卧层的类型通过试洒确定,并符合《公路沥青路面施工技术规范》的要求。 2、设备 1)应配备清刷机、鼓风机等清理设备,确保施工前下承层洁净。(2)透层与黏层沥青洒布应采用配有电脑控制洒布量和

导热油保温装置的沥青洒布车喷洒。洒布车应能准确控制沥青洒布量,保证沥青洒布均匀,并能根据路面宽度调节洒布的宽度。沥青洒布必须呈雾状。 3、施工工序 (1)机具的准备。检查沥青喷洒车的使用状况,标定喷洒量。(2)下承层的清理。先用强力清刷机将基层表面进行全面清扫,并将浮尘吹净,必要时用水冲洗。(3)喷洒 1)根据透层油类型确定喷洒工艺,当采用高渗透乳化沥青时,应在碾压成型后表面稍变干燥但尚未硬化的情况下喷洒;当采用煤油稀释沥青时,应在水稳层用土工布覆盖养生7天后及时喷洒。 2)透层油洒布后的养生时间根据透层油品种和气候条件确定,确保稀释沥青中稀释剂全部挥发,乳化沥青渗透且水分蒸发,然后尽早施作黏层或下封层。 3)透层油用量应按设计的沥青用量采用专用沥青洒布车一次浇洒均匀,当有遗漏时,应用人工补洒。 4)乳化沥青黏层油应提前准备,待乳化沥青破乳、水分蒸发完成后,紧跟着铺筑沥青层,确保黏层不受污染。 5)喷洒的黏层油必须成均匀雾状,在路面全宽度内均匀分布成一薄层,不得有洒花漏空或成条状,也不得有堆积。喷洒不足的要补洒,喷洒过量处应予刮除。 6)黏层油喷洒完后为防止粘轮,宜洒布少量4.759.5mm预拌碎石。 7)凡结构物与沥青层接触部位必须均匀涂刷黏层油。同时还

废乳化液及处理

废乳化液 机械制造工业中,金属切削加工使用大量乳化液作为润滑冷却之用,乳化液经过一段时间使用后 , 就会变成废水排出。 乳化液中主要含有机油和表面活性剂,是用乳化油根据需要用水稀释再加入乳化剂配制而成的。在机床切削使用的乳化液中为了提高乳化液的防锈性 , 还加入了亚硝酸钠等。 由于乳化剂都是表面活性剂,当它加入水中,使油与水的界面自由能大大降低,达到最低值,这时油便分散在水中。同时表面活性剂还产生电离,使油珠液滴带有电荷,而且还吸附了一层水分子固定着不动 , 形成水化离子膜,而水中的反离子又吸附再其外表周围,分为不动的吸附层和可动的扩散层 , 形成双电层 . 这样使油珠外面包围着一层有弹性的、坚固的、带有同性电荷的水化离子膜,阻止了油珠液滴互相碰撞时可能的结合,使油珠能够得以长期地稳定在水中 , 成为白色的乳化液。 配制的乳化液 pH 值一般再 8~9 之间,有的甚至高达 10~11. 乳化液废水水质如表 1-1 所示:

2. 2.1 乳化液废水处理原理 根据乳化液的性质,进行乳化液废水的处理需经过二个步骤: 破乳剂油; (2) 水质净化去除表面活性剂等物质。 破乳方法种类较多,有盐析法、乳酸法、凝聚法、顶替法、高压电法、吸附法等等。一般常用的采用盐析凝聚混合法,现介绍如下 在乳化液中加入电解质,电解质的离子在乳化液中发生强烈的水化作用即争水作用,使乳化液中的自由水分子减少了 , 对油珠产生脱水作用,从而破坏了乳化液油珠的水化层,中和了油珠的电性,破坏了它的双电层结构,因而油珠失去了稳定性,产生凝聚现象 ( 电解质一般分为二、三价的钙、镁、铝等盐类 ) ,其反应式如下: 2C 17 H 33 COONa + 2MgCl 2 -→ (C 17 H 33 COO) 2 Mg+2NaCl 油酸皂镁皂 2C 17 H 33 (OSO 3 Na) COONa+2CaCl 2 -→ (C 17 H 32 ) 2 (OSO 3 ) 2Ca (COO) 2 +4NaCl 磺化蓖麻油 2R - SO 3 Na + CaCl 2 -→ [R - SO 3 ] 2Ca+2NaCl (R 为烷基 ) 石油酸钠石油磺酸钙 加入混凝剂,则加快起到油水分离的目的。 在实际使用中,应注意调整水的 pH 值 , 将 pH 值调整为 8.5 较好。 四种破乳方法比较见表 2-1 :

乳化油

乳化油脂——面制品添加剂 一、类别:食品添加剂,品质改良制 二、状态:本品为淡黄色粘稠状液体,易溶于水,溶水后白色乳浊液,具有淡淡的甜味。 三、适用范围,面制品、蛋糕、速冻食品等。 四、使用限制:限于视频制造或加工面制品必须使用。 五、特性说明:乳化油脂在面制品行业具有以下功能 1、具有高度的乳化稳定性和冷水可溶性,分子中含有亲水基团和亲油基团。溶解性佳的乳化油脂,能全部溶于食品原料。具有分解性,耐盐性、耐酸性、耐热性、耐冻性、保存性等功能。是一种优良的乳化剂。 2、用于面制品中可提高面制品的含水量,能提高5%左右,使面长时间保湿,从而改善面团的韧性和弹性。 3、在方便面的加工中,还可以提高面条在蒸煮过程中的糊化度使面条口感更加柔软、透明、爽滑且带有弹性。 4、使用本产品使面团不发粘,有利于分块,并能有效的在面条表面形成脂化膜,从而减少面饼的油脂含量,可使方便面含油量在原有的基础上降低2—4%。 5、抗老化保鲜作用,谷物食品(如面包、蛋糕、馒头、水饺、汤圆等)放置几天后,组织又软变硬、质地松软、破碎、粗糙、弹性和风味损失,出现老化现象,老化主要由淀粉引起,实用乳化油脂可以很好的解决这一问题。 6、经济效益分析:以年产一万吨的方便面车间为例,若含油量为20%,一年消耗2000吨油脂,若含油量降低2%,可节油200吨,每吨0.5万元计算,仅此一项可节省资金100万元左右。 7、建议用量、以面粉计加入本产品3‰——20‰。8、包装:本品按25kg塑料桶规格包装。 在面点中的应用: 1、增加面食制品的光泽度,并且具有很强烈的增白作用. 2、延缓面制品的老化变硬,有一定的软化作用. 3、提升热传导值,使面食制品更容易煮熟. 4、在面条中添加部分食用乳化油脂,可使面皮不易粘连,更容易进行大批量生产. 5、添加到发酵面团中,无消泡作用等负面影响. 6、改善面食制品的口感和风味. 德州中和公司产乳化食用油是更新一代的食用油脂,是以食用植物油为主要原料, 配以酪朊 酸钠复合稳定剂、聚甘油酯高效复合乳化剂和其它辅料, 经混合、杀菌、均质等工艺, 加工 成的水包油型(O/W)液体制品。

乳化柴油工艺配方大全

乳化柴油工艺配方大全 微乳化柴油 微乳化柴油,属于一种乳化油。微乳化柴油,是由柴油、油酸、水和乙醇胺配制成,其配料比按重量百分比计:柴油%、油酸3-15%、水5-30%、乙醇胺%。微乳化柴油与其它乳化油相比,具有透明,保存期长,生产工艺简单,成本低,可作为商品油大量推广应用等优点。 微乳化复合柴油添加剂 本发明涉及一种复合燃料所使用的添加剂,特别是制造微乳化复合柴油燃料。本发明的微乳化复合柴油添加剂组成为:按重量百分比,油酸60-80%、浓氨水15-20%、一乙醇胺1-5%、乙酸1-5%、烷基萘%、肼6-10%。本添加剂用于制造微乳化柴油复合燃料,配制时按重量百分比为,柴油∶水∶添加剂=58%∶30%∶12%。该燃料的物理指标和化学指标与柴油接近,具有成本低、外观透明、稳定性好、热值高、对发动机无副作用。同时,本发明的添加剂可起到改善柴油燃烧性能、节省能源、减少排气污染的效果。 含有柴油、醇和水的乳化液及其制备方法 本发明涉及一种液体燃料及其制备方法,特别是涉及一种含有柴油、醇和水的乳化液新型液体燃料及其制备方法。在非塑料容器中,以含有柴油、醇和水的乳化液的总重量百分比计,加入60%-90%的柴油和%-8%的高效复合乳化剂,然后将频率为18KHZ-26KHZ超声波探头放入液面之下,经超声波作用接近1分钟后,逐次加入2%-11%的醇和%-21%的水,再经超声波作用两到三分钟,在整个过程中,保证液体温度不超过80℃,即可形成稳定的含有柴油、醇和水的乳化液。该乳化液稳定性良好,保存一至三个月,作为燃油可以降低NOx、碳黑等的排放,其烟度下降值最大可达50%。 自控优化掺水率的乳化柴油在线合成器 本发明公开了一种自控优化掺水率的乳化柴油在线合成器。包括在蓄水箱出水口依次接有浮子室、由控制器控制的自动剂量阀和手控的电磁阀;油箱经柴油清滤器,装有流量传感器的油路与手控的电磁阀出口的水路连通后接输油泵,随车式油水乳化器安置在输油泵和喷油泵之间的油路中。本发明可以不需添加任何乳化剂,也不需附加其他动力驱动就能获得良好效果的乳化油,并能根据柴油机负荷对水在燃油中的比例进行自动优化,提高节油水平。安装于柴油机上,边乳化边使用,降低柴油机油耗、减少排气烟度,具有节能和环保效益。本发明结构简单,操作方便。 自动旋转壁孔剪切式柴油乳化器 本发明公开了一种自动旋转壁孔剪切式柴油乳化器。其进油口和出油口分别设置在同一根中心轴的两端中心孔,在轴的中间通过轴承配合安装了能自动产生高速旋转的乳化筒,乳化筒的下端盖底面上径向对称布置了两个喷口相反的喷嘴,乳化筒的外壁上均匀布置多个极微小的通孔。一定比例的油水,通过输油泵以一定压力进入乳化器

乳化沥青透层、粘层、封层施工

一、透层、黏层 一般规定 1、先将下承层表面进行全面清扫,吹净浮尘,必要时用水冲洗。 2、气温低于10℃或遇大风或即将降雨时不得喷洒透层与黏层沥青。 3、黏层、封层中所用的预拌碎石油石比为0.3%~0.5%。 材料及设备要求 1、材料 (1)透层和粘层使用之前应按照《公路工程沥青及沥青混合料试验规程》的方法进行试验,且满足规范的要求。 (2)透层材料主要为高渗透乳化沥青和煤油稀释沥青,其质量应符合《公路沥青路面施工技术规范》的要求。采用其它材料时,应报监理工程师批准。透层油的粘度宜通过调节稀释剂的用量或乳化沥青的浓度并经试验确定,水稳层透层油渗透深度应不小于5mm,级配碎石层透层油渗透深度应不小于10mm。 (3)透层油的洒布量应通过试洒确定,不宜超出《公路沥青路面施工技术规范》要求的范围。 (4)黏层沥青材料采用快裂或中裂乳化沥青、改性乳化沥青,也可采用快、中凝液体石油沥青,所使用的基质沥青的种类、标号应采用与面层相同的道路石油沥青。 (5)黏层油品种和用量,应根据下卧层的类型通过试洒确定,并符合《公路沥青路面施工技术规范》的要求。 2、设备

(1)应配备清刷机、鼓风机等清理设备,确保施工前下承层洁净。(2)透层与黏层沥青洒布应采用配有电脑控制洒布量和导热油保温装置的沥青洒布车喷洒。洒布车应能准确控制沥青洒布量,保证沥青洒布均匀,并能根据路面宽度调节洒布的宽度。沥青洒布必须呈雾状。 3、施工工序 (1)机具的准备。检查沥青喷洒车的使用状况,标定喷洒量。(2)下承层的清理。先用强力清刷机将基层表面进行全面清扫,并将浮尘吹净,必要时用水冲洗。 (3)喷洒 1)根据透层油类型确定喷洒工艺,当采用高渗透乳化沥青时,应在碾压成型后表面稍变干燥但尚未硬化的情况下喷洒;当采用煤油稀释沥青时,应在水稳层用土工布覆盖养生7天后及时喷洒。 2)透层油洒布后的养生时间根据透层油品种和气候条件确定,确保稀释沥青中稀释剂全部挥发,乳化沥青渗透且水分蒸发,然后尽早施作黏层或下封层。 3)透层油用量应按设计的沥青用量采用专用沥青洒布车一次浇洒均匀,当有遗漏时,应用人工补洒。 4)乳化沥青黏层油应提前准备,待乳化沥青破乳、水分蒸发完成后,紧跟着铺筑沥青层,确保黏层不受污染。 5)喷洒的黏层油必须成均匀雾状,在路面全宽度内均匀分布成一薄层,不得有洒花漏空或成条状,也不得有堆积。喷洒不足的要补

乳化液废水处理方案资料

乳化液污水 设 计 方 案 江苏宇泰环保科技有限公

目录 一、工程概况 二、设计依据、范围及原则?? 三、处理工艺的设计????? 四、单体工艺设备设计???? 4.1 主要工艺设备的设计与选型 4.2 主要处理构(建)筑物?? 4.3 主要设备性能参数???? 4.4 平面布置和高程设计原则? 4.5 建筑及结构??????? 4.6 配电及设备控制????? 4.7 管材及防腐、防渗措施?? 4.8 降噪措施???????? 4.9 污水处理效率?????? 五、安全卫生及环境保护??? 六、项目实施及工程管理??? 七、工程估算????????九、承诺服务????????

一、工程概况 1.1 概述金属材料包装的公司,主要产品马口铁、冷轧亮带钢、平板带钢的私营企业,生产车间的乳化液废水。 4 主要标准: ①国环字( 1987)第002 号文件《建设项目环境保护设计规定》; ②《机械工业环境保护设计规范》JBJ16-2000; ③《室外排水设计规范》GB50014-2006; 5 工作条件 ①电源种类及电压: 1) 动力供电采用三相五线制 2) 电压:380V 10% 3) 频率:50Hz 2% ②压缩空气:压力:0.25 ~0.32Mpa ③设备温度:≈环境温度。 ④厂房温度和湿度: 厂房温度:-10℃~35℃; 厂房湿度:最热月平均相对湿度83%,最冷月平均相对湿度85%,最高相对湿度98%。⑤工作制度:两班作业。 1.2. 污水来源及主要污染物 主要污染物为COD、SS、油类等物质,污染物来源于车间排放的乳化液、含油废水 1.3. 污水处理站设计规模 废水处理设备处理能力按1m3/h 进行规划设计

乳化柴油

乳化柴油 柴油乳化剂是基于多分子吸附膜理论,该理论是由乳化剂与分散相共同形成的强穿透性复合物构成,膜厚、强度大、难破乳、阻止聚结。乳化柴油特点如下: 1乳化柴油的主要结构 在乳化剂的作用下,使水在短时间内发生质的变化,经专业乳化机械的处理,水即形成微小颗粒,周边被油包围形成油包水的大分子结构,得到与柴油原色相近的新型燃料——乳化柴油。 二、乳化柴油的燃烧原理 乳化柴油是在乳化剂的作用下形成油包水的结构,而水是不可燃烧的,但水又是由H和O组成这两个成分中H可燃烧,O又是助燃的,怎样能使水中的这两个成分各发挥其性能呢?乳化柴油较好的解决了这个问题,这就是: 1、微爆作用 因为乳化柴油是以油包水的状态存在的,由于水和柴油的沸点不同(水100℃、油200-350℃),当乳化柴油燃烧时,每一个包裹水珠的油珠在高温的燃烧室中,水先于柴油汽化,这一过程使包含水珠外面的油膜炸裂成无数的小片,这样的每一下片由于自身的表面张力,将重新形成小细珠。这种微爆现象的存在,使每一个小油珠进行了两次雾化,柴油与助燃空气的接触面也自然成比例增长,分散更好,混合更加均匀,燃烧更加充分,从而减少或消除了原有的不完全燃烧问题从而达到提高

燃烧效率的功效。 2、加速燃烧反应 油的燃烧过程主要是其中的C—C键和C—H与O2的反应,碳氢元素是否完全燃烧取决于燃烧接触面和O2、OH等活性物质的含量。在乳化柴油的燃烧过程中,水参与了燃烧,会发生一系列的附加化学反应,水是非能源物质,最后还是以水(水蒸气)的形式排出,并没有热量的放出,但是在高温反应中,水产生了H、O 和OH等原子或自由基。这些活性物质极大地活化了整个油料的燃烧过程,使生成的一氧化碳尽可能完全燃烧。此外还可加入水裂解催化剂促使H、O和OH等原子或自由基的生成,水煤气反应还加速了燃油裂解所形成的焦炭的进一步燃烧,从而抑制了烟尘的生成。使燃烧更充分、更完全,从而达到提高燃烧效率和热效率的目的,降低了油耗率。 NO x的生成主要是汽缸吸入的空气中含有氮气和氧气,两者在汽缸内混合,反应生成一氧化氮,一氧化氮在高温下又被氧气氧化,从而生成各种氮氧化合物NO x。油掺水后燃烧改善了柴油与空气的混合比例,使氧气尽可能多的参与了与油的燃烧,达到充分燃烧的效果,减少了过剩空气系数。此外乳化柴油中水滴的汽化需吸收热量,防止燃烧火焰局部高温,从而达到了抑制了NO x 的生成,减少了环境污染,保护了大气环境。 三、乳化柴油的优点

乳化沥青透层施工技术方案

乳化沥青透层施工技术方案 根据奉铜项目办第二阶段施工目标结合我BP3标实际情况,我部即将进行乳化沥青透层的施工。目前人员、机械设备已进场就位,具备乳化沥青透层施工的开工条件。 一、原材料 乳化沥青的破乳速度、粘度、筛上剩余量、蒸发残留物含量、残留物针入度、软化点、延度、贮藏稳定性等试验指标均符合设计及规范要求,渗透深度大于5mm(技术指标检测见附表一)。 二、施工机械设备和人员

在乳化沥青透层的施工中,本项目部质量管理体系主要人员的组成: 主要人员 三、施工工艺 透层采用喷洒高渗透乳化沥青透层进行施工 透层宜选择干燥和较热的季节施工,气温低于10℃或大风天气或即将降雨时不得喷洒乳化沥青。 1.水泥稳定碎石上基层表面的准备 ①喷洒稀释液前,应采取措施防止路缘石及人工构造物受污染;②用自行式强力清扫车在基层养生期结束后对基层表面进行全面清扫,清扫后的基层顶面必须确保浮浆清除干净,骨料外露,用强力清扫车清扫完成后,组织专人清扫表面松散碎石,用空压机将基层表面浮灰吹净;③当基层表面过分干燥时,必须在洒布稀释液前5-10分钟,对基层表面进行洒水预湿,使工作面处于潮湿状态但水分不饱和,同时避免集水区域,以免稀释液洒布后出现流淌。 2.材料准备

为取得良好洒布粘度,在洒布前按照一定的比例进行稀释,按原液:水=3:1进行稀释,根据设备情况可将比例适当加大,有条件时尽量使用热水稀释乳化沥青,有利于前期的渗透速度,乳化沥青稀释后立即使用,不宜长时间存放。 3、透层洒布时间 透层喷洒时间根据渗透深度、与基层强度影响情况,通过现场试洒确定,可采取两种时间进行试洒,即为:a.宜紧接在中基层碾压成型表面稍变干燥,但尚未硬化的情况下喷洒稀释液,应尽量在水稳基层碾压完成24小时内完成洒布,兼上基层的养生作用;b.水泥稳定碎石上基层养护7天后喷洒。 4、喷洒透层 当基层表面清理干净后,用智能型沥青洒布车洒布高渗透性乳化沥青,稀释液的洒布量为(0.8-1.0)kg/㎡,具体洒布量取决于基层表面的纹理深度和试验确定。但必须在招标文件规定的沥青用量范围内的透层油用量确定最终实际喷洒量,以不流淌作为依据。 透层油洒布如有花白遗漏应人工补洒,喷洒过量的透层油应立即清除,可撒布干净的石屑、砂等吸除。 在正式施工前,应进行试洒,观测透层油的渗透深度和最终渗透深度,要求渗透深度应能大于5mm,并能与基层粘结成整体,如达不到此要求应对施工工艺进行调整(如基层养生时间、稀释比例、稀释液的温度和洒布量等),直到满足要求。 5、养护 透层施工结束后应立即采取硬隔离封闭交通,7天后方可允许车辆慢速

生物柴油工艺技术简介

年产2万吨生物柴油生产技术简介 一、总论 生物柴油概念:生物柴油是清洁的可再生能源,它以生物质资源作为原料为基础加工而成的一种柴油(液体燃料),主要化学成分是脂肪酸甲酯。具体而言,动植物油,如菜籽油、大豆油、花生油、玉米油、米糠油、棉籽油;以及动植物油下脚料酸化油,脂肪酸;动物油:猪油、鸡油、鸭油、动物骨头油等经一系列化学转化,精制而成的液体燃料,是优质的石油柴油代用品。生物柴油是典型的“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重大的战略意义。 二、生物柴油的主要特性 与常规柴油相比,生物柴油具有下述无法比拟的性能。 1、优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%;生物柴油中不含对环境会造成污染的芳香族烷烃,如苯等化合物,因而废气对人体损害低于石化柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患癌率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2、具有较好的低温发动机启动性能,无添加剂冷滤点达–20℃。 3、具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损

率低,使用寿命长。运动粘度稍高,在不影响燃油雾化的情况下,更容易生气缸内壁形成一层油膜,从而提高运动机件的润滑性,保护发动机,降低机件磨损。 4、具有较高的安全性能。由于闪点高,生物柴油不属于危险品。因此,在运输、储存、使用方面的安全性更高。 5、具有良好的燃烧性能。十六烷值高,含氧量高,燃烧性优于石化柴油,燃烧残留物呈微酸性,发动机油的使用寿命加长。 6、具有可再生性能。作为可再生能源,与石油储量不同,其通过农业和生物科学家的努力,可供应量不会枯竭。 7、无需改动柴油机,可直接添加使用,同时无需另添设加油设备、储存设备及人员的特殊技术训练。 8、使用性广。可广泛用于各种载重汽车、火车、公交车、卡车、舰船、工程机械、地质矿业设备、农用机械、发电机组等柴油内燃机;更是非动力的工民用窑炉、锅炉及灶具上佳燃料。 三、生物柴油的发展前景及意义 (一)国家立法、政策支持 从2006年1月1日起正式生效的《中华人民共和国可再生能源法》明确规定“国家将再生能源的开发利用列为能源的优先领域,——依法保护可再生资源开发利用者的合法权益”。并指出“生物液体燃料,是指利用生物质资源生产的甲醇、乙醇和生物柴油”。 (二)资源十分广泛 一是可利用各种动、植物油脂的各种废料、副产物,例如加工植

乳化沥青透层油施工工艺

乳化沥青透层油施工工艺 1、沥青路面的级配砂砾、级配碎石基层及水泥、石灰、粉煤灰等无机结合料稳定土或粒料的半刚性基层上必须浇洒透层沥青。 2、透层沥青采用乳化沥青,透层沥青的规格和质量应符合规范的要求。透层沥青的稠度宜通过试洒确定。表面致密的半刚性基层宜采用渗透性好的较稀的透层沥青,级配砂砾、级配碎石等粒料基层宜采用较稠的透层沥青。用于制作透层用乳化沥青的沥青标号应根据基层的种类、当地气候等条件确定。 3、透层沥青的品种和用量根据基层的种类通过试洒确定,并符合规范的要求。 4、透层宜紧接在基层施工结束表面稍干后浇洒。当基层完工后时间较长,表面过分干燥时,应对基层进行清扫,在基层表面少量洒水,并在表面稍干后浇洒透层沥青。 5三级采用手工沥青洒布机喷洒,洒布车应符合本规范的要求。当用于表面处治或贯入式路面喷洒沥青的喷嘴不能保证喷洒均匀时,应更换喷嘴。 6、浇洒透层沥青应符合下列要求: (1)浇洒透层前,路面清扫干净,对路缘石及人工构物适当防护,以防污染。 (2)透层沥青洒布后应不流淌、渗透入基层一定深度,不得在表面形成油膜。 (3)如遇大风或即将降雨时,不得浇洒透层沥青。 (4)气温低于10℃时,不宜浇洒透层沥青。 (5)应按设计的沥青用量一次浇洒均匀,当有遗漏时,应用人工补洒。 (6)浇洒透层沥青后,严禁车辆,行人通过。 (7)在铺筑沥青面层前,若局部地方有多余的透层沥青未渗入基层,应清除。 7、在无机结合料稳定半刚性基层上浇洒透层沥青后,宜立即撒布石屑或粗砂。在无结合料粒料基层上浇洒透层沥青后,当不能及时铺筑面层,并需开放施工车辆通行时,也应撒铺适量的石屑或粗砂,此种情况下,透层沥青用量宜增加10%。撒布石屑或粗砂后,应用钢筒式压路机稳压一遍。当通行车辆时,应控制

乳化液废水处理概述

乳化液废水处理概述 摘要:乳化液废水中,油与水的界面自由能最低,油与水的亲和力最强,液体内部产生电离,油珠外表面形成电荷层,并吸附水分子层后形成水化离子膜,与其所带电荷相反的离子再吸附于水分子外表面形成扩散层,这样的水化离子膜具有弹性并带有同性电荷,即使油珠相互碰撞,也不能结合在一起,使水中油的成分稳定。 关键词:切削液乳化液;矿物油;乳化剂 1 乳化剂的主要来源 乳化液主要用于水压机和车丝机工作过程中所使用的冷却或润滑液,这其中以水压机的打压液为主,虽然车丝机的切削液用量不大(成分与水压机的打压液相近),但已被丝扣油污染,所以也需要废液处理。在制造石油钢管的过程中,会产生大量的热,对金属切削设备造成严重损耗,因此在此工段使用乳化液,由于其润滑及冷却作用,设备损耗率大大降低。乳化液可以循环使用,一定周期后,排放至废水收集区域跟其它废水经过处理后再外排或回用。 2 乳化液的主要成分 乳化液是用矿物油、乳化剂及添加剂混合配制好的乳化油稀释而成。为了使油水能够混合,所以需要加入适量的乳化液。乳化液中主要含有机油和表面活性剂,是由有机油加水稀释后再加入乳化剂配置的,三者比例是根据需要来确定的。由于乳化液中的主要成分是乳化剂,而乳化剂主要由表面活性剂组成,其分子包含极性基团和非极性基团。极性基团可溶于水,非极性基团可溶于油,所以乳化剂起到了水与油相互交融的作用。其原理为:乳化液废水中,油与水的界面自由能最低,油与水的亲和力最强,液体内部产生电离,油珠外表面形成电荷层,并吸附水分子层后形成水化离子膜,与其所带电荷相反的例子再吸附于水分子外表面形成扩散层,这样的水化离子膜具有弹性并带有同性电荷,即使油珠相互碰撞,也不能结合在一起,使水中油的成分稳定。当在水中加入油后,乳化剂分子将水与油连接起来形成水离子化膜,使油水能均匀的分布,形成白色乳化液。乳化液中由于乳化油的浓度不同,形成的乳化液有不同的用途:低浓度乳化液常常用于削磨或粗加工,此类乳化液适用于清洗及冷却;高浓度乳化液由于润滑效果好用于精加工。如需要更高的润滑性能,通常在乳化液中加入一些非金属,如氯、磷等极压添加剂,制成极压乳化液。 本设计中使用的乳化液为Quaker Chemical公司提供的半合成型乳化液,其主要由矿物油(15%)、边界润滑剂、防锈添加剂、消泡剂(10%)、乳化剂(35%)、水(40%)组成。乳化液中还会含有一定量的芳香剂、杀菌剂等,这些含量非常少。 3 设计的乳化液处理水排放标准

乳化柴油的研究现状及应用前景

乳化柴油喷入气缸后,由于乳化油液滴中的水分先达到沸点,气化而发生“微爆”现象,可使得油滴进一步微粒化,雾滴的“2次雾化”大大改进了燃油的燃烧过程,更加快了燃烧速率,使油分子燃烧趋近完全,达到节油的目的。 一般柴油机中产生碳氢化合物的主要原因是混合不均匀,以及在燃烧过程后期低速离开喷油器的燃油混合及燃烧不良所致;一氧化碳是一种不完全燃烧产物;柴油机碳烟的生成机理,概括地说是由烃类燃料在高温缺氧条件下裂解生成的。与纯柴油相比,乳化柴油能发生“2次雾化”,其雾化质量是任何柴油机喷嘴都难以达到的,它使柴油分子与高温空气的混合更均匀,使油分子的燃烧更加完全,避免了柴油在瞬时间由于雾化不好,油滴直径过大,表面积小,不能与氧充分接触,而生成较多的碳烟、CO和碳氢化合物造成油耗高及环境污染。大量研究和实践证明,乳化柴油的燃烧环境能显著减少烟尘排放。 NO X是柴油机的主要污染物,其生成过程为:在温度大于1600℃的条件下, O2→2O N2+O→N+NO N+O2→N+NO NO进一步氧化生成NO2。可见温度、氧浓度在NO X生成过程中起着重要作用,一般认为,当温度高于1600℃时,NO X的生成才比较明显,并且温度越高越容易生成。乳化柴油中水的存在降低了燃烧温度和烟气温度,不利于NO X的生成,从而使NO X排放显著下降;另外,与纯柴油相比,乳化柴油能更充分的燃烧,使得烟气中未反应的氧大大降低,也减少了NO X的生成机会。 柴油乳化技术早在100多年前就有人提出,50年代末由于环境保护及石油危机等原因受到重视,70年代末达到实用性发展阶段,目前工业发达国家柴油掺水技术已达到广泛应用[4]并已有多项专利发表。我国柴油掺水乳化技术起步较晚,八十年代初才有突破性进展,最近几年发展比较迅速,并有初步应用与少量乳化柴油专利申请。由于对乳化柴油在燃烧过程中的物理、化学现象缺乏研究以及乳化技术的不完善使得内燃机锈蚀、节油效果不明显。同时由于乳化柴油为热力学不稳定体系,存储时间短、易破乳分层,导致内燃机运行不正常。而微乳化柴油水微滴直径小于0.1微米,为热力学稳定体系,色质透明,非常适合内燃机使用,但微乳所需乳化剂量较大,价格偏贵,推广应用仍有困难。乳化液的形成与稳定理论仍不完整,其研究与应用尚少[2]。 我国每年柴油消耗量约为2000万吨左右,如果能够全部采用柴油掺水乳化技术,按节油率10%计,每年可以节省大约200万吨。这样不仅可以缓解国内柴油的紧张的状况,带来上亿元的经济效益,还可以大大减少由于柴油燃烧不完全成的环境污染。

乳化油废水处理

乳化油废水处理 乳化油是水中加油加乳化剂经高速搅拌而成。乳化剂是一些表面油性物质,如:皂类、高分子合成物质等。它在细小的油滴粒(直径一般小于10μm,多数为0.1~2μm)表面形成一层与水极薄的界膜,形成双电荷层,表明层电荷极性相同,因此各油滴间相互排斥,极难接近,不会出现碰撞,形成大油滴。这些极微小的油滴在水中均匀稳定悬浮着,就是乳化油。在机械制造过程中,乳化油夹杂着金属氧化物金属细末一起被排出。 一、絮凝—电气浮含油废水处理工艺 乳化油废水处理 1、电极反应 当使用肥皂作乳化剂时,分散相液滴表面带有负电荷,在这类乳化剂中加入无机酸(盐酸),可使肥皂(脂肪酸盐)转化为电中性的不溶性脂肪酸使界面膜破坏而破乳。经此破乳处理后的pH为2~3的废乳化液,电解过程中的电极反应如下: 阳极反应:2Cl--2e=Cl2↑(氧化反应) 【OH--4e=O2+H2O,不含Cl-时的氧化反应】 H+比M+(M为肥皂乳化剂中的金属离子)容易得到电子,因而H+不断地从阴极获得电子被还原为氢原子,并结合成氢分子从阴极放出。 阴极反应:2H++2e=H2↑(还原反应) 在上述反应中,H+是由水的电离生成的,由于H+在阴极上不断得到电子而生成H2放出,破坏了附近的水的电离平衡,水分子继续电离出H+和OH-,H+又不断得到电子变成H2,结果在阴极区溶液里OH-的浓度相对地增大废液pH将不断增大。 总反应:2MCl+2H2O=2MOH+Cl2↑+H2↑ 2、电气浮过程的主要影响因素 电气浮的分离效果与电极表面释放出的气体的气泡大小紧密相关。影响电气浮过程气泡大小的因素包括电流密度、温度和电极表面曲率。但最主要的影响因素有两个:溶液pH和电极材料。此外电解槽内的水力学条件和电极的布设方式均对气泡的运动轨迹有影响,从而影响到电气浮的分离效果。 (1) pH的影响 pH对电气浮的影响主要体现在其决定了电解过程中气泡的大小分布。中性条件下,H2气泡的尺寸最小,碱性介质中尺寸较小,而在酸性条件下甚大。但对于O2气泡来说,酸性介质中其尺寸较小,随着溶液pH的升高,O2气泡急剧变大。 (2)电流密度的影响 电气浮过程中电流密度的大小决定了产生气泡的数量和大小。电流密度越高,单位时间内电极上释放出的气体的量就越多。按照法拉第电解定律,当电解过程中通入1F(26.8A?h)电量时,可释放出0.0224Nm3H2和O2。此外,随着电流密度的增加,气泡直径逐渐减小,但当电流密度增加到200A?cm-2以上时这种现象就观察不到了。电极表面的粗糙程度亦对气泡的大小有着重要的影响,电极表面粗糙度越大,气泡越大,镜面抛光的不锈钢电极表面上气泡最小。 (3)电极材料

微乳化柴油技术简介

Biodisel and the microemulsion additives 生物柴油及微乳化剂简介 生物柴油(biodisel)是指以一部分可再生生物质资源代替不可再生柴油,通过特殊的工艺和技术生产的一种燃烧高效的环保柴油。本公司推出的生物柴油是利用微乳化剂,将9%-12%的水和80%-84%的柴油这两种完全不相溶的液体在特定的条件下经过物理化学反应,生成一种透明、稳定的微乳化生物柴油。本产品不同于现有市场上通过乳化剂和乳化设备加工而成的白色乳浊状柴油,而是通过巧妙的物理化学工艺生成的燃烧值更高,物化性质更为稳定的微乳化生物柴油(以下简称微乳化柴油)。 微乳化柴油的特点: 1、透明、清澈,经过充分乳化后,外观与常规柴油外观相同,完全不同于目前市场上 的白色乳浊状乳化柴油。 2、状态稳定。在-20℃到80℃的恶劣工况下无油水分离现象。 3、燃烧值高。微乳化柴油的燃烧值>9800Cal/kg,完全达到或超过国家0#柴油的标准。 4、环保清洁。有害气体量下降30%以上,PM达到欧Ⅱ标准,能清洁常用设备的油路。 5、使用范围广。该乳化柴油适用于不同型号的柴油发动机和其他内、外燃机使用。 6、微乳化范围广。可以针对市场上常用的柴油和重油进行微乳化调配。 微乳化柴油的工作原理: 柴油分子链较长,在正常使用的情况下20%-30%的柴油都是在没有经过充分燃烧的情况就排放掉,这样理论净燃烧值就大打折扣。微乳化柴油则是通过掺入一定比例的水,通过微乳化剂的作用,在柴油体系中形成稳定的纳米粒径(<50nm)的油包水(w/o)稳定结构。这样,柴油在燃烧的过程燃烧不充分形成的C和CO经过水分子的参与下以微爆的形式得以充分燃烧,最终以CO2的形式排出,从而提高柴油的燃烧效率。其作用化学反应原理如下所示: CO + H2O ==CO2 + H2+E(能量) 2H2 + O2 ==H2O + E(能量) 微乳化柴油的工作示意图: 柴油液滴 微乳化柴油液滴水珠

相关主题
文本预览
相关文档 最新文档