当前位置:文档之家› 高硅钢的制造方法和硅钢

高硅钢的制造方法和硅钢

高硅钢的制造方法和硅钢
高硅钢的制造方法和硅钢

高硅钢的制造方法和硅钢

申请号/专利号:99801041

通过轧制硅含量在3wt%以上的硅钢板制备森达斯特铁硅铝磁性合金钢薄板的方法及所述的合金钢薄板,包括:作为初始原料,使用平均晶粒粒径为300μm以下板状烧结体或急冷钢板,或者使用将纯Fe粉末和Fe-Si粉末以一定比例配合的混合粉而制成的板状烧结体,使烧结体中残存富Fe相。在过去,轧制这类高硅钢板和森达斯特铁硅铝磁性钢板认为是不可能的。还公开了一种事先添加非磁性金属元素如Ti的方法,这导致富铁相和富硅相易子固溶,而且能够促进晶粒成长,从而提供具有优异磁性能的硅钢薄板。公开了一种制备具有优异磁性能的森达斯特铁硅铝磁性合金钢薄板的方法,包括在该硅钢板的两面沉积铝并进行热处理,由此使铝扩散浸透到该薄板的内部,并增大晶粒直径。

申请日:1999年05月28日

公开日:2000年11月15日

授权公告日:2003年01月22日

申请人/专利权人:住友特殊金属株式会社

申请人地址:日本大阪

发明设计人:山下治;槇田显;能见正夫;西乡恒和

专利代理机构:中国国际贸易促进委员会专利商标事务所

代理人:龙传红

专利类型:发明专利

分类号:C21D8/12;C22C33/02;C22C33/04;C22C38/00

高硅钢及其制备方法

申请号/专利号:200310108897

一种高硅钢及其制备方法。属于材料制备领域。高硅钢包含的各个成分及其重量百分比为:5-10%硅,0.007-1%碳、杂质Mn和/或P和/或S和/或Cr和/或Ni含量小于0.01%,其余为铁。其制备方法是:在5%-10%含硅量的高硅钢中加入0.01-1%碳,并对高硅钢的样品进行均匀化热处理,即从1200℃至低于钢熔点的固熔热处理,保温退火消除高硅钢中大部分第二相,均匀化退火在保护气氛中进行。本发明显著改善了硅钢拉伸塑性和加工性能,从而令不同厚度高硅钢片的大规模生产成为可能,不仅可用

于生产高硅钢片和控制其显微组织,且可调整最终碳含量,得到高硅钢片的最佳软磁性能。含碳的高硅钢片可作为高强度结构材料,在室温和中温下,氧化和腐蚀气氛下使用。

申请日:2003年11月27日

公开日:2004年11月10日

授权公告日:2006年04月19日

申请人/专利权人:林栋樑;林晖

申请人地址:上海市淮海中路1950弄1号6室

发明设计人:林栋樑;林晖

专利代理机构:上海交达专利事务所

代理人:王锡麟王桂忠

专利类型:发明专利

分类号:C22C38/02

高硅钢的制造方法和硅钢

高硅钢的制造方法和硅钢 申请号/专利号:99801041 通过轧制硅含量在3wt%以上的硅钢板制备森达斯特铁硅铝磁性合金钢薄板的方法及所述的合金钢薄板,包括:作为初始原料,使用平均晶粒粒径为300μm以下板状烧结体或急冷钢板,或者使用将纯Fe粉末和Fe-Si粉末以一定比例配合的混合粉而制成的板状烧结体,使烧结体中残存富Fe相。在过去,轧制这类高硅钢板和森达斯特铁硅铝磁性钢板认为是不可能的。还公开了一种事先添加非磁性金属元素如Ti的方法,这导致富铁相和富硅相易子固溶,而且能够促进晶粒成长,从而提供具有优异磁性能的硅钢薄板。公开了一种制备具有优异磁性能的森达斯特铁硅铝磁性合金钢薄板的方法,包括在该硅钢板的两面沉积铝并进行热处理,由此使铝扩散浸透到该薄板的内部,并增大晶粒直径。 申请日:1999年05月28日 公开日:2000年11月15日 授权公告日:2003年01月22日 申请人/专利权人:住友特殊金属株式会社 申请人地址:日本大阪 发明设计人:山下治;槇田显;能见正夫;西乡恒和 专利代理机构:中国国际贸易促进委员会专利商标事务所 代理人:龙传红 专利类型:发明专利 分类号:C21D8/12;C22C33/02;C22C33/04;C22C38/00 高硅钢及其制备方法 申请号/专利号:200310108897 一种高硅钢及其制备方法。属于材料制备领域。高硅钢包含的各个成分及其重量百分比为:5-10%硅,0.007-1%碳、杂质Mn和/或P和/或S和/或Cr和/或Ni含量小于0.01%,其余为铁。其制备方法是:在5%-10%含硅量的高硅钢中加入0.01-1%碳,并对高硅钢的样品进行均匀化热处理,即从1200℃至低于钢熔点的固熔热处理,保温退火消除高硅钢中大部分第二相,均匀化退火在保护气氛中进行。本发明显著改善了硅钢拉伸塑性和加工性能,从而令不同厚度高硅钢片的大规模生产成为可能,不仅可用

产品生产工艺流程(doc 46页)

产品生产工艺流程(doc 46页)

产品生产工艺规程--藿香正气片生产工艺规程 说明 由于企业扩大了生产范围,按甘肃佛仁制药科技有限公司《文件起草、修订、审查、批准、撤消、印制及保管管理程序》及《企业内控质量标准管理程序》的规定,本技术文件于2011年01月年经过制定人、审核人、批准人签字确认后,由质量部门发布,并对相关人员进行培训,于执行日期起执行。 产品工艺规程具有法定意义,代表了产品生产和质量控制方面有关法律、法规的符合性和质量安全保证性的内容。任何部门及个人无权更改,如有变更,请按规定的程序进行。申请修订(修改)时,其修改内容及记录作为历史沿革文件,以本规程附件的形式一并存档。 目录 一、产品概述 (3)

二、处方及处方依据 (3) 三、生产工艺流程 (3) 四、制剂处方中中药材前处理和炮制 (5) 五、提取生产操作过程及工艺条件 (7) 六、制剂生产操作过程及工艺条件 (9) 七、原辅料的质量标准和检测方法 (13) 八、中间产品质量标准和检测方法 (14) 九、成品质量标准和检测方法 (19) 十、物料平衡计算方法 (21) 十一、成品容器包装材料的要求 (22) 十二、包装标签内容、说明书式稿 (23) 十三、工艺卫生要求及生产区环境监测方法与标准 (25) 十四、设备一览表及主要设备生产能力 (26) 十五、技术安全及劳动保护 (26) 十六、综合利用与环境保护 (28) 十七、原辅料消耗定额 (29) 十八、包装材料消耗定额 (29) 十九、岗位定员及定额、生产周期 (30) 附录:有关规定、理化常数及换算 (31) 附页:文件修订记录 藿香正气水生产工艺规程 一、产品概述

表面处理细化取向硅钢磁畴的方法与机理_朱业超

表面处理细化取向硅钢磁畴的方法与机理 朱业超1,2,王良芳2,乔学亮1 (1.华中科技大学材料科学与工程学院,湖北武汉430080;2.武汉钢铁(集团)公司技术中心,湖北 武汉430080) 摘 要:磁畴细化技术是降低取向硅钢铁损重要的方法之一。本文概述了国内外表面处理使磁畴细化的方法,这些方法使磁畴细化的机理,以及细化磁畴可降低铁损的机理。关键词:取向硅钢;磁畴细化;刻痕;张应力 中图分类号:TF325 文献标识码:A 文章编号:100121447(2006)0420050204 Methods and mechanism of the domain ref inement of grain oriented silicon steel by surface treament ZHU Ye 2chao 1,2,WAN G Liang 2fang 2,Q IAO Xue 2liang 1 (1.Instint ute of Material Science and Technology ,Huazhong University of Science and Technology ,Wuhan 430074,China ;2.Technology Center ,Wuhan Iron and Steel Corp.,Wuhan 430080,China ) Abstract :Domain refinement technique is an important met hod on t he iron loss decrea 2sing of grain oriented silicon.In t his paper ,t he domain refinement met hods by surface t reat ment t hat are st udied widely at home and abroad are summarized.The mechanism on how t he do mains are refined by t hese met hods is discussed.It is also analyzed in t his paper how t he iron loss of grain oriented silicon is decreased by domain refinement.K ey w ords :Domain refinement ,Grain oriented silicon steel ,Scribing ,Tensile st ress 作者简介:朱业超(1979-),男,湖北公安人,工程师,主要从事硅钢技术研究. 硅钢片的铁损由磁滞损耗和涡流损耗组成,涡流损耗又分为经典涡流损耗和异常涡流损耗。在工频下,异常涡流损耗约占铁损的一半左右。异常涡流损耗是以磁畴壁的移动为基础的涡流损失,与磁畴壁的移动速率成正比,在相同频率下,畴壁的移动速率与移动距离成正比,所以磁畴宽度越大,涡流损失越大。磁畴细化技术就是通过减小取向硅钢主畴宽度来降低其涡流损耗的物理处理方法[1] 。 磁畴细化技术可以使取向硅钢铁损降低10%~20%,很多钢铁企业或科研院所对该项技术展开了研究。日本新日铁公司采用激光照射技术使Hi 2B 钢铁损降低15%左右,牌号为ZD 2KH 的磁畴细化硅钢片于1983年投入市场[2]。 日本J FE 公司开发了一种耐热型的磁畴细化技 术,其0.23mm 和0.27mm 的产品以J GSD 的名 称商品化[3]。在欧洲和美国的专利中,也报道了通过局部热变形或轧辊形成沟槽的磁畴细化方法。而在我国,该项技术研究尚处于起步阶段,仅东北大学、大连理工大学和航空部五零一所有相关研究的报道[4~6]。广泛研究国外细化磁畴的方法,深入研究细化磁畴的理论,并以此为鉴,对于开发出适合我国硅钢生产实际情况的磁畴细化技术具有很大的意义。 1 细化磁畴的方法 磁畴细化技术按照其是否能经受800℃以上消除应力退火处理分为耐热和非耐热两种。 1.1 非耐热型磁畴细化技术 (1)机械加工法[7] 通过移动大量的直径较大的有一定间距的球使之与钢片接触,在钢片表面施加强的局部压力 ?05? 2006年 12月 第34卷第6期钢铁研究 Research on Iron &Steel Dec 2006Vol.34 No.6

硅钢产品介绍1

硅钢产品介绍 一、硅钢产品的预备知识 二、硅钢产品分类及主要性能 三、硅钢生产工艺及各工序主要功能 四、硅钢产品的主要用途 五、对热轧原料的要求

一、硅钢产品的基础知识 硅钢生产已有近百年的历史,它是制造电机、变压器和镇流器铁芯以及各种电器元件用以节能的最重要的金属功能性材料之一。 硅钢产品,特别是取向硅钢的制造工艺和设备复杂、成分控制严格、制造工序长,而且影响性能的因素多,因此常把取向硅钢产品质量看作是衡量一个国家特殊钢制造技术水平的重要标志,并获得了冶金产品“工艺品”的美称。 1.硅钢产品的分类(见下表): 硅钢产品的分类 除表中所列的品种类别外,还有一些特殊用途的硅钢产品,如用作中、高频电机和变压器以及脉冲变压器等的0.15和0.20mm厚3%Si冷轧无取向硅钢薄带,及0.025、0.05及0.10厚3%Si冷轧取向硅钢极薄带。用作继电器和电力开关的0.70mm厚3%Si冷轧无取向硅钢等。

2.对硅钢片性能的要求 一般要求电机、变压器和其它电器部件效率高、节能、体积小和重量轻,硅钢片主要是作为电机、变压器铁芯材料,通常是以铁芯损耗和磁感应强度作为产品磁性保证值。因此对硅钢产品的性能要求如下: 2.1铁芯损耗(P T)低 ●铁芯损耗是指铁芯在≥50H Z交变磁场下磁化时所消耗的无效电能,简称铁 损,也称交变损耗,单位为W/kg ●硅钢片的铁损(P T)包括磁滞损耗(P h)、涡流损耗(P e)和反常损耗(P a) 三部份。 1)磁滞损耗(P h) 磁滞损耗是磁性材料在磁化和反磁化过程中,由于材料中的夹杂物、晶体缺陷、内应力和晶体位向等因素阻碍畴壁移动,使磁通变化受阻,造成磁感应强度落后于磁场变化的磁滞现象而引起的能量损耗。 2)涡流损耗(P e): 涡流损耗是磁性材料在交变磁化过程中,在磁通改变方向时,按照法拉弟电磁感应法则,在磁通周围感生出局部电动势而引起涡电流所造成的能量损耗。 3)反常损耗(P a): 反常损耗是材料磁化时,由于磁畴结构不同而引起的能量损耗。一般来讲,实测的铁损P T大于上述P h +P e的计算值,两者之差即为反常损耗P a。

PVD法渗Si制备6.5%Si高硅钢过程组织结构与性能演化研究-

文章编号:1001-9731(2015)01-01117-04 PVD法渗Si制备6.5%Si高硅钢过程组织结构与性能演化研究? 田广科1,2,孙一勇1,孔令刚1,毕晓昉2 (1.兰州交通大学国家绿色镀膜工程中心,兰州730070; 2.北京航空航天大学材料科学与工程学院,北京100191) 摘一要:一基于物理气相沉积(PVD)之直流磁控溅射镀膜技术在低硅钢薄板双面共沉积富Si膜,然后高温真空扩散处理使Si渗入低硅钢基体,提高基体含Si 量.以沉积Fe5Si3膜+1180??1h扩散为1回合增Si处理,研究了多回合循环增Si处理过程硅钢基体组织结构与性能的演化机理.采用光学显微镜对样品进行了金相分析,采用扫描电镜(SEM)观察了样品的微观组织形貌,并用能谱分析仪(EDS)进行成分分析.用X射线衍射仪(XRD)和透射电镜(TEM)表征了样品的结构特征.经过4回合循环增Si处理可将0.35mm厚低硅钢基体含Si量由3%提高到6.5%,且沿厚度方向Si浓度分布均匀.相比于初始态低硅钢基片,PVD法制成6.5%Si高硅钢中高频铁损值降低40%~50%. 关键词:一6.5%Si高硅钢;磁控溅射;扩散;组织结构; 磁性能 中图分类号:一TM275文献标识码:A DOI:10.3969/j.issn.1001-9731.2015.01.024 1一引一言 6.5%Si(质量分数,下同)高硅钢被公认为是一种非常优秀的软磁材料,具有优异的软磁性能,如:中高频铁损低二磁滞伸缩几乎为零二矫顽力小二磁导率和饱和磁感应强度高等,同时它还具有稳定性好等优点,是制作低噪音二低铁损铁芯的理想材料[1-2].但是6.5%Si高硅钢由于室温脆性问题以及极低的热加工性能使其难以采用传统轧制工艺制造,所以严重地影响了其在工业领域中的应用.为突破高硅钢室温脆性的技术瓶颈,多年来国内外科研工作者进行了多种研究尝试,研究工作主要集中在以下3个方面:(1)直接制备法,如用热轧冷轧法[3-5]二激冷甩带法[6-7]二粉末轧制[8]或喷射[9]法以及EB-PVD技术[10]等;(2)塑化改性法:如采用添加合金元素适当牺牲软磁性能而改善加工性能,再利用传统工艺方法及设备轧制[11-12];(3)扩散增Si法:如采用化学渗镀二涂镀或气相沉积的方法在已经轧制成型的普通低硅钢薄板表面沉积富Si层或者纯Si层,然后通过热扩渗方式提高含Si量,制备得到6.5%Si高硅钢薄板[2,13-14].日本钢管公司(NKK)基于CVD扩散增Si法成功实现6.5%Si高硅钢工业化生产.但是由于CVD法存在腐蚀设备二污染环境等弊端,文章作者近年来开发了物理气相沉积(PVD)法制备6.5%Si高硅钢薄板技术途径[13].本文研究了PVD 法渗Si制备6.5%Si高硅钢过程硅钢组织二结构与性能的演化机理. 2一实一验 本文采用改造型JCK-100磁控溅射镀膜仪在35WW250低硅钢片基片双面共沉积富Si膜.靶材按Fe5Si3化学计量比配料,真空电弧熔铸成合金锭,均匀化退火之后切割成?60mm?4mm靶材.低硅钢基片尺寸为0.35mm?40mm?40mm,化学成分列于表1.沉积富Si膜层前,基片预先用400#砂纸打磨去除表面绝缘层二氧化物层,然后进行1200??1h高真空退火处理.镀膜之前基片依次用丙酮二三氯乙烯和无水乙醇在超声波中清洗10min,吹干备用. 表1一低硅钢基片化学成分Table1Chemical com p ositions of the low-Si steel substrates C Si Mn S P Fe 0.0052.980.0010.0030.002balance 一一溅射镀膜工艺列于表2.本文定义硅钢基片双面共沉积15μm厚Fe5Si3膜并经1180??1h真空(真空度1.0?10-3Pa)扩散为单回合增Si处理工艺,多回合增Si为单回合增Si处理过程的叠加.用OLYM-PUS BX51M光学显微镜进行样品(10%过硫酸铵溶液浸蚀)金相分析,用S-530扫描电镜观察样品微观组织形貌,用其配置的Oxford INCA能谱分析仪(EDS)进行成分检测.用D/max2200PC型自动X射线衍射仪(Cu靶,λKα=0.154056nm)和2100F高分辨透射电镜(TEM)表征样品的结构变化.用TPS-500M型硅钢测试仪测试样品的交流软磁性能.磁性能测试样品用电火花线切割机加工成外径19mm二内径15mm环形样品,然后经800??1h真空去应力退火处理. 71110 田广科等:PVD法渗Si制备6.5%Si高硅钢过程组织结构与性能演化研究 ?基金项目:国家自然科学基金资助项目(51461028);甘肃省科技支撑计划资助项目(2010GS04143) 收到初稿日期:2014-05-20收到修改稿日期:2014-09-15通讯作者:田广科,E-mail:tian g ke@mail.lz j tu.cn 作者简介:田广科一(1968-),男,甘肃靖远人,副教授,博士,主要从事薄膜功能材料研究.

硅钢生产流程

鞍钢冷轧硅钢厂简介 发布时间:2010-03-12 关键词:鞍钢,冷轧,硅钢,厂简,介 鞍钢冷轧硅钢工程是经国家批准的鞍钢“十五”规划的重点技改项目,该工程于2003年6月18日正式开工,2004年7月19日第一条连退机组热负荷试车并生产出第一卷合格冷硅钢卷。2005年3月30日4条硅钢连退生产线、1条酸轧联合机组已全部建成。该工程的建成添补了鞍钢此类生产的空白,为鞍钢“建精品基地,创世界品牌”奠定了总要基础。 鞍钢冷轧硅钢厂正式成立于2004年7月,该厂主要设备有1条酸洗轧机组联合机组,4条电工钢连续退火涂层机组,4条切边重卷机组,2条包装机组等,厂房占地面积173240m3,设计年生产量为100万吨,其中80万吨为中、底牌号无取向硅钢,20万吨冷硬卷。 酸轧联合机组可生产后、700-1380mm宽的电工钢板和冷轧板,连续退火涂层机组可生产厚、700-1280mm宽的电工钢产品,产品质量、成材率、能耗、劳动生产率、环保等各项技术指标达到国内先进水平,有些指标达到了国际先进水平。产品能够满足中小型电机、家用电器等需要,具有尺寸精度高、磁特性好、性能稳定、绝缘性强等特点,是钢铁行业深加工的优质板材。 鞍钢冷轧硅钢厂整体装备水平达到国际先进水平,是我国自主集成和建设的具有一流水平的冷轧硅钢生产线。 鞍钢冷轧无取向硅钢生产流程图

酸洗-轧机联合机组硅钢连退涂层机组 硅钢连退涂层机组包装机组

包装机组磨辊间可供产品牌号、规格及主要用途 产品特性: 1.产品性能稳定:制造工艺先进、钢质纯净、磁性稳定。 2.尺寸精度高:表面光滑、厚度均匀,同板差小,使用于连续高速冲床使用。 3.加工性能优良:冲片性和焊接性能良好便于剪切和冲压。 4.产品规格齐全,满足不同生产要求。 5.产品图层性能稳定,符合环保要求。 牌号及性能

电工钢知识简介

电工钢基础知识普及 电工钢已有上百年的历史,电工钢包括Si<0.5%电工钢和Si含量0.5~6.5%的硅钢两类,主要用作各种电机、变压器和镇流器铁芯,是电力、电子和军事工业中不可缺少的重要软磁合金。电工钢在磁性材料中用量最大,也是一种节能的重要金属功能材料。 电工钢,特别是取向硅钢的制造工艺和设备复杂,成分控制严格,制造工序长,而且影响性能的因素多,因此常把取向硅钢产品质量看作是衡量一个国家特殊钢制造技术水平的重要标志,并获得特殊钢中“艺术产品”的美称。 1、电工钢的发展历史 ?热轧硅钢发展阶段(1882~1955年) 铁的磁导率比空气的磁导率高几千到几万倍,铁芯磁化时磁通密度高,可产生远比外加磁场更强的磁场。普通热轧低碳钢板是工业上最早应用的铁芯软磁材料。1886年美国Westinghouse电气公司首先用杂质含量约为0.4%的热轧低碳钢板制成变压器叠片铁芯。1890年已广泛使用0.35mm厚热轧低碳钢薄板制造电机和变压器铁芯。但由于低碳钢电阻率低,铁芯损耗大;碳和氮含量高,磁时效严重。1882年英国哈德菲尔特开始研究硅钢,1898年发表了4.4%Si-Fe合金的磁性结果。1903年美国取得哈德菲尔特专利使用权。同一年美国和德国开始生产热轧硅钢板。1905年美国已大规模生产。在很短时间内全部代替了普通热轧低碳钢板制造电机和变压器,其铁损比普通低碳钢低一半以上。1906~1930年期间,是生产厂与用户对热轧硅钢板成本、力学性能和电机、变压器设计制造改革方面统一认识、改进产品质量和提高产量的阶段。 ?冷轧电工钢发展阶段(1930~1967年) 此阶段主要是冷轧普通取向硅钢(GO)板的发展阶段。1930年美国高斯采用冷轧和退火方法开始进行大量实验,摸索晶粒易磁化方向<001>平行于轧制方向排列的取向硅钢带卷制造工艺。1933年高斯采用两次冷轧和退火方法制成沿轧向磁性高的3%Si钢,1934年申请专利并公开发表。1935年Armco钢公司按高斯专利技术与Westinghouse电气公司合作进行生产。之后,Armco钢公司采用快速分析微量碳等技术和不断改进制造工艺及设备,使产品质量逐步提高。直到1958年在掌握MnS抑制剂和板坯高温加热两个前工序制造工艺后,制造取向

高硅钢发展及制备技术研究进展

高硅钢发展及制备技术研究进展 1高硅钢的特点概述 高硅钢一般是指含4.5 wt % - 6.7 wt %的Si-Fe合金,通用的高硅钢为6.5% Si-Fe。6.5wt%高硅钢是一种具有高磁导率、低矫顽力、低铁损等优异性能的软磁合金,6.5% Si高硅钢的电阻率p=82μΩ?cm,比3 wt% Si硅钢约高一倍(3 wt% Si硅钢ρ=48 μΩ?cm),饱和磁感B s= 1.80T,相对于3 wt%Si硅钢较低(3 wt%Si硅钢为B s=2.03 T ),磁致伸缩系数λs凡近似为零,磁各向异性常数K1比3 wt%Si硅钢约低40%。高硅钢的磁性特点是高频下铁损明显降低,最大磁导率伽高和矫顽力H o低。正因为具有低铁损、高磁导率和低磁致伸缩系数等优异的软磁性能,所以高硅钢在高性能发电机、变压器、继电器、特别是微型电器部件等方面的应用前景十分广泛。然而,高硅钢的室温脆性大、加工性能差,很难釆用常规(铸造轧制)工艺制备薄板和带材,严重影响了该合金广泛的应用。 2硅钢研宄的现状 2.1高硅钢的发展现状 1953年日本NKK钢铁公司田中悟等采用一次大压下率冷轧、退火后明显的提高了含碳0. 05%、硅2. 94%,铝0. 02%。氮0. 0062%钢板中{110} <001>织构的取向度,且其磁性能也随之提升。由此研究者们开始逐渐意识到用AlN为抑制剂的一次大压下率轧制工艺可以制备出磁性高于普通取向硅钢的板材。因此,NKK公司于1961年在引进了美国Armco钢专利技术的基础上开始使用A1N和MnS混合作为抑制剂来制备高取向硅钢。直到1964年NKK才使用该工艺成功试制了高磁感取向硅钢,后被命名为Hi-B钢,但由于对该工艺的研究仍是处于初级阶段,因此其所制备的Hi-B钢磁性还极不稳定。与此同时,D. Brown等通过试验证明6. 5% Si-Fe单晶体铁损比普通的3% Si-Fe单晶体要低0. 2W/Kg,磁致伸缩也约为3%Si-Fe单晶体的1/10,磁各向异性约降低1/3。1965年,DJ. Burr通过拉伸试验测得5% Si-Fe的伸长率为1%~2%。随后,其有对加入Ni的5%Si-Fe的钢板进行拉伸试验,试验结果表明在钢中加入Ni明显的提高了钢的伸长率,如加入6%的Ni使得伸长率提高9%,加入7.5%的Ni使得伸长率提高20%。1966年,T. IShizaka等采用70%压下率在600℃-750℃对6.5%S i硅钢进行热轧,随后对其进行剪边处理后冷轧可使其从1mm轧到0. 3mm厚。至此,所生产的普通取向硅钢磁性能基本稳定,其铁损约下降到0. 05W/Kg。由此,研究者们开始着手致力于对6.5%Si制造过程简便化、经济化以及易操作化的研究。

无取向硅钢片生产技术要点

无取向硅钢片生产技术要点 一、无取向硅钢片生产技术要点 首先要求钢水纯净,经真空处理后碳含量降至0.01~0.005%,氧<0.005%,保护浇铸成厚板坯,低温热送,加热到1100~1200℃,保温3~4h,使AlN粗化,若轧机能力强,最好是1050~1100℃加热,防止铸坯中较粗的AlN、MnS析出物再固溶,使热轧及退火后晶粒细化,组分增多,磁性变坏。终轧温度要高些,以防止晶粒变粗,铁损降低。 对无取向的Si>1.7%的硅钢,由于变形抗力显著提高,导热性降低,并且连铸后柱状晶粗大,产品表面易产生瓦垅状缺陷,铸坯易产生内、外裂纹,故需慢热慢冷,加热温度也可略高一些,达1 200℃。这更便于热轧而且使终轧温度提高,热轧板晶粒粗化,可改善磁性。加热到1200℃,Mn S不会固溶,而AlN可能部分固溶,但由于钢中碳含量降低(如<0.01%,至0.004%),可使AlN固溶度明显减小,亦即使固溶温度提高。则≤1200℃加热仍可使AlN粗化,P15降低。通常开轧温度1180±20℃,终轧温度850±20℃。应注意含Si<1.7%或Si<2.5%而C>0.01%的硅钢在约1 000℃时存在明显的α+γ两相区,热轧塑性显著降低,γ相与α相变形抗力之差易引起不均匀变形,使板形不好,易出现裂边,成材率下降。故应尽量降低碳含量,使热轧精轧基本处于α相区或避开α+γ两相区,C≤0.003%的1.5%Si钢,热轧时由于γ相数量减少,也不裂边。碳量低,以后退火也不需要脱碳。 二、无取向硅钢片和取向硅钢片的关系: 1、二者都是冷轧硅钢片,但含硅量不同。冷轧无取向硅钢片含硅量0.5%-3.0%,冷轧取向硅钢片含硅量在3.0%以上。 2、生产工艺及性能的不同:无取向硅钢片较取向硅钢片工艺要求相对较低。 无取向硅钢片是将钢坯或连铸坯热轧成厚度约2.3mm带卷。制造低硅产品时,热轧带卷酸洗后一次冷轧到0.5mm厚。制造高硅产品时,热轧带酸洗后(或先经800~850℃常化后再酸洗),冷轧到0.55或0.37mm厚,在氢氮混合气氛连续炉中850℃退火,再经6~10%小压下率冷轧到0.50或0.35mm厚。这个小压下率的冷轧可使退火时晶粒长大,铁损降低。这两种冷轧板都在20%氢氮混合气氛下连续炉中850℃最终退火,然后涂磷酸盐加铬酸盐的绝缘膜。经冷轧至成品厚度,供应态多为0.35mm和0.5mm厚的钢带。冷轧无取向硅钢的Bs高于取向硅钢。 取向硅钢片要求钢中氧化物夹杂含量低,并必须含有C0.03~0.05%和抑制剂(第二相弥散质点或晶界偏析元素)。抑制剂的作用是阻止初次再结晶晶粒长大和促进二次再结晶的发展,从而获得高的(110)[001]取向。抑制剂本身对磁性有害,所以在完成抑制作用后,须经高温净化退火。采用第二相抑制剂时,板坯加热温度必须提高到使原来粗大第二相质点固溶,随后热轧或常化时再以细小质点析出,以便增强抑制作用。冷轧成品厚度为0.28、0.30或0.35mm。冷轧取向薄硅钢带是将0.30或0.35mm厚的取向硅钢带,再经酸洗、冷轧和退火制成。与冷轧无取向硅钢相比,取向硅钢要比无取向硅钢铁损低很多,磁性具有强烈的

硅钢基础知识

硅钢带的生产 1903年美国和德国首先生产了热轧硅钢。美国阿姆柯钢公司于1935年开始生产冷轧 取向硅钢,20世纪40年代初生产无取向硅钢。50年代主要工业发达国家陆续引进阿姆柯技术专利。70年代前,世界约80%取向硅钢都按此专利生产。1968年日本新日铁正式生 产高磁感取向硅钢(Hi-B钢)。从1971年开始,美国等6个国家引进了日本Hi—B钢专利。从1968年开始,日本在冷轧电工钢产品质量、制造技术和装备、开发新产品和新技术、科研和测试技术各方面都远超过美国,处于领先地位。 我国太原钢铁(集团)公司于1954年首先生产热轧硅钢。1957年钢铁研究总院研制成功 冷轧取向硅钢,到1973年已掌握阿姆柯技术专利要点。1974年武汉钢铁(集团)公司从日本新日铁引进冷轧硅钢制造装备和专利,1979年正式生产11个牌号的冷轧取向及无取向硅钢。 4.1 电工钢的分类及性能 4.1.1 电工钢的分类 电工钢按其成分分为低碳低硅(碳含量很低,硅的质量分数小于0.5%)电工钢和硅钢 两类;按最终加工成形的方法分为热轧硅钢和冷轧硅钢两大类;按其磁各向异性分为取向电工钢和无取向电工钢。 热轧硅钢板均系无取向硅钢,硅钢的磁各向异性是在冷轧后通过二次再结晶过程发展 而成的,因此只有冷轧电工钢才有取向与无取向之分。由于产品的用途不同对磁各向异性的要求不同。在旋转状态下工作的电机要求电工钢磁各向同性,用无取向电工钢制造;变压器在静止状态下工作,要求沿一个方向磁化(轧制方向),用冷轧取向硅钢制造,因此取向硅钢又称变压器钢。 我国电工用热轧硅钢薄板的国家标准号为GB5212—85;从20世纪60年代开始,主要 工业发达国家陆续停止了热轧硅钢板的生产。 我国冷轧晶粒取向、无取向磁性钢带(片)的国家标准号为GB2521—1996。 标准中的牌号表示方法为:以字母W表示无取向钢带(片);以字母Q表示取向钢带(片);以字母G表示取向钢中的高磁感材料。 在一些资料、书籍中,称普通取向硅钢为GO钢,高磁感取向硅钢为Hi-B钢, 电工钢分类见表3—1。 4.1.2 电工钢的性能要求 4.1.2.1 磁性能 电工钢是以其铁损和磁感应强度作为产品磁性保证值的。用户对电工钢的磁性能要求 如下: (1) 低的铁损。铁损(尸t)是由磁滞损耗(Ph)、涡流损耗(Pe)和反常损耗(Pa)三部分组成的。铁损低可节省大量电力、延长电机和变压器工作时间并简化冷却装置。因电工钢的铁损造成的电量损失占一个国家年发电量的2.5%一4.5%,其中变压器约占50%,小电机占30%,镇流器占15%。因此,各国生产电工钢板总是千方百计地降低铁损,并以铁损作为考核产品磁性能的最重要的指标,按铁损值作为划分牌号的依据。 (2) 高的磁感应强度。磁感应强度高,铁芯激磁电流(空载电流)降低,导线电阻引起的 铜损和铁芯铁损降低,可节省电能。当电机或变压器容量不变时,磁感应强度高可使铁芯体积缩小和质量减轻,节省电工钢板、导线等的用量,并使铁芯铁损和制造成本降低,有利于

瑞典SSAB钢厂板坯连铸硅钢生产情况简介

We reserve all rights in this document and in the information contained therein. Reproduction,use or disclosure to third parties without express authority is strictly forbidden. ?ABB (China) Limited; 2005 瑞典SSAB钢厂板坯连铸硅钢生产情况简介 目录 1. 瑞典SSAB硅钢生产简况 (2) 2. SSAB连铸机基本参数 (3) 3. 硅钢板坯等轴晶比例 (4) ABB Automation Technologies AB 2005-03

1. 瑞典SSAB硅钢生产简况 ? 瑞典年生产硅钢为14~15万吨 ? 硅钢品种主要为无取向硅钢和取向硅钢。大部分为半成品,终处理大多由外部公司完成。 ? 硅钢片在单独的轧钢厂生产 ? 大于3%Si的硅钢片主要外购。主要原因是国内的轧钢厂和连铸厂距离大约有250公里,无法进行高牌号硅钢板坯运输(热送)。. ? 瑞典目前连铸机并不是生产大于3%Si硅钢的限制环节。 ? 连铸机为直弧形铸机。 ? 由于硅钢残余元素含量对晶粒组织影响很大,因此对残余元素含量极为重视。 ? 转炉炉后机械扒渣。钢包内加入合成渣,195吨钢包渣量为1200公斤。真空处理至 0.003% C,所有合金均在真空状态加入避免吸氮。 ? 典型合金加入:195T钢包, 5 Ton FeSi, 700 Kg ElMn, 700 kg AL

2. SSAB连铸机基本参数 CC2 CC1 VAI 制造商 VAI 1980 安装年份 1979 8m 半径 8m 结晶器厚度mm 220/290 220/290 宽度mm 900-1700 900-1700 长度mm 785 785 窄面锥度 1.24% 1.24% NKK 液面控制 NKK 28m 冶金长度 28m 30T 中间包容量 30T 1/100 1/100 辊列足辊数量/直径 mm 弯曲段13/150 13/150 弧形段 40/175-230 40/175-230 矫直段13/230 13/230 拉矫辊4/230 5/230 0.9~1.45m/min 拉速220mm 0.9~1.45m/min - 0.78m/min 290mm 凝固终点220, 1.2m/min 23m 23m 290, 0.78m/min - 26m 0.7mm/min 轻压下 0.7mm/m 电磁搅拌无有, ORC1100

高硅钢的轧制工艺

高硅钢的轧制工艺 高硅硅钢片(6.5wt%Si) 由于具有十分优异的软磁性能,被广泛用于制作变压器和电机等机电设备铁芯。高硅钢具有低的中高频铁损,故易于实现高效节能;其磁致伸缩系数近似为零,故可实现清净无噪音;其磁导率很高,故可提高灵敏度。因此,高硅硅钢片特别适合在中高频、低铁损、低噪音条件下应用,是一类有利于环保节能且性能优异的软磁材料。但是,6.5%Si 高硅钢室温脆性大,热加工性能差,难以用通常的热轧、冷轧和退火传统工艺进行生产,这严重影响了其在工业领域的应用。为此,现在正在积极研发针对高硅钢特点的特殊轧制工艺。 有研究表明,含 4%~7%Si 的高硅钢坯,在 900℃以上温度范围内有很好的 加工性能,在900℃以下时加工性能下降,到600℃左右就难以轧制。可见高硅钢带轧制时,存在不可轧制的极限温度。日本 NKK 公司提出一项采用包套轧制法制造高硅钢板的专利,其方法是将一块或数块叠层高硅钢板作为芯材,周围由包覆材料如低碳钢(~0.1%C) 包覆并加以焊封,然后在芯材温度低于900℃时热轧。为便于轧制钢板的剥离,在钢板包覆前需涂上剥离剂,能与钢板表面形成一层绝缘膜,并在轧制温度下不发生分解。常用无机剥离剂如MgO、Al2O3、SiO2、TiO2和 MgPO5当中的一种或数种。包套轧制成品钢带表面形状好,宽度和厚度范围宽,但整个生产过程中工艺控制因素非常复杂和严格,工艺范围窄,因而很难掌握,成本较高,未能实现工业化。 我国北京科技大学通过微合金化并结合适当热处理方式利用传统轧制法制备出了0.03mm 厚 6.5%Si 高硅钢。通过添加微量 Al、Ti、Ni、B 缩小高硅钢的 B + DO3有序相区,改善晶界间的结合,避免高脆相的形成,提高塑性和机械加2 工性能。通过铸锭退火、自由锻造、控温热轧(1050 ~850℃)、热轧退火、控温温轧(350~650℃) 、温轧热处理、反复冷轧制备出了 0.03~0.05 mm 厚的6.5 %S i 高硅钢薄板,在 H2+ N2保护气氛中退火得到P0. 07 /40k为 26.1W/kg的高频铁损。 除了改进传统轧制之外,人们也在积极研发新的制备方法。粉末压延法就是其中之一。粉末压延工艺的要点为: 将颗粒尺寸为150μm的高纯铁粉和纯度为 9 9.9 %、颗粒尺寸为60μm的硅粉,按 m(Fe) ∶ m(Si) = 93.5∶ 6.5(重量百分比) 称

硅钢片模具介绍

2.2设计任务书 图示冲裁件,材料为硅钢板,厚度为0.5mm,生产批量为80万/年。试制定工件冲压工艺规程、设计其模具、编制模具零件的加工工艺编制。 图1 产品零件图 零件名称:铁心片 生产批量:80万/年 材料:硅钢板 材料厚度:t=0.5mm

3.冲压工艺与模具设计 3.1 冲压件工艺分析 ①材料:该冲裁件的材料硅钢板,具有较好的可冲压性能。 ②零件结构:该冲裁件结构简单,只有两个直径为7的孔,比较适合冲裁。 ③尺寸精度:零件图上所有未注公差的尺寸,属自由尺寸,可按IT14级确定工件尺寸的公差。查公差表可得各尺寸公差为: 零件外形:750 74 .0 -mm 52.50 74 .0- mm 22.50 52 .0 - mm 150 43 .0- mm d= 0 43 .0- 12+mm 11.25043.0-mm 结论:适合冲裁。 3.2 工艺方案及模具结构类型 该零件包括落料、冲孔两个基本工序,可以采用以下三种工艺方案: ①落料—冲孔,采用单工序模生产。 ②冲孔-落料复合冲压,采用复合模生产。 ③冲孔-落料连续冲压,采用连续模生产。 方案①模具结构简单,但需要两道工序、两套模具才能完成零件的加工,生产效率较低,难以满足零件大批量生产的需求。由于零件结构简单,为提高生产效率,主要应采用复合冲裁或级进冲裁方式。 方案②只需要一副模具,冲压件的形位精度和尺寸精度容易保证,生产效率也高尽管模具结构较方案一复杂,但由于零件的几何状态简单对称模具制造并不困难。 方案③也只需要一副模具,生产效率也很高但零件的冲压精度较差。欲保证冲压件的形位精度,需要在模具上设置导正销导正,故模具制造、安装较复合模复杂。 最后确定用复合冲裁方式。

先进的硅钢涂层技术

先进的硅钢涂层技术 编者按:无取向(NGO)硅钢市场需求高级涂层控制技术和涂层产品。过去安装的退火涂层生产线因为涂层部分的过时设计难以满足高的质量要求。高精度涂层生产设备确保了最好的结果,其被广泛用于包括无取向硅钢产品的涂层生产线中。安装这套工艺设备可以只需短时间停机和适量的投资来替换常规涂层设备。 从汽车、电力到基础设施的很多领域都使用无取向硅钢,其作为电机、发电机和变压器的铁芯。大厚度范围的电工绝缘涂层薄板的工业需求明显增加,使其制造技术成为在市场竞争中发展的关键因素。目前市场上需求涂层厚度在0.5μm到8μm之间的无取向硅钢。 随着产品质量标准和要求的不断提高,以及材料的节省与环保要求,无取向硅钢的生产者意识到挑战和责任。 在1980年以前安装的典型的涂层生产区装备了挤干辊涂机。其包括一系列在带钢的两面喷洒涂层材料的喷嘴,以及一对使涂料沿带宽分布的挤干辊。这种技术不能精确调节涂层厚度,还会产生大量蒸汽,并且因不能够有效再循环使用剩余涂料溶液而造成很大浪费。而且,存在涂料汇集板带边部导致膜厚度增加的问题。 为使钢铁制造商更方便的满足市场需求,设计了一种高精度涂层生产设备,涂层厚度在线测量,在涂层过程中有着精确的控制。 高精度涂层生产工艺包含三个主要设备: ——自动四辊式涂层机; ——干涂层厚度测量传感器; ——涂层厚度控制系统。 1自动四辊卧式涂层机 四辊水平涂层机是全自动化涂层机,具有很高操作灵活性,并能够在带钢的一侧或两侧精确计量涂料量。 该涂层机可以在前向和反向程序模式下工作,具有大涂层厚度范围功能。一般前向程序模式用于薄涂层或高粘度涂层,而反向程序模式用于厚涂层或低粘度涂层。 带有两个涂机的涂层段允许一台涂机在工作位置,而另一台处于维修状态;每个涂机可以不切断带钢而离线维修(例如换辊)(图1)。 自动涂层机主要特点包括: ——设计底座支撑构架用来减少操作过程中的震动。 ——侧架和辊面之间空间大,使得清洗和维修便捷。 ——随机配给涂层溶液和循环系统,使得与循环槽循环的涂液损耗降至最低。 ——在板带接头、维护和未对准补偿时,精确控制调节涂敷辊位置的电动伺服驱动蜗轮装置。 ——控制涂层厚度的基本参数—涂料辊与拾料辊间的压力,由伺服电机设定,并且通过测压元件连续地测量。这确保了精确的工作辊位和相互位置。 ——辊子表面进行了修磨,寿命更长。 2涂层溶液的准备 两个独立的准备系统允许由一种涂层液转换为另一种涂层液,同时使得未涂

(完整word版)硅钢片的介绍(普及知识)

硅钢(silicon steel) 含硅量0.5%~4.8%的铁硅合金。是电工领域广泛使用的一种软磁材料。电工用硅钢常轧制成标准尺寸的大张板材或带材使用,俗称硅钢片,广泛用于电动机、发电机、变压器、电磁机构、继电器电子器件及测量仪表中。 硅是钢的良好脱氧剂,它与氧结合,使氧转变为稳定的不为碳还原的SiO2,避免了因氧原子掺杂而使铁的晶格畸变。硅在α铁中成为固溶体后使电阻率增加,同时有助于将有害杂质碳分离出来。因此,一般含杂质的铁加入硅后能提高磁导率、降低矫顽力和铁损。但含硅量增加又会使材料变硬变脆,导热性和韧性下降,对散热和机械加工不利,故一般硅钢片的含硅量不超过4.5%。 硅钢片分冷轧、热轧两种,使用较多的是冷轧硅钢片。冷轧硅钢片沿轧制方向有优良的磁性能,不仅在强磁场中具有高饱和磁通密度和低铁损,而且在弱磁场中也有良好的磁性(初始磁导率大)。这是由于冷轧工艺过程使钢片中杂质含量降低,并在钢片中造成粗大晶粒,致使磁导率增大,磁滞损耗减小。 硅钢片的主要品质特性有铁损值、磁通密度、硬度、平坦度、厚度均匀性、涂膜种类及冲片性等。以下针对各项品质特性加以说明。 1.铁损值 硅钢片在某一特定频率的交流磁场下,磁化到特定的磁通密度时,每单位重量之硅钢片所损失的能量,称为铁损值。通常所用的交流磁场频率为50或60赫兹,而所达到的磁通密度通常为1.5或1.7特斯拉。常用的铁损值单位是每公斤或每磅硅钢片所损失的瓦特值,用Watt/kg或Watt/lb表示。硅钢片的铁损值来源包括磁滞损、涡电流损和异常涡电流损三部份。硅钢片在磁化的过程中,会产生磁滞的现象。磁滞损即为B-H磁滞曲线所包涵的面积。硅钢片的涡电流损起源于在交流变化的磁场,因法拉第定理的影响,硅钢片内部产生诱导电压,依照奥姆定律,电压在硅钢片内部引起诱导电流,进而造成硅钢片的焦耳热,这项能源损失称为涡电流损。根据古典电磁学理论,涡电流损和钢片的厚度、电阻系数、磁通密度和频率有关。而涡电流损和钢片厚度的平方成正比,和钢片的电阻系数成反比,因此,高级的硅钢片,其厚度倾向较薄,而为了提高钢片的电阻系数,则在硅钢片中添加硅、铝等元素。铁损值减去磁滞损和涡电流损后的能源损失,称为异常涡电流损。学者认为异常涡电流损是由于磁域移动和转动所引起的微观涡电流损失,因此,异常涡电流损和磁域大小有关。若硅钢片的磁域大,当磁化时,其旋转较快,微观涡电流损失增加。铁损值是硅钢片最重要的性质指标,也是各种工业标准对硅钢片分级的规格依据。铁损值愈低,表示品级愈高,其能源效率愈高。 2.磁通密度 磁通密度是硅钢片的另一项重要的电磁特性,它表示硅钢片被磁化的难易度。在某一特定频率之磁场强度下,单位面积所通过的磁通量,称为磁通密度。通常硅钢片的磁通密度是在频率50或60赫兹,外加磁场5000A/m的条件下测得,称为B50,其单位为特斯拉(Tesla)。磁通密度和硅钢片的集合组织、杂质、内部应力等因素有关。磁通密度直接影响到马达、变压器等电机设备的能源效率。磁通密度愈高,单位面积所通过的磁通量愈大,能源效率愈佳,因此,硅钢片的磁通密度愈高愈好,通常,规格只要求磁通密度的最低值。 3.硬度 硬度是硅钢片的品质特性之一,现代化的自动冲床进行冲片时,对硬度的要求更为严格,硬度太低时,不利于自动冲床的送料作业,同时容易产生过长的毛边,增加组装时的困难。为了满足上述需求,硅钢片的硬度必须高于某一硬度值,例如,50AI300硅钢片之硬度通常以不低于HR30T硬度值47为宜。硅钢片的硬度随着品级升高而增加,通常,高品级的硅钢片,其硅含量添加愈多,合金固溶强化的效果,使得硬度也愈高。 4.平坦度 平坦度是硅钢片的重要品质特性。良好的平坦度有利于冲片作业和组装工作。平坦度和轧延及退火技术有直接密切的关系,提升轧延退火技术和制程有利于平坦度,例如使用连续退火裂程,其平坦度优于批式退火制程者。 5.厚度均匀性 厚度均匀性是硅钢片一项非常重要的品质特性。如果的厚度均匀性不良,钢片中央与边缘的厚度差异太大,或钢片长度方向钢片厚度变异太大,都会影响到组装后的铁心厚度。不同的铁心厚度,其导磁特性变异也大,直接影响到马达、变压器的特性,因此,硅钢片的厚度变异愈小愈好。钢片的厚度均匀性和热轧、冷轧技术与制程有密切的开系,提升轧延技术能力才能降低钢片的厚度变异量。

冷轧硅钢片涂层绝缘性

冷轧硅钢片涂层绝缘性 降低电能耗是当今世界工业面临的重大任务,因此,对具有非常低的铁损和高磁导率的高效铁芯材料的需求日益迫切。无取向电工钢是广泛用作旋转机器和静电机器的铁芯材料,另外,随着电机单容量的不断增加,为了减少电工钢涡流损失,提高其电磁性能,就需要在其表面覆具有一定张力薄而且均匀的绝缘学涂层。涂层作为一种改善材料性能的有力手段正日益受到大力推崇。在制造电机、家用电器和变压器铁芯时,需要将电工钢板冲剪成铁芯形状的胚料,通过氩弧焊和热铸铝将叠好的预定数量的芯片边缘固定。因此,电工钢表面涂层不仅需要具有良好的绝缘性和较高的层间电阻,而且还必须同时具有好的冲剪加工性、附着性、焊接性、耐油性、能经受消除应力退火和600 ℃注铝温度。 冷轧无取向电工钢表面涂层主要包括:无机涂层、有机涂层、半无机涂层3大类。总的发展趋势是:有机涂层被逐渐淘汰,无机涂层将逐步取代半无机涂层。但是,由于无机涂层本身性质和各方面的条件制约,目前,国际上电工钢制造厂商通常使用较多的仍然是半无机涂层。 一、有机涂层 中国的电工钢表面涂层研究起步较晚,落后于世界先进水平。电机、变压器的生产厂商仍采用有机电工钢涂层,在很大程度上影响了中国机电设备在国际市场上的竞争能力。化学工业的发展为电工钢表面涂层技术的进步提供了广阔的前景。中国国内有机涂层经历了早期的沥青天漆1611#,进而发展到环氧的酚醛漆9162#,目前,应用最多的是二甲苯改性醇酸漆9163#。尽管涂覆这些有机漆后形成的有机涂层成膜性能良好,具有较好冲剪加工性,但是也存在着许多不可克服的缺点,比如: (1)涂层厚(10~15μm),焊接性差,铁芯叠装系数低(92%)。 (2)涂层热收缩性大,铁芯易松动,尺寸稳定性差。 (3)涂层硬度低(一般在0.9左右),有机溶剂毒性大,价格高,易造成浪费和环境污染,影响操作工人的身体健康。 (4)层间电阻随运行逐渐降低,若遇到铁芯局部过热,易发生碳化,耐热性差。目前,世界各大电工钢生产厂商的表面涂层技术都向无机或半无机方向发展。无机涂层具有优异的耐热性,绝缘性和焊接性,但冲剪加工性、附着性差。而半无机涂层则是将有机物质加入到无机涂料中来改善冲剪加工性、附着性,同时,通过控制有机物质含量得到好的耐热性和焊接性。这种涂层具有涂膜硬度高,热收缩性小,尺寸稳定性好,耐热性好,水为溶剂,环保无污染。 二、无机涂层 在成品电工钢板上涂覆一层薄的绝缘材料,较善遍应用的是:水玻璃、滑石、氧化镁、硼砂、磷酸盐、铬酸盐等。其中无机磷酸盐类涂料是主要品种。无机磷酸盐类可以为涂层提供优良的表面电阻率和耐热性。但是,在冲剪叠片时会对冲膜造成过分的磨损,而且不易和电工钢板产生良好的附着性。美国专利2 753 203报道了一种含有7%~50%游离酸的磷酸溶液,多达150质量份的胶体二氧化硅和多达25质量份的铬酸酐溶液,这种混合液可用于电工钢表面形成无机绝缘涂层。

相关主题
文本预览
相关文档 最新文档