当前位置:文档之家› 锚杆支护快速掘进技术分析

锚杆支护快速掘进技术分析

锚杆支护快速掘进技术分析
锚杆支护快速掘进技术分析

锚杆支护快速掘进技术分析

摘要在煤巷掘进中,推广煤巷锚杆支护快速掘进技术具有重要的现实意义。现阶段,影响煤巷锚杆支护快速掘进技术的因素是多方面的,主要表现在锚杆支护设计方法、煤矿矿区地质条件、锚杆施工工程质量、支护工作人员技术四个方面。为了应对这些问题,提高煤巷掘进速度,今后在实际工作中需要采取相应的策略,科学设计锚杆支护方法、推进组合式锚杆支护体系、加强施工工程质量管理、注重锚杆支护人员的培训。

关键词锚杆支护;快速掘进;支护方法;组合式支护;工程管理;人员培训

中图分类号td3 文献标识码a 文章编号 1674-6708(2012)78-0150-02

0 引言

煤巷支护最先使用的是木支护技术,后来支护技术不断发展,出现了锚杆支护技术。与其它支护技术相比而言,锚杆支护技术能够显著的提高支护效果,增进支护技术,减小作业人员的劳动强度,在实际运用中具有重要的现实意义。

1 煤巷锚杆支护快速掘进技术的作用

在煤矿的开采加工中,快速掘进是保证煤矿能够稳定生产的基础。而要保证煤矿快速掘进,就必须充分发挥现代电气化与机械设备的作用。而要使现代电气化与机械设备能够安全可靠的运行,就

基坑锚杆支护(确定方案)

深基坑支护施工组织设计方案 一、工程概况 亚洲新世界工程位于空港北区通达路1号,总建筑面积约147000㎡,其中地下一层,地上6-12F。本工程基础为砼筏板梁基础,主体为砼框架剪力墙。本工程占地约17000㎡,东西宽约90m,南北长190m。基础埋深-6.25m、-5.75m,基坑开挖深度为自然地坪下5.9m、6.4m,支护面积约为3600㎡。 二、场地工程水文地质条件 根据业主提供的地质勘察报告,现场地质条件为: 1、杂填土、厚度0.1 m -1.3m . 2、湿馅性粉土,厚度0.8m-3.4 m,f ak=125Kpa。 3、粉土,厚度8.0m-12.0,f ak=120Kpa。 4、粉砂、厚度8.5m-15 .0m,f ak=165Kpa。 5、粉土,厚度5.5-15.0m,f ak=165Kpa。 6、粉质粘土,厚度1.8 m -15m,f ak=190Kpa。 7、粉土,厚度7m,f ak=200Kpa。 8、开挖深度内有地下水,区域地下水位为1.9m——5.5m。 三、主要设计依据 1、《建筑基坑支护技术规程》(JGJ120-99); 2、《基坑土钉支护技术规程》(CECS96:97); 3、建设单位提供的相关图纸及地质勘察报告; 4、现场踏勘成果及同类型工程施工经验。 四、支护设计方案

1、本工程基坑已经开挖完成,未有按照支护标准修坡,现机械配合人工重新修坡,产生的工程量与甲方现场签证,现场放坡、修坡施工完成后,方可进行支护。 2、本工程基坑深-5.9 m(包括150mm厚混凝土垫层),-6.4m(包括150mm厚混凝土垫层)。经多个方案比较,最后决定采用土钉墙支护。土钉水平间距1.3m,竖向1.30m,土钉杆体为1φ25螺纹钢,土钉注浆采用普通硅酸盐42.5#水泥,水灰比0.5,注浆量16Kg/m。土钉面层厚100mm,喷射砼强度等级C25,面层网片筋φ6@200×200,土钉面层向上翻1m,加强筋φ14@1300×1300斜向,网片筋节点采用绑扎,分段铺设。网片筋与加强筋之间要搭接10d并焊接。土钉采用洛阳铲成孔,成孔直径120mm。见下图。

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

锚杆支护理论计算方法

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟;

四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度 宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm); d1——锚杆钢筋直径走私或锚索体直径(cm ); d2——锚杆孔直径(cm ); fst ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2);

锚杆支护机理

锚杆支护技术在煤矿的广泛应用,推动了锚杆支护理论的研究工作,国内外在这方面做了大量的工作,取得了许多有价值的成果,形成了以下3大类较成熟的锚杆支护理论:一是基于锚杆的悬吊作用而提出的悬吊理论、减跨理论等;二是基于锚杆的挤压、加固作用提出的组合梁理论、组合拱理论以及楔固理论等;三是综合锚杆的各种作用而提出的松动圈支护理论、锚固体强度强化理论、锚注理论、最大水平应力理论以及锚杆桁架支护理论等。 悬吊理论认为,巷道开挖以后,由于应力状态的改变,围岩中一定区域内将可能发生岩石的松动和破裂现象、或由于被裂隙切割的岩块因失去足够约束而成为关键块体即出现危岩,此时锚杆的作用就是利用其抗拉能力将松软岩层或危岩悬吊于稳定岩层之上。该理论适用于锚杆长度范围内赋存有稳定岩层或稳定岩层结构的条件。 减跨理论包括两方面的内容:一是基于松散介质的自然冒落拱理论提出的锚杆作用原理,其依据是冒落拱高度与跨度成正比关系,认为利用锚杆的悬吊作用可增加顶板岩层的支点,从而减小支点间的跨距,进而达到降低冒落拱高度、减少所需支护强度的目的;二是基于梁或板的理论提出的锚杆作用原理,即当巷道顶板为层状岩层时,其变形特性近似于梁或板的性质,此时锚杆的作用是缩短梁或板的跨距,以减小其中因横力而产生的弯矩及因弯矩产生的弯曲应力,尤其是弯曲拉应力,从而提高顶板的稳定性。从以上两种情况可以看出,减跨理论中锚杆的作用机理以及适用条件等同于悬吊理论,即需要以稳定岩层或稳定岩层结构为依托。 组合梁理论适用于顶板由多层小厚度连续性岩层组成的巷道,其原理是通过锚杆的轴向作用力将顶板各分层夹紧,以增加各分层间的摩擦作用,并借助锚杆自身的横向承载能力提高顶板各分层间的抗剪切强度以及层间粘结程度,使各分层在弯矩作用下发生整体弯曲变形,呈现出组合梁的弯曲变形特征,从而提高顶板的抗弯刚度及强度。 挤压加固理论适用性较强(几乎适用于所有围岩条件)。对于拱形巷道,其原理是通过锚杆的轴向作用力在围岩中形成拱形压缩带,即通过锚杆的轴向作用力将围岩中一定范围岩体的应力状态由单项(或双向)受压转变为三向受压,从而提高其环向抗压强度指标,使该压缩带既可承受其自身重量,又可承受一定的

锚杆支护技术管理

锚杆支护技术管理第一节 总则 第1条锚杆、锚喷支护(以下简称锚杆支护)是煤矿井巷工程一种重要的支护形式,它以快速、主动、有效的支护特性已得到广泛推广应用。 第2条锚杆的种类 根据xx矿区开采的实际情况,规定允许使用的锚杆种类包括以下 6 种: 1、MSGLD-335 等强螺纹钢式树脂锚杆; 2、MSGLW-500 无纵肋螺纹钢式树脂锚杆,适用于埋深大于 600 米的巷道; 3、MSGLW-600 无纵肋螺纹钢式树脂锚杆(原高强度高韧性抗冲击锚杆)适用于埋深大于 800 米及地压较大的巷道; 4、MSGLD-400/600(X)等强螺纹钢式树脂锚杆(原热轧细牙等强螺纹钢式树脂锚杆),屈服强度 400MPa 适用于埋深不大于 800 米的巷道或埋深大于800 米的巷道两帮;屈服强度 600MPa 及其以上适用于埋深大于 800 米及地压较大的巷道; 5、缝管锚杆(只限于回采巷道护帮或断层破碎带临时支护); 6、玻璃钢锚杆(允许在使用时间较短的,围岩稳定的切眼两帮及条件适宜的煤帮使用); 7、使用本规定以外规格型号的锚杆,必须经过论证、安全性能检验和鉴定,并制定安全措施,报集团公司备案后进行试验。 第3条锚杆的锚固方式 1、端锚:锚杆的锚固长度不大于钻孔长度的1/3。

2、加长锚:树脂锚固段长度介于端锚和全锚之间。 3、全锚:锚杆的锚固长度不小于钻孔长度的90%;水泥锚固段长度为钻孔长度的100%。 一般情况下应采用加长锚;Ⅲ~Ⅴ类煤巷顶板和深部全岩巷道、有冲击地压危险的巷道严禁使用端锚;推广应用全长锚固技术。 第4条锚杆支护材料规格、性能 1、树脂锚杆金属杆体及其附件应符合中华人民共和国煤炭行业标准MT146.2-2011 要求。 规格说明: MS G L 口—口/口×口(X) (热轧细牙) 杆体长度,mm 杆体公称直径,mm 材料屈服强度,MPa D 代表等强;W 代表无纵 肋螺纹钢式 杆体 树脂锚杆 2、MSGLD-335 等强螺纹钢式树脂锚杆成套外形见图 1,杆体外形见图2,技术性能及外形尺寸规定见表 1、表 2。

喷锚锚杆基坑支护方案

山西星睿岩土科技有限公司 太原保利西江月项目一标段基坑支护工程 施工方案 审 批 人: 审 核 人: 编 制 人: 山西星睿岩土科技有限公司 二〇一七年十二月

目录 第一章编制依据................................................................................................................ - 1 -第二章工程概况................................................................................................................ - 2 - 一、工程概况............................................................................................................ - 2 - 二、工程地质条件及水文地质条件........................................................................ - 3 -第三章设计方案................................................................................................................ - 3 -第四章施工计划................................................................................................................ - 4 - 一、施工进度计划.................................................................................................... - 4 - 二、设备投入计划.................................................................................................... - 4 - 三、材料准备与供应计划........................................................................................ - 4 -第五章施工工艺技术........................................................................................................ - 5 - 一、施工顺序............................................................................................................ - 5 - 二、土钉施工方案.................................................................................................... - 6 - 1、概述.............................................................................................................. - 6 - 2、工艺流程...................................................................................................... - 6 - 3、土钉施工...................................................................................................... - 6 - 三、喷射混凝土施工方案........................................................................................ - 7 - 1、工艺流程...................................................................................................... - 7 - 2、施工工艺技术.............................................................................................. - 7 - 3、施工质量要求及验收标准.......................................................................... - 8 - 四、锚索施工方案.................................................................................................... - 9 - 1、概述.............................................................................................................. - 9 - 2、工艺流程...................................................................................................... - 9 - 3、锚索施工...................................................................................................... - 9 - 4、质量控制.................................................................................................... - 11 - 五、降水井施工方案.............................................................................................. - 12 -

巷道锚杆支护技术参数的合理选择与设计(孙巧龙)

巷道锚杆支护技术参数的合理选择与设计 孙巧龙 (淮北朔里矿业有限责任公司,安徽淮北235052) 【摘要】本文浅析煤矿巷道锚杆支护高应力巷道影响锚杆支护的因素、煤巷锚杆支护的关键问题和煤巷锚杆支护的合理设计。 【关键词】锚杆支护;合理设计;选择;巷道 1引言 在煤矿巷道的锚杆支护中,由于其对破碎岩体的加固效果好,又优于U型钢被动支护,加上劳动强度低、经济效益显著的特点,因而在煤矿中得到了广泛的应用。煤矿软岩地层分布十分广泛,75%以上的采准巷道还要经受采动的频繁影响,所以在设计服务年限内的大部分巷道围岩变形量都比较大,严重的冒落无法再利用。因此,煤矿巷道锚杆支护技术研究的重点应是有效控制高应力、软岩和采动等大变形量围岩特性,以保障煤矿在安全、经济的良好环境下持续生产。 2高应力巷道影响锚杆支护的因素 2.1巷道断面 巷道锚杆支护过程中,对于深部高应力的地点,在进行断面选择时,必须根据顶底板岩性和巷道服务年限原则考虑选择。①对服务年限较长的开拓、准备巷道,应尽量选用承压效果好的圆弧拱断面。②对回采、顶板完整性较好的巷道,可采用梯形断面;复合顶板或破碎顶板的巷道,应采用承压性效果较好的斜切圆拱形断面。 就斜切圆拱形断面来说,斜切圆弧拱高一般应为巷道宽度的2/5—1/4,上肩窝部高度达到煤层顶板,下帮墙高根据设计要求进行设计。拱高控制可在掘进过程中通过控制中部高度实现。根据众多的实验证明,其断面承压效果要比梯形断面好。但是,岩石掘进工作量大是其缺点,并在一定程度上会影响掘进速度。 2.2锚杆性能 在锚杆的种类选择上,主要考虑锚杆的材质、粗度、延伸性、让压性能和预紧力等参数特性比较选择,其次是考虑锚固剂的选择。随着各种锚杆的不断出

锚杆(锚索)支护设计公式

锚杆(锚索)支护设计技术参数 一、锚索设计承载力 钢绞线直径为φ15.24mm 时230kN ,钢绞线直径为φ17.8mm 时320kN ,钢绞线直径为φ21.6mm 时454kN 。 二、锚索设计破断力 钢绞线直径为φ15.24mm 时260kN ,钢绞线直径为φ17.8mm 时355kN ,钢绞线直径为φ21.6mm 时504kN 。 三、锚杆(锚索)支护参数校核 1、顶锚杆通过悬吊作用,帮锚杆通过加固帮体作用,达到支护效果的条件,应满足:L ≥L 1+L 2+L 3 式中L ——锚杆总长度,m ; L 1——锚杆外露长度(包括钢带、托板、螺母厚度),m ; L 2——有效长度(顶锚杆取围岩松动圈冒落高度b ,帮锚杆取帮破碎深度c ),m; L 3——锚入岩(煤)层内深度,m 。 其中围岩松动圈冒落高度 b=顶 f H B ??? ? ? -+?245tan 2ω 式中B 、H ——巷道掘进荒宽、荒高; 顶f ——顶板岩石普氏系数; ω——两帮围岩的似内摩擦角,ω=()顶f arctan 。 ? ?? ? ? -?=245tan ωH c 2、校核顶锚杆间、排距:应满足 γ 2kL G a < 式中a ——锚杆间、排距,m ;

G ——锚杆设计锚固力,kN/根; k ——安全系数,一般取2;(松散系数) L 2——有效长度(顶锚杆取b ); γ——岩体容重 3、加强锚索长度校核,应满足d c b a L L L L L +++= 式中L ——锚索总长度,m ; a L ——锚索深入到较稳定岩层的锚固长度,m ; c a a f f d K L 41? ≥ 其中: K ——安全系数; 1d ——锚索直径; a f ——锚索抗拉强度,N/㎜2; c f ——锚索与锚固剂的粘合强度,N/㎜2;(10)? b L ——需要悬吊的不稳定岩层厚度,m ; c L ——托板及锚具的厚度,m ; d L ——外露张拉长度,m ; 4、悬吊理论校核锚索排距: L ≤nF 2/[BH γ-(2F 1sin θ)/L 1] 式中 L---锚索排距,m ; B---巷道最大冒落宽度, m ; H---巷道最大帽落高度, m ;(最大取锚杆长度) γ---岩体容重,kN/m 3(包括顶煤+直接顶) L 1---锚杆排距, m, F 1---锚杆锚固力, kN;70

锚杆支护技术样本

锚杆支护技术

锚杆支护技术 一、锚杆支护技术现状和展望 锚杆支护技术是煤矿支护技术改革的发展方向, 是煤矿继推广综合机械化采煤技术又一重大推广技术。中国在上世纪80年代开始研究应用锚杆支护技术以来, 不论在理论上, 还是在实践应有中已取得了长足的进展, 促进了中国煤炭工业的发展。 锚杆支护是由锚固在巷道四周钻孔内的一系列杆件 ( 木质件、金属件、钢筋混凝土件和聚合物件等) 系统组成的。这些杆件配以支撑件和背板( 也能够不用) , 靠它们的锚固力和向岩体稳定部分的悬吊作用, 防止破碎岩石冒落。 用预拉紧方法安装的锚杆, 提高了岩石分层之间的摩擦阻力, 同时将两支撑点间的岩层夹紧, 以岩梁和岩拱的形式构成承载结构。尽管加固的岩梁比未加固的岩梁呈现出明显的稳定性, 可是仍不能准确量测出影响加固岩层稳定性单个分层缝合效果的量值。现代锚杆支护理论认为, 岩层分层之间的摩擦作用具有重要意义, 主要有以下几个方面。 ①巷道上方的松软岩层被锚杆固结到其上部坚固的岩层上, 松软有裂隙岩层的几个分层, 彼此之间被锚杆夹紧形成梁和拱形式的承载结构。 ②松软不稳定的岩石分层, 彼此之间夹紧并被锚杆固结在上部坚固岩层上。 ③在掘进巷道时, 被破坏的有裂缝的岩石分层被锚杆夹紧并被悬挂在自然平衡拱上。

④不稳定的有裂缝的岩层被锚杆的联接部件托住并被悬挂于自然平衡拱的拱脚。 ⑤不稳定的岩石分层被锚杆夹紧并悬吊于自然平衡拱的拱脚。 在采矿实践中, 锚杆支架分单体锚杆支架和组合锚杆支架两种。单体锚杆支架指安设在巷道中的锚杆, 彼此之间没有力学科系。组合锚杆支架包括钢梁、钢带、角钢、槽钢等承托顶板元件, 把两个或几个锚杆联成统一的整体。 锚杆支架按用途分为临时锚杆支架和永久锚杆支架。 按作用原理分为主动锚杆和被动锚杆。主动锚杆预先张紧装入钻孔中, 以提高抵抗被加固岩体拱曲性和分层之间相对位移的能力。随着锚杆预应力的加大, 相应增加了岩层分层面之间的摩擦力, 提高了巷道的稳定性。安装被动锚杆时不给杆体以预应力, 因此就比主动锚杆安装密些, 其典型的有全长锚固的螺纹锚杆、钢筋混凝土锚杆、膨胀式锚杆和玻璃钢锚杆等。 按工作特性锚杆又分为刚性延伸和有限延伸锚杆。延伸锚杆靠套管能够伸长500~700毫米。有限延伸锚杆与延伸锚杆不同, 只能伸长60~140毫米。 按杆体材料锚杆又分为木锚杆、竹锚杆、金属锚杆、混凝土锚杆和树脂锚杆等。而按杆体构造型式分为管式锚杆、杆式锚杆、钢丝绳锚杆、组合锚杆和多条杆的锚杆等。 以煤巷和半煤巷为主的采准巷道, 其断面一般为矩形、梯形或近似梯形的四边形, 不能形成近似自然冒落拱的支撑体系。这些巷道均要受到采动影响, 巷道位置改变的余地很小, 巷道围岩强度低, 顶板岩石一般是层状特征。以前采准巷道多采用棚子支护, 棚子支护不可能紧贴围岩, 形成等来压, 即所得的被动支护, 锚杆支护是完全不同的一种支护方式, 它利用锚固剂、

锚杆支护的发展现状

锚杆支护技术的应用现状及发展趋势 摘要 基于国内外大量而广泛的锚杆支护技术的应用与研究,锚杆支护的优越性越来越得到认可,本文阐述了锚杆支护技术及其分类,总结了锚杆支护技术的作用原理,并对国内外锚杆支护的现状做了初步分析。运用支护设计中常用理论及方法,对锚杆支护的优缺点进行了分析和评价,高效机械化掘进与支护技术是保证矿井实现高产高效的必要条件,也是巷道掘进技术的发展方向。同时对实际支护工程中的某些不足进行了具体讨论,并对未来的发展趋势进行了初步分析。 关键词:锚杆支护;支护原理;应用现状;发展趋势

摘要 ··································································································· I 一、概述 (1) 二、锚杆支护技术的概念及其分类 (1) (一)锚杆支护技术 (1) (二)锚杆的分类 (2) (三)锚杆支护适用条件及优缺点 (6) (四)锚杆支护的设计与施工 (6) 三、锚杆的支护原理 (7) (一)目前,已经被广为接受的锚杆支护理论主要有如下几种: (7) (二)近年来,又提出了新的支护理论,主要有以下几种: (9) 四、国内外锚杆支护技术的应用现状 (10) (一)国外锚杆支护技术的现状 (10) (二)国内锚杆支护的现状 (12) (三)国内外锚杆支护技术的对比 (12) 五、锚杆支护技术发展趋势 (13) (一)锚杆支护技术的改进 (13) (二)锚杆支护技术的发展趋势 (15) 参考文献 (16)

一、概述 锚杆支护作为岩土工程加固的一种重要形式,由于其具有安全、高效、低成本等优点,在国际岩土工程领域得到了越来越多的应用。1872年,英国北威尔士的煤矿加固工程中首次采用钢筋加固页岩之后,1905年美国矿山中也出现了类似的加固工程。到了20世纪40年代,锚杆支护在地下工程中的应用在国外得到了迅猛发展。 目前,在澳大利亚和美国等国的地下工程支护中,锚杆支护已经占到了接近100%。我国于20世纪50年代开始试用锚杆支护技术,至70年代前期还处于探索阶段,直到1978年才开始重点推广,80年代开始向英国学习锚杆支护技术后推广到煤巷支护,90年代又向澳大利亚学习引进成套先进的锚杆支护技术,目前已得到较广泛的推广和应用。在一些矿区的锚杆支护巷道比例达到90%以上,有些矿井甚至达到了100%,取得了较好的技术与经济效益。国内现有楔缝、涨壳、倒楔锚杆、钢丝绳或钢筋砂浆锚杆、木锚杆、竹锚杆、内涨锚杆、管缝锚杆、树脂锚杆、水泥锚杆、爆扩锚杆、预应力注浆大锚索等十几个系列。 由于各种锚杆的构造不同,锚杆作用机理差异甚大,国内外大量工程实践证明,各种不同种类锚杆,在不同的地质条件下,有不同的“支护”效果。国内外锚杆支护成功的经验表明,合理的锚杆支护设计及详细的监测分析,不仅可保证回采巷道的安全可靠,而且可取得显著的技术经济效益和社会效益。 二、锚杆支护技术的概念及其分类 (一)锚杆支护技术 锚杆支护技术就是在土层或岩层中钻孔,埋入锚杆后灌注水泥(或水泥砂浆、锚固剂),依靠锚固体与岩层之间的摩擦力、拉杆与锚固体的握裹力以及拉杆强度共同作用,来承受作用于支护结构上的荷载。通过锚杆的轴向作用力,将杆体周围围岩中一定范围岩体的应力状态由单向(或双向)受压转变为三向受压,从而提高其环向抗压强度,使压缩带既可承受其自身重量,又可承受一定的外部载荷,使其有效地控制围岩变形。 锚杆支护是在边坡、岩土深基坑等地表工程及隧道、采场等地下施工中均广

基坑支护锚杆工程承发包合同-(优质文档)

合同编号:__________ 基坑支护锚杆工程承发包合同 甲方:_________________________________ 乙方:_________________________________ 20____年___月___日

发(总)包单位:(甲方)________________________ 承(分)包单位:(乙方)________________________ 根据_______________和《中华人民共和国经济合同法》,以及有关规定,结合本工程的具体情况,双方经充分协商,签订本合同,共同遵守。 第一条工程名称:支护锚杆工程 建设地点:_____________________________ 第二条建设规模、面积(工程量)和承发包工程的范围及内容: 本工程包括(按照图纸挡施1,2计算): 1.基坑东侧锚杆施工,边长______米,锚杆______条。 2.基坑南侧锚杆施工,边长______米,锚杆______条。 两项合计,锚杆______条,总工程量为______延米。 3.锚杆孔径为φ140,锚杆长分别为10,12,16,20米,锚杆主筋采用1φ25或1φ40。工作内容包括搭设平台架、锚杆钻孔、锚杆设置及灌浆。 第三条本合同所承包工程的工期定为______个工作天,工期计算的起止时间是: ______年____月____日开工,______年____月___日竣工。 在履约过程中,根据变更设计所影响的工期和甲方责任、不可抗力所延误的工期等因素,经甲、乙方签证认可后,进行调整,从而最后确定竣工日期,乙方应按此竣工日期竣工。 第四条工程质量标准及保修条件、期限,按本条第(一、二)项执行: (一)按照国家及施?市的有关规定执行。 (二)按照国家《现行建筑施工规范大全》有关标准执行,工程包修壹年。 第五条承包方式 实行大包干。即包工、包材料、包质量、包工期。锚杆每米单价包干:180元/米(包 税金)。乙方负责按建设单位结算的总造价开发票,其中属于甲方的税金由甲方支付给乙方。 第六条工程总造价按上述承包范围和方式,计(概算)为人民币:壹佰陆拾叁万零捌 拾圆整。(¥1,630,080.00)。工程结算以实际发生工程量计算,单价不变。 第七条甲方应负责完成下列工作: 1.在开工前三天完成“三通一平”(包括进场道路),接通水、电源和办理报建、临时场地、占用道路等的批准手续。同时向乙方提交施工(安装)图纸与说明书和有关的技术资

锚杆支护设计,教材

、基本情况 22111回风顺槽巷道原设计1110m,施工沿2#煤层底板布置掘进,S100A 型综掘机落煤、装煤。采用矿用耐压坑木,梯形断面平棚、亲口结合支护。临时支护采用4.0m 长的10#槽钢,配合40T 型圆环大链,用连接环加螺丝锚固,截割后及时窜入迎头空顶地段。棚梁、腿均为2.7m,巷道上净宽2.4m,下净宽3.4m, 净高2.5m,掘进毛断面8.64m2,棚距0.7m,断面顶部铺设10#铁丝金属菱形网,长边搭接100mm,每300mm联一道,每一道为三扭一扣压辩式,勾盘“六、六、六”,严密牢固,严禁空帮空顶。地质条件为:2#煤平均煤厚6.8m,煤层结构简单,夹矸层数1—3层,稳定可采,夹石多为灰黑色页岩及泥岩,位于中上部,下部煤质好于中部。顶板为砂岩,底板为砂岩及砂质页岩;据邻近巷道观测,瓦斯绝对涌出量为0.51m3/min;据煤尘爆炸性试验,2#煤火焰长度为50—400mm, 煤的自燃倾向性等级为易自燃—自燃,自然发火期3—6个月;煤层倾角最大为11 度,最小为9 度,平均10 度,走向近似东西向,据掘进2217工作面回风巷时有一条落差大于3m 的断层存在,在进风巷掘进时,这条断层已不存在,没有延伸到22111 工作面内。 根据现有的技术资料,考虑2#煤较硬,为推广锚杆支护,也为提高我矿掘巷的机械化程度,借鉴焦家寨矿锚杆、锚索支护经验,对22111 回风顺槽木支150m 后进行锚杆支护。 二、支护设计方法结合通风要求、综采设备安装要求和巷道围岩变形情况等,根据附近钻孔的柱状资料分析,2#煤顶煤直接顶为砂岩,厚度为5.0?7.0m,属较稳定岩层,适合锚网支护。为了将锚杆加固的“组合梁”悬吊于基本顶坚硬岩层中,需用高强锚索做辅助支护。根据公司焦家寨矿2#煤层回采巷道支护经验,初步确定 22111回风顺槽采用矩形断面,掘进宽度3.4m,掘进高度2.6m,掘进毛断面积8.84m2,锚杆+网+锚索联合支护。顶部锚杆采用左旋无纵筋螺纹钢,直径20mm, 长度2.0m,排距0.8m,间距0.9m,四根锚杆均匀分布,两侧各留350mm间隙;巷道靠上帮一侧采用左旋无纵筋螺纹钢,直径18mm,长度1.7m,靠下帮一侧采 用玻璃钢锚杆,直径18mm,长度1.7m,间距1.0m,排距0.8m,三根锚杆均匀分布,上下侧各留300mm 间隙;巷道顶帮均采用钢筋托梁并铺设金属网;巷道顶板补打锚索? 15.24-6000,用3003 3003 12mm钢托盘,间距1.5m,排距3.2m。 巷顶锚杆锚固力不小于70KN预紧力矩不小于1002 m帮锚杆锚固力不小于30KN预紧力矩不小于602 m锚索预紧力不小于120KN锚索锚固力不小于221KN。 一、采用计算法校核支护参数。 1、顶锚杆通过悬吊作用,帮锚杆通过加固帮体作用,达到支护效果条件, 应满足:L》L1+L2+L3 式中:L——锚杆总长,m

基坑支护方案(土钉、锚杆)知识讲解

3.2基坑土方开挖 1、土方开挖原则 主体基坑土石方均采用反铲挖掘机开挖,自卸汽车运输弃土;开挖遵循“竖向分层、纵向分区,区内分段、先支后挖”的原则进行。 竖向分层:采用反铲式挖掘机开挖、直接装车卸土的倒运方式;分层开挖结合支撑的标高。 开挖至末端后,剩余的三角形土体台阶法不能施工的,采用反铲式挖掘机开挖、汽车式起重机垂直出土、自卸车运至临时存碴场再集中外运的方式。 2、整体开挖方法 土方开挖应和土钉施工密切配合,施工时应在平面上分段、竖向分层进行流水作业,每段开挖长度原则上不超过20m,竖向分层深度即为每层土钉的竖向间距。 根据基坑开挖区域的工程地质、水文地质、施工场地情况,综合考虑工期要求、施工总体安排等各种因素,确定施工方法,并配备充足的施工机械设备和劳动力,确保工期目标的实现。 主体基坑土石方采用台阶法开挖和最后部分垂直运输相结合的方式,开挖采用台阶法开挖。 采用台阶法不能满足挖掘机臂长的部分,采用接力法进行开挖,土方出基坑后用自卸汽车运至临时屯土场,集中后运至指定地点。 (1)土方开挖及出土方法。 土方采用长臂挖掘机开挖、出土,自卸车运输,当长臂挖掘机不能满足开挖深度时,需要另外增加挖掘机采取接力法进行土方开挖施工。 (2)土石方由自卸汽车运输至临时弃土场。 (3)开挖纵向刷坡,随挖随刷坡,刷坡坡度在基坑允许开挖边坡坡率以内。 (4)为确保基坑稳定,开挖至基底,并做好下翻梁沟槽后,迅速施工接地网工程,并在垫层施工完后及时地将钢筋砼底板浇筑完毕。

(5)开挖过程中设专人及时绘制地质素描图,当基底土层与设计不符时,及时通知设计、监理处理。当开挖有文物出现时,立即停止开挖,保护好现场,及时通知监理及相关部门进行处理。 (6)分段开挖两段设截水沟和排水沟,渗水及雨水及时泵抽排走。 (7)开挖过程中,按既定的监测方案对基坑及周围环境进行监测,以反馈信息指导施工。 3.3基坑支护施工方案 3.3.1锚杆支护施工方案 施工操作工艺 工艺流程 砂浆锚杆施工工艺流程图(图3.3.1) 注浆锚杆施工工艺流程图(图3.3.2) 操作步骤及方法 钻孔

(完整版)第四讲锚杆支护理论

第四讲锚杆支护理论 本讲主要介绍锚杆常用支护理论(包括一些近年来比较流行和活跃的理论)、锚杆支护设计方法和国外锚杆支护主要经验,以及巷道容易冒顶的十种情况和五种应对措施。 锚杆支护的作用机理尚在探讨之中。目前己提出的观点较多,其中影响较大的有悬吊作用、组合梁(拱)作用、组合拱、减跨理论、加固(提高C、φ值)作用等几种。这几种观点都是以围岩状态和利用锚杆杆体受拉(力)为前提来解释锚杆支护作用机理的,因此,围岩状态及锚杆受拉力这两个前提的客观性是判定上述理论正确性的标准。 一、锚杆支护理论 支护:就是指为了地下巷道掘进、硐室开挖后的稳定及施工安全,而采取的支持、加强或改善围岩应力状态而打设的构件或采取的措施的总称。支护包括两个方面,一是支,就是顶住顶板,防止顶板出现大量的下沉,使顶板下沉控制在可控、安全的状态,二是护,就是保持顶板的完整性,防止出现漏矸、漏顶、巷道掉渣等现象。支和护是一个有机统一的整体,它们共同组成了支护系统。 (一)锚杆支护理论综述 1、悬吊理论

1)机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。 图4-1 锚杆悬吊作用原理示意图 2)缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。 3)适用条件:在锚杆的长度范围内有一层坚硬而稳定的岩层,锚杆可以锚固到顶板坚硬稳定岩层。 图4-2 a拱形巷道的锚杆悬吊作用b软弱岩层的锚杆悬吊作用 2、组合梁理论 1)机理:将锚固范围内的岩层挤紧,增加岩层间的摩

擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将几层薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应变和应力都将大大减小,组合梁的挠度亦减小。在于通过锚杆的预拉应力将原视为叠合梁(板)的岩层挤紧,增大岩层间的摩擦力; 同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。 决定组合梁稳定性的主要因素是锚杆的预拉应力及杆体强度和岩层的性质。 2)缺点:将锚杆作用与围岩的自稳作用分开;在顶板较破碎、连续性受到破坏时,难以形成组合梁。这一观点有一定的影响,但是其工程实例比较少,也没有进一步的资料供锚杆支护设计应用,尤其是组合梁的承载能力难以计算,而且组合梁在形成和承载过程中,锚杆的作用难以确定。另外,岩层沿巷道纵向有裂缝时粱的连续性问题、梁的抗弯强度等问题也难以解决。 3)适用条件: 层状地层,如图4-3中2所示; 顶板在相当距离内(锚杆长度范围内)不存在稳定岩层,

锚杆支护

第二章锚杆支护技术管理 第一节总则 第1条锚杆、锚喷支护(以下简称锚杆支护)是煤矿井巷工程一种重要的支护形式,它以快速、主动、有效的支护特性已得到广泛推广应用,并对加快巷道支护改革,提高支护效果起到了重要作用。为进一步加快锚杆支护的推广应用,提高矿井的经济效益,特制定本规定。 第2条锚杆的种类 根据新汶矿区开采的实际情况,规定允许使用的锚杆种类包括以下七种: 1、等强全螺纹树脂锚杆(牌号:KMG335); 2、等强全螺纹细牙高预紧力锚杆(牌号:KMG400、KMG500); 3、无纵肋螺纹钢式树脂锚杆(牌号:KMG400、KMG500),适用于埋深大于600米的巷道; 4、高强度高韧性抗冲击锚杆(牌号:KMG600),适用于埋深大于800米及地压较大的巷道。 5、缝管锚杆(只限于回采巷道护帮或断层破碎带临时支护); 6、水力膨胀式管子锚杆; 7、玻璃钢锚杆(允许在使用时间较短的,围岩稳定的切眼两帮及条件适宜的煤帮使用); 8、经集团公司鉴定并经专业主管部门批准使用的新型锚杆。 第3条锚杆的锚固方式 1、端锚:树脂锚固段长度≥350mm。 2、加长锚:树脂锚固段长度≥700mm。 3、全锚:树脂锚固段长度≥锚深的80%; 水泥锚固段长度为锚深的100%。

一般情况下应采用加长锚;Ⅲ~Ⅴ类煤巷顶板和深部全岩巷道严禁使用端锚。 第4条锚杆支护材料规格、性能 1、树脂锚杆金属杆体及其附件应符合中华人民共和国煤炭行业标准MT146.2-2002要求。 2、等强全螺纹树脂锚杆技术性能规定见下表(表一)。 表一 3、等强全螺纹细牙高预紧力锚杆技术性能规定见下表(表二) 表二 4、无纵肋螺纹钢式树脂锚杆技术性能规定见下表(表三) 表三

锚杆支护规范

矿区锚杆支护技术规范 .1 本规范是专门针对潞安矿区现有生产矿井所开采的3#煤层的地质与生产条件而编制的,旨在促进潞安矿区煤巷锚杆支护技术健康发展,为矿井实现安全高效创造良好条件。 1.2 根据《潞安矿区巷道围岩地质力学测试与分类研究报告》和《潞安矿区煤巷锚杆支护成套技术研究》的结论,在潞安矿区的煤巷中可以并应积极推广应用锚杆支护技术。 指导思想是:解放思想,实事求是,因地制宜,积极推广应用。 工作原则是:以科学的理论依据为指导,以严谨的态度抓好设计、施工和管理。 1.3 本规范适用于潞安矿区以锚杆支护作为主要手段的煤巷,包括: (1) 回采巷道(运输巷,回风巷,开切眼,瓦排巷等); (2) 采区集中巷; (3) 煤层大巷; (4) 各类煤巷交岔点和峒室。 1.4 在进行煤巷锚杆支护设计前,必须有全面、准确、可靠的巷道围岩地质力学参数,包括地应力的大小和方向、围岩强度、围岩结构等。否则,不能进行锚杆支护设计。 1.5 煤巷锚杆支护设计采用动态信息设计法。设计是一个动态过程,充分利用每个过程提供的信息。设计应严格按五个步骤进行,即巷道调查和地质力学评估、初始设计、井下施工与监测、信息反馈分析和修正设计、日常监测。 1.6 煤巷锚杆支护材料的尺寸规格、力学性能与产品质量必须满足锚杆支护设计的要求,并符合煤矿安全有关规定。否则,不能下井使用。 1.7 煤巷锚杆支护施工应严格按照设计和作业规程要求进行,确保施工质量。 1.8 与煤巷锚杆支护技术有关的各级管理和技术人员,以及操作工人,都应进行锚杆支护技术培训。 1.9 本规范未涉及的煤巷锚杆支护技术问题,应按煤炭行业有关规定执行。 第二章巷道围岩地质力学评估与现场调查 2.1 巷道围岩地质力学评估与现场调查是煤巷锚杆支护设计的基础依据和先决条件,必须在进行支护设计之前完成。 2.2 地质力学评估与现场调查首先应确定评估与调查的区域,考虑巷道服务期间影响支护系统的所有因素,随后的锚杆支护设计应该限定在这个区域内。 2.3 地质力学评估与现场调查主要包括以下内容 (1) 巷道围岩岩性与强度 煤层厚度、倾角和强度;顶、底板各岩层的岩性、厚度、倾角和强度。 (2) 围岩结构与地质构造 巷道围岩内节理、裂隙等不连续面的分布,对围岩完整性的影响;巷道附近较大断层、褶曲等地质构造与巷道的位置关系,以及对巷道围岩稳定性的影响程度。 (3) 地应力

相关主题
文本预览
相关文档 最新文档