当前位置:文档之家› 太阳能与风能方案介绍

太阳能与风能方案介绍

太阳能与风能方案介绍
太阳能与风能方案介绍

监控系统

太阳能、风能互补供电系统技术方案

目录

一、系统概述 (1)

二、系统特点 (1)

三、系统组成 (2)

3.1节能及电源控制器 (2)

3.2太阳能电池组件 (3)

3.3蓄电池组件 (3)

3.4风力发电机组 (4)

四、远程监控软件 (4)

4.1实时显示 (4)

4.2查询与统计 (4)

4.3异常报警 (5)

4.4远程设置 (5)

4.5用户管理功能 (5)

五、主要部件技术指标 (6)

5.1太阳能电池组件 (6)

5.2风力发电机组 (7)

5.3蓄电池 (8)

5.4蓄电池保温箱 (9)

5.5节能及电源控制器 (9)

5.6蓄电池防护箱 (11)

六、设备安装 (11)

一、系统概述

目前远程监控及超长距离监控面

临很多挑战,用交流220V供电的话,

首先电缆线成本很高,同时距离不能

太远(一般不超过2km)。其次是交流

供电用的民用市电,经常不是很稳定,容易出现断电或者电压异常等现象。而太阳能供电系统刚好弥补了这些问题,同时也是响应国家节能环保建设低碳经济的号召。

根据本项目的要求,使用1套太阳能风能互补供电系统。太阳能供电选用浙江温州亚奈科技有限公司生产的型号为429型太阳能供电产品,配置太阳能光伏板、800W风机,8节12V/100AH 蓄电池。

二、系统特点

太阳能风能互补系统除具有一般太阳能供电系统的长寿命、无人值守、不间断供电、直流无干扰、低压安全、安装方便等优点外,还具备下述特点:

1.高效蓄能:采用最大功率点跟踪(MPPT)、智能充放电等技

术,从充分利用太阳能、风能和蓄电池电能两方面提高能源利用效率。

2.智能电源管理:根据不同用电设备的特点和重要程度合理

分配电能,采用分步休眠等方式节省电能。

3.精确配置:根据设备功耗、用电特征、工程当地太阳能和

风能资源情况,对太阳能电池、风力发电机和蓄电池进行精确配置,确保以最低投资满足客户供电需求。

4.高可用性:白天只需3小时的标准光照时间即可实现长达

7天不间断续航时间,并可进行应急快速充电。

5.宽工作环境:-40~60度宽温度带工作,适应国内任何地区

的气候条件。

6.高可靠性:平均无故障时间超过5万小时。

7.安装灵活:控制器、蓄电池可外挂安装或地埋安装,简单

易维护。

三、系统组成

系统主要由太阳能电池板、风力发电机组、蓄电池组件、节能及电源控制器等设备和后台软件组成,如下图所示。

3.1 节能及电源控制器

本系统端机控制箱是安装在外场监控点上的一个控制设备,它由充放电控制器、节能蓄能控制器、蓄能耗能检测器及信号防雷器等几大部件组成。

充放电控制器可以同时监测太阳能电池组件和蓄电池的电

压,同时它还采用了目前最先进的最大功率点跟踪(MPPT)技术,大幅度地提高了太阳能板的蓄能效率(提高约20~30%)。具有浪涌、反接、短路、过载等各种保护功能。

3.2 太阳能电池组件

本系统太阳能组件采用晶硅晶圆,由专业工厂封装,光电转换效率大于16%。满足交通部《公路沿线设施太阳能供电系统通用技术规范》 JT/T 594-2004的及其他相关国家标准要求。针对不同的外场监控设备和工程地域的光资源情况,正确选配太阳能组件,保证在工程地域最小日照时间的月份也能使系统获得足够的太阳能能源。

3.3 蓄电池组件

本系统蓄电池组件按系统设计要求正确选配,选配时供电制式和电池容量要考虑以下几个因素:

1.由于本次项目用电设备为12VDC和24VDC供电,因此供电

制式采用逆变系统,从而为设备提供专用电源。

2.电池容量不宜太大或太小,太大虽然可以维持时间长但要

把电池充满也会时间很长。太小不能满足阴雨天持续时间

要求。正确的选择应该是在满足阴雨天持续时间的基础上

尽可能地小。

3.蓄电池尽量采用低温特性好的产品,电池箱可以保温但不

要加温。因为加温所需要的能量远比电池因加温而增加的

能量要大。

3.4 风力发电机组

采用水平轴全永磁悬浮风力发电机组具有风能利用率高,工作风速区域宽的优势。经对转子、定子永磁磁路优化和电磁磁路优化,同时采取有效减少机械轴承静压力、动载荷措施,使起动阻力矩大幅减少(普通型为国家标准的1/5,全永磁悬浮型为国家标准的1/10),起动和切入风速同步大幅降低,有效实现了低风速下提前起动,提前切入到发电转速和状态的运行效果,与同类传统产品相比,同风速下输出电能多,功率大,发电效率高。

四、远程监控软件

监控软件符合国际工业监控与开放式设计标准,支持国际通用通讯协议(支持串口RS485),此软件应用现代测量技术与微处理器技术,实现信号测量和数据采集,并采用现代通信技术实现远程数据传输,利用计算机软件和数据库技术,完成数据处理,具有以下功能:

4.1 实时显示

通过GIS地图软件,系统可实时显示系统内所有设备站点的组件电压、组件电流、蓄电池电压、蓄电池温度、蓄电池剩余容量、负载电流等参数,并可以通过点击设备号来查看每台设备的具的图标显示状况,便于系统内的各站点的集中监控与管理。4.2 查询与统计

监控中心定时采集各监控点的工作参数,并存储于监控计算

机数据库中,可随时进行查询与统计,查询和统计条件可按日期、时间、编号、等条件进行组合查询,结果表现形式多样,可列表、直线图纸、柱形图、饼图等。并可按照查询和统计结果进行智能分析,给出文字性的设备描述、设备故障分析,以及该设备的未来预测和维护保养建议。

4.3 异常报警

设备工作状态异常时,在监控中心可进行报警,报警类型可分级,并按照不同的报警类型和报警级别进行不同的报警表现,报警后,自动和人工消警后,系统自动记录进数据库,报警发生后,监控中心可采取措施,关闭远端系统,或降级运行。

4.4 远程设置

可远程查看和设置各个站点的系统参数以及子系统参数(光伏子系统、风力子系统),如每个站点的蓄电池容量、恢复提升电压、过放电压、恢复过放电压、浮充电压、温度补偿系数、控制器时钟、监控点ID等。

还可对子系统的组成部分进行设置和监视,如每一块太阳能电池组件,以及风力发电机的工作参数,以及工作运行状态参数。4.5 用户管理功能

监控软件系统的用户管理功能支持管理人员和维护人员等多级权限登录,普通级别用户登录软件系统后只能查看数据;高级别用户登录软件系统后不仅可以查看数据,而且还可以远程设置

各个站点的参数,这样有利于专业人员对电站的管理,避免非专业人员的误操作。

五、主要部件技术指标

5.1 太阳能电池组件

●类型:单晶硅电池

●太阳能板功率:≥480Wp;

●填充因子FF:≥75%(测试条件AM1.5,

1kW/m2)

●最大功率电压:>33V

●最大功率电流:>3.5A

●开路电压:>42V

●短路电流:>3.5A

●转换效率:≥17%;

●发电性能要求:受恶劣天气(风沙、雨雪)的影响要小,

具备弱光发电的性能。

●组件转化率:不低于16%。

●寿命:不少于25年。

●衰减率:一年内不大于5%,以后基本保持稳定。

●机械性能:

低铁钢化绒面玻璃,覆抗紫外剂、抗氧化剂和固化剂的优

质EVA膜层

铝合金边框,抗机械冲击能力强

●生产标准:GB/T9535;

●测试标准:IEC61215;

●产品认证:太阳电池组件同时提供IEC、TUV、UL、CE等

相关认证。

●连接盒:采用满足IEC标准的电气连接,采用工业防水耐

温快速接插,防紫外线阻燃电缆。

●安装角度:根据现场情况确定最佳安装角度。

●其他:满足交通部《公路沿线设施太阳能供电系统通用技

术规范》,JT/T 594-2004的技术要求。

5.2 风力发电机组

●风机类型:水平轴

●风机与塔杆的连接方式:磁悬浮

●超速保护:机械/电磁制动,

●传动方式:无齿轮箱直驱

●充电:恒压均衡充电

●额定功率:400W

●额定电压:DC24V

●风车直径:1800mm

●叶片数(片):3或4

●叶片长度:800mm

●叶片材质:高效能发泡树脂+复合材料

●启动风速:2.0 m/s

●切入风速:2.5 m/s

●额定风速:12m/s

●工作风速范围:1~15m/s

●安全风速:50 m/s

●抗大风能力:60m/s

●转速:< 360

●额定输出电压: 24VAC

●保护方式(强风、台风):智慧型免刹车系统

5.3 蓄电池

●蓄电池类型:密封阀控式铅酸免维护胶体蓄电池;

●蓄电池容量:≥ 400AH

●额定电压:24VDC;

●充电温度补偿系数:±0.04mv/℃;

●最低工作性能:-10℃条件下蓄电池充放电效率不低于

74%;

●高温工作性能:40℃条件下蓄电池充入电效率不低于95%;

●无游离电解液,侧倒90度仍可使用;

●蓄电池采用强化涂膏式正极板设计,正极板厚度不低于

4mm;

●蓄电池采用胶体电池专用高分子微孔隔板;

●铅纯度≥99%;

●安全防爆;

●蓄电池采用低阻镶嵌式内螺纹铜端子,确保无金属铅或铅

合金外露;

●蓄电池寿命要求:设计寿命不小于18年,在-10℃~40℃

环境下免维护连续工作3年后蓄电池容量衰减不超过

30%。

5.4 蓄电池保温箱

●埋地安装

●采用优质石棉夹层,夹层厚度5cm,均匀布设于保温箱的

两层钢板之间,钢板厚度2mm,并采用40×40mm的角钢

作为其骨架,保证蓄电池的冬季保温要求

●无源、环境温度-10℃~40℃条件下放置48小时箱内温度

保持在0℃~30℃;

●壁厚:100mm,可根据蓄电池尺寸及安装要求调整箱内结

构和外形尺寸。

●防护等级:IP67

5.5 节能及电源控制器

●工作电压:6~40V(宽电压范围,

兼容12V和24V)

●充电电流:60A

●太阳能电池板类型:12V/24V;

●数据通讯接口:RS232

●通信速率:2400~9600 bps/s

●应急充电:蓄电池容量的30%安全快速充电电流;

●整体功耗:≤1.5W(不超过额定充电电流的1%);

●充满断开电压值:27.8~28.0V;

●亏电断开电压值:21.5~21.7V;

●恢复连接电压值:26.2~26.4V;

●温度补偿系数:-3~7mV/℃;

●太阳能电池充电电流电压检测:检测精度≤5%;

●蓄电池放电电压检测:检测精度≤5%;

●蓄电池放电电流检测:检测精度≤5%;

●控制损耗:不超过额定充电电流的1%;

●充放电回路压降:不超过系统额定电压的5%;

●应急充电接口额定电流:≥100A;

●具有液晶显示屏,可以显示相关参数;

●可连接外部温度传感器;

●内置存储器可记录充放电数据;

●过放保护及恢复可编程;

●正、负极反接和短路保护

●具有稳压功能,DV24±5%;

●联网功能:具有通信接口(RS232),与监控分中心的视频

控制平台构成在线检测网。太阳能状态监测软件具有数据记录、查询、采集方式调整、编号查询、声光报警等功能,可保存一个月的状态数据。监控软件支持WINDOWS

XP/2000/2003等操作系统。太阳能供电系统监测软件具

有与分中心监控系统服务器校时功能。

●工作温度:-40℃~+60℃

●工作湿度:30%~95%

●防护性能:满足IP65

5.6 蓄电池防护箱

●304不锈钢制作,具有良好的防腐和完善的防海水功能,

并保证能够长期承受海水不变形。

●防护等级:IP65

六、设备安装

太阳能板放置形式:根据现场情况调节到最佳角度;

太阳能板安装方式:太阳能板分2层安装,净空5米以上支架连接,连接牢固能够抵抗40m/s风速,并保证无遮挡物,不得侵占车道以上净空;安装支架与摄像机立柱的连接应牢固、美观并易于调整;爬梯安装应注意协调、美观,并且与太阳能板不在同一方向。

蓄电池安装方式:放置在不锈钢防护箱内;

充放电控制器安装方式:安装在摄像机立柱上的控制箱内;

防护箱安装方式:安装于海上平台安全位置,在不妨碍交通的位置,不锈钢膨胀螺栓固定,和监控杆之间的连接也必须用不锈钢管连接。

风能与太阳能发电介绍

太阳能及风能发电介绍 众所周知,地球资源特别是不可再生资源,其供给能力有限,并非取之不尽、用之不竭。全球能源日渐枯竭的21世纪,在经济不断发展同时,能源消耗不断增加,传统能源无以为继,经济发展越来越受制于能源的开发利用,新能源作为一种替代能源,未来能极大的缓解我们能源大量需求,可以保证经济可持续发展。而且在当今社会传统能源产生环境问题越来越严重,危害人类健康和生存环境。新能源的需求越来越迫切了。太阳能和风能作为新能源的代表,越来越受到人们的重视。 传统的发电手段分为三类: 火电:火电需要燃烧煤、石油等化石燃料。一方面化石燃料蕴藏量有限、越烧越少,正面临着枯竭的危险。据估计,全世界石油资源再有30年便将枯竭。另一方面燃烧燃料将排出二氧化碳和硫的氧化物,因此会导致温室效应和酸雨,恶化地球环境。 水电:水电要淹没大量土地,有可能导致生态环境破坏,而且大型水库一旦塌崩,后果将不堪设想。另外,一个国家的水力资源也是有限的,而且还要受季节的影响。三峡造成的不利影响依然还是评估当中。 核电:核电在正常情况下固然是干净的,但万一发生核泄漏,后果同样是可怕的。前苏联切尔诺贝利核电站事故,已使900万人受到了不同程度的损害,而且这一影响并未终止。在这次日本的地震中,核电造成的问题能够引起人们的这么强烈的关注,说明了人们对核电安全性的担忧。 这些都迫使人们去寻找新能源。新能源要同时符合两个条件: 一是蕴藏丰富不会枯竭; 二是安全、干净,不会威胁人类和破坏环境。目前找到的新能源主要有这几种,太阳能、燃料电池。以及风力发电等。其中,最理想的新能源是太阳能。 太阳能(Solar)是太阳内部连续不断的核聚变反应过程产生的能量,是各种可再生能源中最重要的基本能源,也是人类可利用的最丰富的能源。太阳每年投射到地面上的辐射能高达 1.05×1018千瓦时,相当于 1.3×106亿吨标准煤,大约为全世界目前一年耗能的一万多倍。按目前太阳的质量消耗速率计,可维持6×1010年,可以说它是“取之不尽,用之不竭”的能源。 太阳能光伏技术(Photovoltaic)是将太阳能转化为电力的技术,其核心是可释放电子的半导体物质。最常用的半导体材料是硅。地壳硅储量丰富,可以说是取之不尽、用之不竭。太阳能光伏电池有两层半导体,一层为正极,一层为负极。阳光照射在半导体上时,两极交界处产生电流。阳光强度越大,电流就越强。太阳能光伏系统不仅只在强烈阳光下运作,在阴天也能发电。其优点有:燃料免费、没有会磨损、毁坏或需替换的活动部件、保持系统运转仅需很少的维护、系统为组件,可在任何地方快速安装、无噪声、无有害排放和污染气体等。 早在 1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为“光生伏打效应”,简称“光伏效应”。1954 年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了光电转换效率为4.5%的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。 此后太阳能光伏产业技术水平不断提高,生产规模持续扩大。在 1990-2006 年这十几年里,全球太阳能电池产量增长了 50 多倍。随着全球能源形势趋紧,

风能太阳能在城市建设中的应用

风能,太阳能在城市建设中的应用 俞红鹰 一、概述 在十届人大四次会议的政府工作报告中,温总理提出了建设资源节约型社会,发展循环经济的任务和政策措施,这标志着我国进入了可持续发展的新阶段,这也为可再生能源产品在城市建设中应用创造了机遇。 在当今社会,人们的生活已表现为对一次性能源的过度依赖,在二十一世纪,人类能否保持可持续地发展,关健在于能否摆脱对传统能源消费方式的依赖。清洁的可再生能源的发展将直接关系到人类社会可持续发展的进程。 在城市建设中应用可再生能源产品是促进可再生能源产业发展最有效的手段,也是对全社会普及再生能源知识最有效的宣传,还是城市生活中节约能源最有效的方式,更是促进可再生能源应用技术进步最有效的途径。 二、可再生能源产品在城市建设中应用的必要性 1、节约能源的需要 改革开放以来,我国经济高速增长,城市建设更是飞速发展,但在迅速发展的城市建设中,忽视了能源节约,在不少项目上造成了能源和资源的浪费。 在城市建设中,很多领域都可以用到太阳能热利用、太阳能光伏发电、风能发电等可再生能源技术,这种利用自然资源的技术,不仅不消耗常规能源,而且不受输配电工程、管道工程等土建工程的制约,对美化城市、简化市政工程难度,节约能源都有非常积极的意义。在城市建设中广泛推广可再生能源产品的应用是非常必要的。 2、普及可再生能源知识的需要

普及可再生能源知识,对向全社会推广节能、环保的理念有非常积极的意义,对建设资源节约型社会、发展循环经济有积极的促进作用。只有节约能源可以成为日常的意识和行为,采用可再生能源产品成为社会的常识,才能真正保证经济的可持续发展。 城市建设项目中,很多项目与人们的生活贴得很近,在这些项目中采用可再生能源产品,让人们在日常生活中感受可再生能源产品的作用和价值,使人们体验到可再生能源的利用技术离我们的生活很近,并从可再生能源产品的使用中掌握新的知识。可再生能源知识的普及对促进社会的可持续发展很有必要。3、促进可再生能源产业的发展和技术进度的需要 二十世纪八十年代初,我国曾大力发展小型风力发电机,当时这个产业的定位是面向广大偏远的农牧民,但由于政府职能不到位,广大农牧民有需求没有购买力,没能形成合理的市场,产品走低质低价的低端路线,行业的技术进步缺乏保障,整个行业一直没有发展起来。 而太阳能光伏发电行业长期以来一直以邮电通迅等特殊用户为对象,保持了产品的高品质,但产业规模一直不大。到本世纪初,政府采购大大促进了光伏产业的发展,随之而来的欧洲、日本等发达国家的太阳能屋顶计划等促进可再生能源发展的政策更进一步促进了我国光伏产业的发展,但国内市场需求的弱小一直是该行业发展的隐忧。 太阳能热利用技术一开始就把市场定位在城市居民和城市建设项目上,随着产业的技术进步,太阳能热利用产品已发展为一个巨大的产业,成为我国可再能源产业中生产规模最大,从业人数最多的、工业产值最高的行业,而且发展前景越来越好。 从上述三个行业的发展进程可以看出,可再生能源产品的发展是建立在良好的市场环境条件下的,这个市场环境的形成要得到政府的引导和支持。城市建设项目是以政府项目为主导的,在市政项目中大力推广可再生能源产品,不仅有利于建设资源节约型社会,也有利于可再生能源产业市场的有序发展,有利于可再生能源产业发展和技术进步。 三、可再生能源产品在城市建设中应用的可行性 1、技术上的可行性 目前,我国的可再生能源产业已发展到相当规模,其中,太阳能热水器已大规模产业化,并且与建筑物结合的新产品推出更展示出这个行业的巨大发展前景,太阳能热水器为可再生能源在城市建设中的应用

编制“十四五”风电和太阳能发电(光伏发电和热发电)

编制“十四五”风电和太阳能发电(光伏发电和热发电)发 展规划 工作大纲 A1-CS-2019-006 背景 中国可再生能源规模化发展项目(CRESP)是中国政府(GOC)与世界银行(WB)及全球环境基金(GEF)合作开展的可再生能源政策开发和投资项目,该项目的宗旨是在调查我国可再生能源资源和借鉴发达国家可再生能源发展经验的基础上,研究制定我国可再生能源发展政策,支持可再生能源技术进步,建立可再生能源产业体系,逐步实现可再生能源规模化发展,为电力市场提供高效的、商业化的可再生能源电力,替代燃煤发电,减少对我国和全球环境的影响。 CRESP项目计划分三期实施,以便随着行政和监管机构能力的增强,以及随着商业化可再生能源产业的壮大,逐步出台相关政策和配套措施。 为实施CRESP项目的二期,GEF委员会已批准提供2728万美元的GEF赠款,帮助中国政府制定和实施“十三五”规划,通过降低成本,提高能效,理顺发电上网等措施,逐步实现可持续性的商业化可再生能源规模化发展,促进中国政府节能减排目标的实现。 CRESP二期项目的重点包括: 1. 可再生能源政策研究; 2. 可再生能源并网和技术设计; 3. 可再生能源技术进步; 4. 可再生能源试点示范; 5. 能力建设与投资项目支持。 GEF为本项目提供的赠款将由项目办负责管理。 特定背景

面对新的能源形势和气候变化,世界各国都在发展水能、风能、太阳能等可再生能源。加快全球能源转型,实现绿色低碳发展,已经成为国际社会的共同使命。改革开放40年来,从无到有,从落后到赶超,可再生能源跨越式发展已经成为我国能源领域最耀眼的亮点,成为世界节能和利用可再生能源第一大国,中国作为“可再生能源第一大国”的绿色新名片越来越亮,不仅为我国节能减排、经济增长做出了突出贡献,也对全球能源变革产生了重大影响。我国的可再生能源的发展正引领着全球。 在发展可再生能源方面,国家在体制上给予了充分保障,如国家能源局专门成立了新能源和可再生能源司。同时,国家还出台了众多相关法律和政策,包括总量目标、强制上网、分类补贴、专项资金保障等制度,以保障可再生能源消纳。可再生能源产业从无人问津,到形成了全面发展的开发格局。上世纪70年代末,我国开始开展风电并网示范研究,开启了可再生能源产业化道路。与改革开放40年同步,我国风电产业走过了一条不平凡的成长之路。近年来,我国风电建设取得了飞跃式发展,装机容量稳居世界第一。 2018年,全国风电新增并网装机2059万千瓦,继续保持稳步增长势头。按地区分布,中东部和南方地区占比约47%,风电开发布局进一步优化。到2018年底,全国风电累计装机1.84亿千瓦,按地区分布,中东部和南方地区占27.9%,“三北”地区占72.1%。全国风电发电量3660亿千瓦时,同比增长20%;平均利用小时数2095小时,同比增加147小时;风电平均利用小时数较高的地区中,云南2654小时、福建2587小时、上海2489小时、四川2333小时。 近年来,风电发展迅速,但由于资源富集地与电力消费地不匹配、技术因素以及体制障碍导致的新能源消纳难、并网难仍是困扰行业发展的难题。目前,一方面是政府大力扶持新能源建设,另一方面却是大量的弃风现象,风能发电有较多无处可用的尴尬境地。2018年,全国风电弃风电量277亿千瓦时,同比减少142亿千瓦时,全国平均弃风率为7%,同比下降5个百分点,继续实现弃风电量和弃风率“双降”。大部分弃风限电严重地区的形势进一步好转,其中吉林、甘肃弃风率下降超过14个百分点,内蒙古、辽宁、黑龙江、新疆弃风率下降超过5个百分点。弃风主要集中在新疆、甘肃、内蒙古,新疆弃风电量、弃风率分别为107亿千瓦时、23%;甘肃弃风电量、弃风率分别为54亿千瓦时、19%;

风力发电系统控制技术发展历程

摘要 风力发电正在中国蓬勃发展,即使在金融危机的大形势下,风力发电行业仍然不断的加大投资。在2008年,风力发电仍然保持着30%以上的强劲增长势头,包括Vestas、Gemsa、GE、国内的金风科技、华锐、运达工程等其订单交付已经到2011年后。在风力发电系统中需要解决的基本矛盾是如何在风速变化的情况下,获得较稳定的电压输出。既要考虑到风能的特点,又要考虑到用户的需要,达到实用、可靠、经济的运行效果,关键环节之一就是要有一个稳定、可靠、功能齐全的控制系统。 本文介绍了世界风力发电控制系统的发展历程和我国的研究现状以及对风力发电系统控制技术的前景分析。分析并得出风力发电系统中,控制系统是确保机组安全可靠运行、优化机组效率的关键。关键词:风力发电、控制系统技术、发展历程。

目录 第一章风力发电技术的前景 (1) 第二章风力发电系统控制技术的介绍 (3) 一风电控制系统简述 (4) 二风力发电控制技术的发展历程 (4) 三控制目的 (5) 结束语 (6) 参考文献 (7)

风力发电系统控制技术发展历程 第一章风力发电技术的前景 人类对于风能的开发利用也很早就开始了。但是,近代火力、水力发电机的广泛应用和20世纪50年代中东油田的发展,使风力发电机的发展缓慢下来。在我国风力发电机组的研制工作开展较早,但是没得到足够的重视与支持,因而发展较慢。五十年代后期有过一个兴旺时期,吉林、辽宁、内蒙古、江苏、安徽和云南等省都研制过千瓦级以下的风车,但是没有做好巩固和发展成果的工作。七十年代后,随着国民经济的较快发展出现了能源供应紧张、环境污染严重等现象,另外由于科技意识日渐深入人心,可再生无污染的风能利用受到了足够的重视。在浙江、黑龙江、福建研制出了较大功率的机组;内蒙古的有关单位研制的小型风力发电机已有批量生产,用于解决地处偏远、居住分散的农牧民住户、蒙古包的生活用电和少量生产用电。八十年代以来,风力发电在我国得到了相应的发展。目前微型(<1KW)、小型(1-10 KW)风力发电机的技术日渐成熟,已经达到商品化程度。同时大型风力发电机组(600 KW)也研制成功,并已投入了运行。此外,从国外引进了大型风力发电机组建设了20余个风电场。总装机容量达到了近25MW。从统计资料来看,在我国风能利用与风力发电技术虽然有了一定的进展,与国外先进国家相比较仍然存在差距,尤其是在大型风力发电机组的开发与研制方面。 从统计资料来看,在我国风能利用与风力发电技术虽然有了一定

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

风力发电及其控制技术研究 (2)

风力发电及其控制技术研究 风力发电是当前我国经济社会发展中,是具有代表性的一种环保型的发电方式,对于推动社会经济可持续性增长具有不可比拟的积极作用。本文以风力发电为切入点分析其现存问题,就提出具体的控制技术要点进行深入探究,旨在为相关从业人员积累更多的实践经验。 标签:风力发电;控制技术;发展前景 我国风力发电技术水平在不断提高,但是仍旧有许多问题亟待解决,所以要正视目前风力发電技术存在的问题,积极争取社会各方的支持,在原有的基础上不断突破创新,投入一定的资金,不断完善相关政策,从而实现风力发电技术的良性发展,让风力发电技术真正成为我国电力供应的主流技术。 1加强风力发电控制的重要性 由于自然风速度快慢及方向大小存在着明显差异性,客观上要求相关技术人员重视风力发电控制技术,例如:控制机组切入及切出电网、限制输出功率、检测风轮运行期间中各种故障予以保护等。近几年来我国风力发电控制技术日趋成熟,即由定桨距恒速运行技术向变桨距变速运行技术转变,基本达到预期的生产目标。从风力发电机组角度来看,以调节机组功率为核心技术之一,其调节方法可划分为变桨距调节、定桨距失速调节及主动失速度调节。目前我国风力发电机组基本实现变桨距变速运行,结合风速风向的变化情况基本实现脱网、并网及调向控制各个发电机组,充分发挥变距系统作用,控制机组转速及功率。 2当前我国风力发电技术存在的问题 2.1风力资源分布不均 我国的国土面积十分广阔,每个地区的自然环境也有着很大差异,所以不同地区的风力资源分布十分不均匀,这就给风力发电工作带来了一定的困难。目前我国风力发电影视工作呈现出了,东南沿海和西北内陆发达,中部落后的趋势,风力发电事业发展十分不均衡。 2.2产业结构不合理 风力发电技术在我国不断更新发展,单机容量不断扩充,目前已经取得瞩目的进步,但是当前整个行业的产业结构仍然缺乏完善性,在零部件生产和产品创新方面,大多数发电技术都已经取得良好成果,实现了经济效益,但在核心零件生产过程中,仍没有实现自主式创新和开发,电力企业在进行风力发电技术改造时,大部分设备都来源于国外,国内缺乏独立资助的研发团队,这也进一步导致风力产业结构发展失衡,所以,还需要进一步加速产业结构变革,促进产业结构转型,形成完整的、具有发展潜力的风力发电产业结构。

我国太阳能、风能资源分布

新能源行业形势及我国太阳能、风能资源分布情况 能源是国民经济重要的物质基础,也是人类赖以生存的基本条件。国民经济发展的速度和人民生活水平的提高都有赖于提供能源的多少。从历史上看,人类对能源利用的每一次重大突破都伴随着科技的进步,从而促进生产力大大发展,甚至引起社会生产方式的革命。如18世纪瓦特发明了蒸汽机,以蒸汽代替人力畜力,在一次能源的消费结构上转向以煤炭代替木柴的时代,开始了资本主义工业革命。从19世纪70年代开始,电力逐步代替蒸汽作为主要动力,从而实现了资本主义工业化。到了20世纪50年代,随着廉价石油、天然气大规模开发,世界能源的消费结构从以煤炭为主转向以石油为主,因而使西方经济在60年代进入了“ 黄金时代”。 据世界能源会议统计,世界已探明可采煤炭储量共计15980亿吨,预计还可开采200年。探明可采石油储量共计1211亿吨,预计还可开采30~40年。探明可采天然气储量共计119万亿立方米,预计还可开采60年。当今世界对能源的消费数量急剧增加,人们感到常规能源的开发和供应已难以满足社会对能源的需求,能源危机的阴影笼罩着整个世界。显然,如今能源不足对一个国家的国民经济发展的影响是很大的。赖以生存的主要能源供应不上,经济发展就要减慢,甚至停滞,人民生活也会受到严重影响。所以,能源是保证社会稳定和发展国民经济的重要物质基础。不仅如此,能源问题还是当今世界影响政治形势的一个重要问题,1990年的海湾战争就是一个典型。可见,能源问题已成为当今人类社会的热门话题之一。 上个世纪90年代以来,中国经济的持续高速发展带来了能源消费量的急剧上升。自1993年起,中国由能源净出口国变成净进口国,能源总消费已大于总供给,能源需求的对外依存度迅速增大。煤炭、电力、石油和天然气等能源在中国都存在缺口,其中,石油需求量的大增以及由其引起的结构性矛盾日益成为中国能源安全所面临的最大难题。面对日益紧迫的能源形势,寻求能源的可持续发展已成为大势所趋,而开发新能源和可再生能源则是能源可持续发展最为直接和有效的形式。2008年3月18日,国家发改委出台《可再生能源发展“十一五”规划》,提出到2010年,可再生能源消费占比将达10%,并采取财税等措施鼓励发展再生能源发展。根据我国的发展规划测算,可再生能源产业未来15年将培育近2万亿元的新兴市场。面对潜在的广阔市场,新能源产业未来发展无疑一片坦途。 太阳能:环保优势明显 太阳能在解决能源供应和环境保护上有明显优势。中国2/3以上国土的年日照大于2200小时,年辐射总量平均大于5900MJ百万焦尔/平方米,资源非常丰富,有必要和可能大力发展。太阳能的利用有两大方面 太阳能光热利用用太阳能热水器等装置把太阳能转化为热能。中国是世界上最大的太阳能光热利用国家,2003年太阳能热水器产量1200万平方米,使用量5200万平方米,占全世界的40%。北京2008年奥运村90%的洗浴热水将来自太阳能。 太阳能光电转换基于半导体材料的光电效应,用太阳能光电器件把太阳能转化为电能。2003年底,全国已安装的光伏电池容量约50MW(百万瓦)。广东深圳最近建成亚洲最大的

风力发电机控制系统毕业设计(论文)word格式

风力发电机控制系统 风机控制系统:监控系统、主控系统、变桨控制系统、变频系统。 1、蓬勃发展的风电技术 风力发电正在中国蓬勃发展,即使在金融危机的大形势下,风力发电行业仍然不断的加大投资。在2008年,风力发电仍然保持着30%以上的强劲增长势头,包括Vestas、Gem sa、GE、国内的金风科技、华锐、运达工程等其订单交付已经到2011年后。 国内的风力发电控制技术起步较晚,目前的控制系统均是由欧洲专用控制方案提供商提供的专用系统,价格高昂且交货周期较长。开发自主知识产权的控制系统必须要提上日程,一方面,由于缺乏差异化而使得未来竞争中的透明度过高,而造成陷入激烈的价格竞争,另一方面,寻找合适的平台开发自主的风电控制系统将使得制造商在未来激烈竞争中获得先手。 然而,风电控制系统必须满足风电行业特殊的需求和苛刻的指标要求,这一切都对风力发电的控制系统平台提出了要求,而B&R的控制系统,在软硬件上均提供了适应于风力发电行业需求的设计,在本文我们将介绍因何这些控制器能够满足风力发电的苛刻要求。 2、风力发电对控制系统的需求 2.1高级语言编程能力 由于功率控制涉及到风速变化、最佳叶尖速比的获取、机组输出功率、相位和功率因素,发电机组的转速等诸多因素的影响,因此,它包含了复杂的控制算法设计需求,而这些,对于控制器的高级语言编程能力有较高的要求,而B&R PCC产品提供了高级语言编程能力,不仅仅是这些,还包括了以下一些关键技术: 2.1.1复杂控制算法设计能力 传统的机器控制多为顺序逻辑控制,而随着传感器技术、数字技术和通信技术的发展,复杂控制将越来越多的应用于机器,而机器控制本身即是融合了逻辑、运动、传感器、高速计数、安全、液压等一系列复杂控制的应用,PCC的设计者们很早就注意到这个发展方向 而设计了PCC产品来满足这一未来的需求。 为了满足这种需求,PCC设计为基于Automation Runtime的实时操作系统(OS)上, 支持高级语言编程,对于风力发电而言,变桨、主控逻辑、功率控制单元等的算法非常复杂,这需要一个强大的控制器来实现对其高效的程序设计,并且,代码安全必须事先考虑,以维护在研发领域的投资安全。

风电太阳能考试题

一、单选题(共35分,每题1分) 1.主导风向频率在( D )以上的地区,可以认为是风向稳定地 区。 A、30% B、50% C、60% D、80% 2.风电场选在容量系数大于( A)的地区,有较明显的经济效益。 A、30% B、20% C、10% D、5~15% 3.风速随地面高度的变化随之变化,地面粗糙度越大,这种变化就 ( A )。 A 、越大 B、越小 C、基本不变 D、不确定 4.将50W/m以下、3~20m/s风速的年累积小时数在( A )以下的 划为风能贫乏区。 A、2000 B、2000~3000 C、3000 D、1500 5.风速仪传感器属于(C)。 A、温度传感器; B、压力传感器; C、转速传感器; D、振动传感器。 6.在一个风电场中,风力发电机组排列方式主要与( C )及风力 发电机组容量、数量、场地等实际情况有关。

A、风速; B、空气密度; C、主导风向; D、高度。 7.风力发电机达到额定功率输出时规定的风速叫(B )。 A、平均风速; B、额定风速; C、最大风速; D、启动风速。 8.风力发电机开始发电时,轮毂高度处的最低风速叫( C )。 A、额定风速; B、切出风速; C、切入风速; D、平均风速。 9.当风力发电机组呈矩阵分布时,一般各风机间的间距不小于 ( A )倍风轮直径。 A、3-5; B、1; C、5; D、7。 10.风力发电机组系统接地网的接地电阻应不小于( D )Ω。 A、2; B、4; C、6; D、8。 11.风速传感器的测量范围应在( C)。 A、0~40m/s; B、0~50m/s; C、0~60m/s; D、0~80m/s。 12.接受风力发电机或其他环境信息,调节风力发电机使其保持在 工作要求范围内的系统叫做( A )。 A、定浆系统; B、保护系统; C、控制系统; D、液压系统。

风力发电系统电气控制设计风电-毕设论文

毕业论文 风力发电系统电气控制设计 摘要 风力发电系统电气控制技术是风力发电在控制领域的关键技术。风力发电机组控制系统工作的安全可靠性已成为风力发电系统能否发挥作用,甚至成为风电场长期安全可靠运行的重大问题。在实际应用过程中,尤其是一般风力发电机组控制与检测系统中,控制系统满足用户提出的功能上的要求是不困难的。往往不是控制系统功能而是它的可靠性直接影响风力发电机组的声誉。有的风力发电机组控制系统的功能很强,但由于工作不可靠,经常出故障,而出现故障后对一般用户来说维修又十分困难,于是这样一套控制系统可能发挥不了它应有的作用。因此对于一个风力发电机组控制系统的设计和使用者来说,系统的安全可靠性必须认真加以考虑,必须引起足够的重视。 我们的目的是希望通过控制系统的设计,采取必要的手段使我们的系统在规定的时间内不出故障或少出故障,并且在出故障之后能够以最快的速度修复系统,使之恢复正常工作。 关键词:风力发电的基本原理;风力发电机的基础理论;风力发电控制系统;风轮机的气动特性;变桨距控制系统。

1绪论 1.1国内外风力发电的现状与发展趋势 风能属于可再生能源,具有取之不尽、用之不竭、无污染的特点。人类面临的能源、环境两大紧迫问题使风能的利用日益受到重视。我国的风能资源丰富,可利用的潜能很大,大力发展风、水电是我国长期的能源政策。而其中风电是可再生能源中最具发展潜力和商业开发价值的能源方式。从20世纪80年代问世的现代并网风力发电机组,只经过30多年的发展,世界上已有近50个国家开发建设了风电场(是前期总数的3倍),2002年底,风电场总装机容量约31128兆瓦(是前期总数的300倍)。 2005年以来,全球风电累计装机容量年平均增长率为27.3%,新增装机容量年平均增长率为36.1%,保持着世界增长最快能源的地位。2010年全球装机容量达196630MW,新装机容量37642MW,比去年同期增长23.6%。 目前,德国、西班牙和意大利三国的风电机组的装机容量约占到欧洲总量的65%。近年来,在欧洲大力发展风电产业的国家还有法国、英国、葡萄牙、丹麦、荷兰、奥地利、瑞典、爱尔兰。欧洲之外,发展风电的主要国家有美国、中国、印度、加拿大和日本。迄今为止,世界上已有82个国家在积极开发和应用风能资源。 海上风力资源条件优于陆地,将风电场从陆地向近海发展在欧洲已经成为一种新的趋势。有人把风电的发展规划为3步曲,陆上风电技术(当前技术)一近海风电技术(正研发技术)一海上风电技术(未来发展方向)。 2010年北美的装机容量有显著下降,美国年度装机容量首度不及中国;多数西欧国家风能发展处于饱和阶段,但风能产业在东欧国家得到显著发展;非洲风能发展主要集中在北非。 随着海上风电的迅速发展,单机容量为3 -6MW的风电机组已经开始进行商业化运行。美国7MW风电机组已经研制成功,正在研制10MW机组;英国10MW机组也正在进行设计,挪威正在研制14MW的机组,欧盟正在考虑研制20MW的风电机组,全球各主要风电机组制造厂家都在为未来更大规模的海上风电场建设做前期开发。 1.1.1世界上风力发电的现状 近年来,世界风电发展持续升温,速度加快。现主要以德国、西班牙、丹麦和美国的一些公司为代表,大规模地促进了风电产业化和风机设备制造业的发展。经过四、五年时间的整合,国际上风机制造业大约有十几家比较好的大企业。2003年底,全世界风电是3800万千瓦左右,而2003年一年就增加了400多万千瓦,仅德国到2003年底的装机容量就有1600万千瓦,其次是西班牙、美国、丹麦等国。国外风电的发展趋势,一是发展速度加快,二是风机机组从小型化向大型化发展,海上风电厂是下一步发展的主流。

风力发电电气控制技术发展探讨 王明佺

风力发电电气控制技术发展探讨王明佺 发表时间:2019-05-24T10:27:59.593Z 来源:《电力设备》2018年第32期作者:王明佺 [导读] 摘要:随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。 (华能河北清洁能源分公司河北石家庄 050000) 摘要:随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。风力发电是一种主要的发电形式,是可持续发展理念的主要体现。因此,本文简要分析了风力发电控制技术的新发展,同时对我国风电技术发展过程中存在的问题提出了相关建议。关键词:风力发电;电气控制技术;发展 1引言 随着国内5WM容量等级风电产品的相继下线,国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。现阶段我国风电机组整机制造业和关键零部件配套企业已能基本满足国内风电发展需求,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。 2电气控制技术概述分析 就目前的情况看,这一技术已应用到包括电厂等各领域当中。以风力发电为例,相对于火力及水力发电等,风力发电受自然环境影响严重,一旦气压以及空气温度等发生了变化,其发电过程也会受到影响,因此可以说,其发电过程具有不稳定性。为了提高风力发电效率,我国已经对发电机组的叶片直径进行了改良,一定程度上使得发电效率得到了提高,但鉴于风力发电所面临的自然环境的恶劣性,为了使发电过程能够更加顺利的实现,必须加强对整个运行过程控制,从而实现更好的控制效果。电气控制技术的出现为控制过程的实现提供途径,将其应用到风力发电过程中,已成为该领域发展的必然环节。 3风力发电过程中存在的问题分析 风力发电对能源节约及环境保护的重要性不言而喻,但受自然环境等多种因素的影响,其在运行过程中仍存在一定的问题,主要体现在以下方面: 3.1 电网质量得不到保证 风力发电具有一定的不稳定性,这是导致电网质量得不到保证的主要原因。风力发电主要是通过对风资源的利用而实现发电的过程,风资源本身具有很大的不稳定性,其速度以及方向均不固定,因此,若无法对其进行合理的控制,在上述两方面因素发生变化时,电力负荷以及电能均会产生一定的变化,如变化过大,超过电网所能够承受的范围,电网质量便会受到影响。 3.2 风力发电系统构成情况复杂 受技术水平等因素的影响,现阶段我国风力发电系统的构成情况以及动态特性都十分复杂。作为两种主要系统模型,线性模型与非线性模型在风力发电过程中均有所应用,但由于两者在功能的发挥以及对于环境的要求方面有所不同,因此采用传统的技术手段,统一对其进行技术控制,必定无法充分满足两种模式下风力发电系统的运行需求,由此可见,将新的控制技术应用到系统中已经开始变得尤为必要。 4风力发电电气控制技术的应用与发展策略分析 风力发电电气控制技术主要包括变速风力发电技术、变桨距风力发电技术、主动失速风发电技术及定桨距失速发电技术四种,四种技术分别凭借不同的原理而实现,主要体现在以下方面: 4.1 变速风力发电技术 一般情况下,风力发电机在运行过程中其速度均保持平衡与稳定,针对这一特点,一旦自然界中的风速发生了变化,其运行情况以及发电频率便会受到影响。变速风力发电技术的应用能够使上述问题得到有效解决。发电机的转速能够根据风速的代销做出调整,在风速较大时,为了避免功率过大而引起电网的损坏,发电机能够根据风速情况自行实现转速调整,进而使功率得以平衡。我国国土面积较大,采用这一技术能够有效的适应不同地区的不同风速情况,因此,将其应用到风力发电过程中很有必要。 4.2 变桨距风力发电技术 变桨距风力发电技术通过对桨叶角度的调整,实现对较大的功率的调整,相对于其他电气控制技术而言,这一技术的应用所使用的材料整体重量较轻,因此即使发生外力影响,其所受到的危害也相对较小,对于风力发电持续性的保证能够起到一定效果。但具有缺陷,主要体现在对成本要求高这一方面。从长远的角度看,随着对该技术科研力度的加大,其成本必定能够得到有效的减少,同时其应用范围也必定能够得到扩大。 4.3 定桨距失速发电技术 定桨距失速发电技术是在传统风力发电技术的基础上发展起来,通过对叶片结构的改良,实现对功率的控制的一种技术。在将其应用到实际风力发电过程中后发现,该技术实现有效控制功率的目的,但基于其本身叶片重量的影响,该技术下风力发电的整体效率却无法得到保证。变桨距风力发电技术是对定桨距风力发电技术的改良,解决了其中存在的桨叶重量过大的问题。 4.4 主动失速发电技术 为解决定桨距失速发电技术中存在的风力发电效率不高的问题,解决变桨距失速发电技术中存在的对成本要求过高的问题,主动失速发电技术出现。在综合考虑上述两种技术的优势的基础上,主动失速发电技术对两者的优势进行继承,并对其缺陷进行了优化与改良,最终使得两种技术下存在的缺陷得到了解决。 因此,该技术的原理在于根据桨距角在不同情况下的变化去控制风能的捕获量以及速度,理论上看,具有较高的应用价值,但从实践的角度看,易造成更加严重的失速,使得功率脱离控制,而对整个电网的运行造成不良影响。解决上述技术存在的缺陷是风力发电领域必须研究的主要内容。 5风力发电机组控制技术的发展 控制技术是风力发电机组安全高效运行的关键技术,主要在于: 自然风速的大小和方向随着大气的气压、气温和湿度等的活动和风电场地形地貌等因素的随机性和不可控性,这样风力机所获得的风

风能和太阳能互补性

风能运行内部相关设计 姓名: 学号:200 学院:电气工程学院 专业:电气工程及其自动化 班级:电气班 教师:(教授)

风能和太阳能互补性 摘要 风能和太阳能风能和太阳能的利用和发展已有三千多年的历史,是一门古老而又年青的科学、实用而又和生活关系密切的科学、可再生而又能保护环境的科学、现时又为可持续发展的科学,是一次投资可多年受益的产业。在众多新能源领域中,风力发电和太阳能发电的开发和利用被首当其冲优先发展,是当今国际上的一大热点,因为风能和光能的利用,是不用开采、不用运输、不用排放垃圾、没有环境污染的技术,是保护地球,造福子孙后代的百年大计工程。 风能和太阳能都是清洁、储量极为丰富的可再生能源,我国幅员辽阔,风能资源丰富,据估算,我国陆地可开发风能储量约为2.5×l08 kW,海上风力资源量更大,可开发风能储量绚为7.5×l08 kW。太阳每年投射到地面上的辐射能高达1.05×l018 kWh,相当于1.3×106亿吨标准煤。中国太阳能资源非常丰富,理论储量达每年1.7×104亿吨标准煤,大多数地区年平均日辐射量在4kWh/m2以上。风能和太阳能的应用方式多种多样,其中用于发电是最常见也是最重要的形式之一。 关键词:风能,太阳能,风光互补

1·风光互补 风能、太阳能都是无污染的、取之不尽用之不竭的可再生能源,小型风力发电系统和太阳能光电系统在我国已得到初步应用。这两种发电方式各有其优点,但风能、太阳能都是不稳定的,不连续的能源,用于无电网地区,需要配备相当大的储能设备,或者采取多能互补的办法,以保证基本稳定的供电。太阳能与风能在时间上和地域上都有很强的互补性,我国属季风气候区,一般冬季风大,太阳辐射强度小;夏季风小,太阳辐射强度大,在季节上可以相互补充利用。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而使风能加强。夜间和阴雨天无阳光时由风能发电,晴天由太阳能发电,在既有风又有太阳的情况下两者同时发挥作用,实现了全天候的发电,比单用风能和太阳能更经济、科学、实用。 利用风能和太阳能具有的互补性,开发风光互补发电系统,可以弥补太阳能和风能相互之间的不足,年发电量图如图1所示。

风力发电控制技术

风力发电及其控制技术 摘要: 风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。风力发电系统中的控制技术和伺服传动技术是其中的关键技术,这是因为自然风速的大小和方向是随机变化的,风力发电机组的切入(电网)和切出(电网)、输入功率的限制、风轮的主动对风以及对运行过程中故障的检测和保护必须能够自动控制。同时,风力资源丰富的地区通常都是海岛或边远地区甚至海上,分散布置的风力发电机组通常要求能够无人值班运行和远程监控,这就对风力发电机组的控制系统的可靠性提出了很高的要求 一、风电控制系统简述 风电控制系统包括现场风力发电机组控制单元、高速环型冗余光纤以太网、远程上位机操作员站等部分。现场风力发电机组控制单元是每台风机控制的核心,实现机组的参数监视、自动发电控制和设备保护等功能;每台风力发电机组配有就地HMI人机接口以实现就地操作、调试和维护机组;高速环型冗余光纤以太网是系统的数据高速公路,将机组的实时数据送至上位机界面;上位机操作员站是风电厂的运行监视核心,并具备完善的机组状态监视、参数报警,实时/历史数据的记录显示等功能,操作员在控制室内实现对风场所有机组的运行监视及操作。风力发电机组控制单元(WPCU)是每台风机的控制核心,分散布置在机组的塔筒和机舱内。由于风电机组现场运行环境恶劣,对控制系统的可靠性要求非常高,而风电控制系统是专门针对大型风电场的运行需求而设计,应具有极高的环境适应性和抗电磁干扰等能力。 风电控制系统的现场控制站包括:塔座主控制器机柜、机舱控制站机柜、变桨距系统、变流器系统、现场触摸屏站、以太网交换机、现场总线通讯网络、UPS电源、紧急停机后备系统等。 风力发电的基本原理 风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。 风力发电的原理是利用风带动风车叶片旋 转,再通过增速器将旋转的速度提高来促 使发电机发电的。依据目前的风车技术, 大约3m/s的微风速度便可以开始发电。风 力发电的原理说起来非常简单,最简单的 风力发电机可由叶片和发电机两部分构成 如图1-1所示。空气流动的动能作用在叶 轮上,将动能转换成机械能,从而推动片 叶旋转,如果将叶轮的转轴与发电机的转

风力发电机组控制技术教案

第一章绪论 能源是人类社会存在与发展的物质基础。过去200多年,建立在煤炭、石油、天然气等化石燃料基础上的能源体系,极大地推动了人类社会的发展。然而,人们在物质生活和精神生活不断提高的同时,也越来越感悟到大规模使用化石燃料所带来的严重后果;资源日益枯竭,环境不断恶化,还诱发了不少国与国之间、地区之间的政治经济纠纷,甚至冲突和战争。因此,人类必须寻求一种新的、清洁、安全、可靠的可持续能源系统。 风能是太阳能的一种转化形式,是一种不产生任何污染物排放的可再生的自然资源。 风能的开发利用已有数千年历史。在蒸气机发明以前,风能就曾作为重要的动力,由于船舶航行、提水饮用和灌溉、排水造田、磨面和锯木等。在几千年前,埃及的风帆船就在尼罗河上航行。中国是最早使用帆船和风车的国家之一,至少在三千年前的商代就出现了帆船。 受化石能源资源日趋枯竭、能源供应安全和保护环境等的驱动,自20世纪70年代中期以来,世界主要发达国家和一些发展中国家都重视风能的开发利用。特别是自20世纪90年代初以来,风力发电的发展十分迅速,世界风电机装机容量的年平均增长率超过了30%,从1993年的216万kW上升到20XX年的4030万kW。 我国对现代风力机的研制可以追溯到20世纪50年代,但系统的研究始于20世纪70年代。20世纪80年代中期开始,我国从国外引进了一些大、中型风力发电机组并入电网。1986年山东荣成市建成中国第一个风电场,年均发电量为33万kwh,以后相继在福建平潭、广东南澳岛、新疆达坂城及内蒙古朱日和等地建立了风电场。 进入20世纪90年代以来,我国风电发展势头强劲,成为我国发展速度最快的能源工业,但是,我国安装的大型风力发电机组中90%是从国外进口。我国对现代并网型风力发电机的研究工作始于20世纪80年代,我国自行研制出的有20kw,30kw,75kw,120kw,200kw,600kw和1MW风力发电机组。 目前世界上有几十种型号的大型风力发电机组在商业化运行,大体可分为四种类型。第一种为双绕组定桨距恒速机型,以Bounsl,BOUNS2,Nordex60和Nordex63为代表。第二种为变滑差变速机型,主要代表VestasV63,VstasV66,VstasV80.第三种是采用双馈发电机转差励磁方案,实现变速变距运行的机型,主要代表机型有DeWind公司的

太阳能风能介绍以及与核能对比

太阳能国内状况: 在我国,西藏西部太阳能资源最丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。 一类地区 为我国太阳能资源最丰富的地区,年太阳辐射总量6680~8400 MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡。这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。尤以西藏西部最为丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 二类地区 为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5~5.1KWh/㎡。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。 三类地区 为我国太阳能资源中等类型地区,年太阳辐射总量为5000-5850 MJ/m2,相当于日辐射量3.8~4.5KWh/㎡。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、苏北、皖北、台湾西南部等地。 四类地区 是我国太阳能资源较差地区,年太阳辐射总量4200~5000 MJ/㎡,相当于日辐射量3.2~3.8KWh/㎡。这些地区包括湖南、湖北、广西、江西、浙江、福建北部、广东北部、陕西南部、江苏北部、安徽南部以及黑龙江、台湾东北部等地。 五类地区 主要包括四川、贵州两省,是我国太阳能资源最少的地区,年太阳辐射总量3350~4200 MJ/㎡,相当于日辐射量只有2.5~3.2KWh/㎡。 太阳能辐射数据可以从县级气象台站取得,也可以从国家气象局取得。从气象局取得的数据是水平面的辐射数据,包括:水平面总辐射,水平面直接辐射和水平面散射辐射。 从全国来看,我国是太阳能资源相当丰富的国家,绝大多数地区年平均日辐射量在4 kWh/㎡以上,西藏最高达7 kWh/㎡。 中国蕴藏着丰富的太阳能资源,太阳能利用前景广阔。目前,我国太阳能产业规模已位居世界第一,是全球太阳能热水器生产量和使用量最大的国家和重要的太阳能光伏电池生产国。我国比较成熟太阳能产品有两项:太阳能光伏发电系统和太阳能热水系统。 2007年8月,国家发改委发布了《可再生资源中长期发展规划》,规划提出,到2010年我国可再生能源年利用量将达到2.7亿吨标准煤。其中,水电达到1.8亿千瓦,风电超过500万千瓦,生物质发电达到550万千瓦,太阳能发电达到30万千瓦;燃料乙醇和生物柴油年利用量分别达到200万吨和20万吨;沼气年利用量达到190亿立方米,太阳能热水器总集热面积达到1.5亿平方米。从2010年~2020年,我国可再生能源将有更大地发展。其中,水电将达到3亿千瓦,

相关主题
文本预览
相关文档 最新文档