双闭环控制器设计方法
- 格式:doc
- 大小:290.00 KB
- 文档页数:5
Buck 变换器双闭环控制仿真研究毕业论文目 录第一章第一章 绪论绪论................................... 1 1.1 课题研究背景课题研究背景课题研究背景 ................................. 1 1.2 课题发展现状课题发展现状课题发展现状 ................................. 1 1.3 本文研究内容及结构本文研究内容及结构本文研究内容及结构 ........................... ........................... 3 第二章第二章 Buck Buck变换器基本原理 ...................... 4 2.1 Buck 变换器工作原理变换器工作原理 ........................... 4 2.2 Buck 变换器工作模态分析变换器工作模态分析 ....................... 4 2.3 Buck 变换器外特性变换器外特性............................. 7 第三章第三章 Buck Buck 变换器主电路设计变换器主电路设计.................. 9 3.1 占空比D ....................................... 9 3.2 滤波电感Lf ................................... 9 3.3 滤波电容Cf .................................. 11 3.4 开关管Q...................................... 11 3.5 续流二极管D (12)第四章第四章 Buck Buck 变换器双闭环控制变换器双闭环控制 ................. 13 .. (13)4.1电路双闭环控制结构电路双闭环控制结构 (13)4.2 电流内环设计电流内环设计 ................................. 13 4.3 电压外环设计电压外环设计 (15)第五章第五章 Buck Buck 变换器闭环系统的仿真变换器闭环系统的仿真 ............. 21 . (21)5.1 开环开环Buck 电路的建模及仿真电路的建模及仿真 ................... ................... 21 5.2 闭环闭环Buck 电路的建模及仿真电路的建模及仿真 ................... ................... 2222 5.3 PI 控制方法的仿真控制方法的仿真 ............................ 2323 5.4 PID 控制方法的仿真控制方法的仿真........................... 25 第六章第六章 总结与展望总结与展望............................ 25 参考文献参考文献........................................ 29 外文资料外文资料 中文译文中文译文 致谢致谢第一章第一章 绪论绪论1.1 1.1 课题研究背景课题研究背景随着电子技术的快速发展,电子设备的种类越来越多,电子设备与人们的工作、生活的关系也日益密切。
双闭环直流电机调速系统设计综述《自动控制系统论文设计报告》班级:自动化 09-1姓名:许丹阳学号:0918120123时间:2012年 5月 12号指导老师:丁丽娜大连海洋大学信息工程学院自动化研究所双闭环直流电机调速系统设计摘要转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。
依据晶闸管的特征,经过调理控制角α 大小来调理电压。
鉴于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。
在设计中调速系统的主电路采纳了三相全控桥整流电路来供电。
本文第一确定整个设计的方案和框图。
而后确定主电路的构造形式和各元零件的设计,同时对其参数的计算,包含整流变压器、晶闸管、电抗器和保护电路的参数计算。
接着驱动电路的设计包含触发电路和脉冲变压器的设计。
最后,即本文的要点设计直流电动机调速控制器电路,本文采纳转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。
为了实现转速和电流两种负反应分别起作用,可在系统中设置两个调理器,分别调理转速和电流,即分别引入转速负反应和电流负反应,两者之间推行嵌套联接。
从闭环构造上看,电流环在里面,称作内环;转速环在外边,称做外环。
这就形成了转速、电流双闭环调速系统。
先确定其构造形式和设计各元零件,并对其参数的计算,包含给定电压、转速调理器、电流调理器、检测电路、触发电路和稳压电路的参数计算而后最后采纳MATLAB/SIMULINK 对整个调速系统进行了仿真剖析,最后画出了调速控制电路电气原理图。
要点词:双闭环;转速调理器;电流调理器目录一.绪论二 . 直流调速系统的方案设计2. 1. 12 . 2三.调理器的设计3. 1四.鉴于 MATLAB/SIMULINK的调速系统的仿真五.课程设计总结六.参照文件绪论直流调速系统的概括三十多年来,直流电机调速控制经历了重要的改革。
第一实现了整流器的更新换代,以晶闸管整流装置代替了惯用已久的直流发电机电动机组及水银整流装置使直流电气传动达成了一次大的跃进。
最新型三相P W M整流器双闭环P I调节器的设计摘要:通过分析三相脉宽调制(P W M)整流器在D-Q旋转坐标系下的数学模型,设计了具有前馈解耦控制的P W M整流器双闭环控制系统。
根据系统对电流内环的控制要求设计电流比例积分(P I)调节器,提出按闭环幅频特性峰值(M r)最小准则来确定调节器参数的方法;根据系统对电压外环的控制要求,采用模最佳整定法来设计电压P I调节器。
最后对整个P W M整流器双闭环控制系统进行仿真,仿真结果验证了P I调节器设计的正确性。
0引言P W M整流技术在抑制谐波及无功补偿方面有很强的优势,具有网侧电流输入接近正弦,网侧功率因数可控,能量双向传输,动态响应速度快等优点。
目前广泛采用的是基于电压定向的P W M整流器。
电压型P W M整流器要控制的变量有两个,一是整流器的直流电压输出,二是整流器的输入电流,基于D-Q坐标变换的矢量控制通过对P W M整流器有功和无功电流控制,达到控制输入电流的目的。
因此,如何合理的设计控制两个变量的调节器参数以保证在电源电压波动范围内能实现良好的控制性能很重要。
本文在分析P W M整流器工作原理和数学模型基础上,建立前馈解耦控制系统框图,提出电流环和电压环P I调节器参数设计方法,并给出S i mu l i n k仿真结果。
1P W M整流器工作原理及数学模型三相P W M整流器主电路如图(1)所示,E a,E b,E c为电源电压,U a,U b,U c为整流器整流侧输出电压,其中整流器交流侧输入电感L起到滤波和升高直流电压的作用,直流侧电容C作为储能元件并起到稳压作用。
三相P W M整流器在D2q坐标系下的数学模型为:图1P W M整流器电路结构由上式,同步旋转坐标系中,以D轴电源电压矢量定向(矢量图如图2,把对电网相电流的控制转化为对电流I s在D轴和Q轴的直流分量的控制,从而简化了P W M整流系统控制器的设计)的P W M整流器模型为:式中,Ω为旋转角速度;S d,S q为开关函数。
工业流程控制中双闭环PID控制算法的使用技巧与控制精度分析摘要:在工业流程控制中,PID控制算法是最常用且有效的控制算法之一。
本文旨在介绍双闭环PID控制算法的使用技巧,并分析其在工业流程控制中的控制精度。
引言:在许多工业领域,如化工、电力、汽车等,控制系统的稳定性和精度对于产品质量和设备效率至关重要。
PID控制算法是一种简单但强大的算法,可以通过对系统的反馈进行连续调整来实现对系统的控制。
双闭环PID控制算法在工业流程控制中被广泛使用,它通过两个PID控制器的级联连接,实现更高级别的控制精度。
1. 双闭环PID控制算法的基本原理双闭环PID控制算法是将两个PID控制器串联连接起来,以实现对控制对象的更精确控制。
其中一个PID控制器被称为外环(或称为主控制器),另一个PID控制器被称为内环(或称为从控制器)。
外环控制器接收输入信号,并计算出一个目标设定值,用于控制系统的整体行为。
内环控制器接收外环控制器的输出作为其输入信号,并计算出一个控制量,用于调节系统中的某个具体参数。
2. 双闭环PID控制算法的使用技巧(1)选择合适的PID参数:在使用双闭环PID控制算法时,选择合适的PID参数非常重要。
常用的调参方法包括手动调参和自动调参。
手动调参需要基于经验和系统模型的知识来调整PID参数,而自动调参则基于系统的输入输出数据进行参数优化。
对于复杂的系统,通常需要使用自动调参算法来优化PID参数。
(2)优化采样周期:采样周期是指系统从感知到反馈控制所需的时间间隔。
采样周期的选择直接影响到控制系统的响应速度和稳定性。
过小的采样周期会导致系统的计算和通信开销增加,同时可能引起系统的不稳定性。
过大的采样周期则会导致系统的响应速度降低。
因此,选择一个适当的采样周期对于双闭环PID控制算法的性能至关重要。
3. 双闭环PID控制算法的控制精度分析双闭环PID控制算法相比于传统的单闭环PID控制算法有更高的控制精度。
摘要本文讨论基于鲁棒性设计的一阶倒立摆双闭环控制问题。
以摆角为内环.以小车位置为外环利用鲁棒孔子系统理论进行模糊控制器设计及参数整定,使控制系统对于确定系统参数的变化具有较强的鲁棒性。
倒立摆系统的高阶次、不稳定、多变量、非线性和强耦合等特性使得许多现代控制理论的研究人员一直将它视为研究对象。
论文首先介绍了模糊系统的理论基础,和模糊控制器的分析和设计,充分的理解了倒立摆智能控制系统研究与设计所需要的理论知识。
然后通过对倒立摆系统的分析建模,采用模糊推理系统,设计相应的模糊控制器,对倒立摆进行控制,最后将控制过程在MATLAB上加以仿真。
在MATLAB仿真中,应用模糊逻辑工具箱来设计模糊逻辑控制器,然后通过Simulink来建立模糊系统,最后得到仿真结果。
关键词:倒立摆,模糊控制,双闭环模糊控制器,MATLAB仿真。
ABSTRACTThis article discusses the question of inverted pendulum double loop control that based on robust design. Take the pivot angle as the inner ring , the car position as the outer ring, Carries on the fuzzy controller design and the parameter installation by use robust control system theory, enable the control system to have strong robustness that determine changes in system parameters. As the inverted pendulum system is unstable,multivariable, nonlinear and strongly coupling and so on, many modern control theory researchers regard it as the object of study. The thesis introduced the Fuzzy systems theory ,the analysis and design of fuzzy controller , understand the theory knowledge that needed in study of intelligent control system of inverted pendulum . Then use fuzzy inference system and design corresponding fuzzy controller to control Inverted pendulum by making model of analysis of the inverted pndulum system.Finally,simulate the control processing in MATLAB.The simulation in MATLAB,design Fuzzy logic controller by applicating fuzzy logic toolbox,then set up fuzzy systems by use Simulink and at last obtained simulation results.Key word:Inverted pendulum, fuzzy control, double closed loop fuzzy controller, MATLAB simulation.目录第一章绪论 (4)1.1倒立摆系统稳定性研究 (4)1.1.1 倒立摆系统稳定性研究的意义 (4)1.1.2 倒立摆研究的发展状况 (5)1.2 模糊控制的研究现状 (6)1.2.1模糊控制理论的产生 (6)1.2.2模糊控制的数学基础 (7)1.2.3模糊控制的研究现状 (8)1.2.4模糊控制理论的发展前景 (9)1.3 论文主要工作 (10)第二章:单支点倒立摆系统数学模型的建立及系统分析 (11)2.1建模机理 (11)2.2系统建模 (11)2.3 模型简化 (13)第三章:模糊控制的基本原理 (16)3.1 模糊集合与隶属函数 (16)3.2 模糊逻辑操作 (16)3.3 模糊规则与模糊推理 (17)3.4 模糊推理系统 (17)第四章:一阶倒立摆系统的双闭环模糊控制器的设计与仿真 (19)4.1 一阶倒立摆系统的双闭环模糊控制方案 (19)4.1.1 问题的提出 (19)4.1.2 模糊控制器的设计 (20)4.2 仿真实验 (23)4.2.1 MATLAB模糊逻辑工具箱 (23)4.2.2 一阶倒立摆系统数字仿真模型的建立 (26)4.3仿真实验结果 (28)第五章结论 (33)致谢 (34)参考文献: (35)附录: (36)中文翻译: (41)第一章绪论1.1倒立摆系统稳定性研究倒立摆控制系统是应用于自动控制理论实验室的经典实验装置。
三相VIENNA整流器的双闭环控制策略研究随着工业自动化的不断发展,交流电源整流技术在工业控制领域中得到了广泛应用。
其中,三相VIENNA整流器作为一种比较常见的电源电路拓扑结构,具有功率因数校正和谐波抑制等优点,被广泛应用于电力电子变频调速、激光器电源和无线充电电源等领域。
双闭环控制策略是提高整流器性能、稳定性和响应速度的一种有效方法,本文将对三相VIENNA整流器的双闭环控制策略进行研究。
1.三相VIENNA整流器的基本结构和工作原理整流器的工作原理是在每个半周期内,分别通过A、B、C三个整流单元对输入的交流电压进行整流,输出相应的正半波电压。
通过控制三个整流单元的开通和关断状态,可以实现输出电压的调节和功率因数校正。
2.双闭环控制策略设计双闭环控制策略是将整流器的输出电压和电流分别作为反馈信号,设计两个闭环控制回路进行调节。
其中,电压环控制是通过调节整流器的PWM控制信号来维持输出电压的稳定性和精度;电流环控制是通过调节整流器的开关器件来维持输出电流的稳定性和跟踪性。
电压环控制的设计思路是在输出电压环路中加入PI控制器,根据输出电压与参考电压的差值来调节PWM控制信号。
电流环控制的设计思路是在输出电流环路中加入PI控制器,根据输出电流与参考电流的差值来调节整流器的开关器件。
整体控制框图如下所示:其中,Uref和Iref分别为输出电压和电流的参考值,U和I为输出电压和电流的实际值,Vpwm和SW为PWM控制信号和开关器件,PI为控制器模块。
3.控制系统参数调整和优化在双闭环控制策略中,PI控制器的参数调整和优化是关键。
控制器参数的选择应考虑到整流器的动态响应特性和稳定性要求。
常用的参数调整方法包括试误法、频域法和优化算法。
试误法是通过手动调节参数,观察系统的响应情况,逐步优化参数值。
频域法是基于系统的频率响应特性,通过Bode图和Nyquist图分析系统的稳定性和性能,优化参数值。
优化算法是通过数学优化方法,自动化地寻找控制器参数的最优解。
系统仿真课程设计报告题目:一阶倒立摆系统的双闭环模糊控制方案专业、班级:自动本091班学生姓名:学号:0905404125指导教师:分数:2012 年 6 月9 日目录摘要: (2)一、引言 (2)二、设计目的 (3)三、设计要求 (3)四、设计原理 (3)五、设计步骤 (3)1、单级倒立摆系统的构成........................ 错误!未定义书签。
2、单级倒立摆的数学模型 (4)3、模糊控制器的设计 (6)3.1单阶倒立摆模糊控制的基本思路 (6)3.2隶属函数的定义 (6)3.3模糊控制器规则 (7)3.4解模糊 (8)4、仿真实验 (8)4.1MATLAB模糊逻辑工具箱 (8)4.2系统数字仿真模型的建立 (11)5、基于MATLAB的数字仿真结果 (12)六、结论 (13)七、感想和建议 (13)八、致谢 (14)九、参考文献 (15)摘要:通过对单阶倒立摆的双闭环的控制数学模型的分析,采用模糊控制理论对倒立摆的控制系统进行计算机仿真。
其中,内环控制倒立摆的角度,外环控制倒立摆的位置。
在Matlab环境下的仿真步骤包括:定义隶属函数及模糊控制规则集,解模糊。
结果表明,摆杆角度和小车位置的控制过程均具有良好的动态性能和稳定性能。
关键词:倒立摆;模糊逻辑控制;计算机仿真;MATLABAbstract:based on the ChanJie inverted pendulum double closed loop control mathematical model analysis, the fuzzy control theory of the inverted pendulum control system by computer simulation. Among them, the inner loop control the point of view of the inverted pendulum, outside loop control the position of the inverted pendulum. In the Matlab environment simulation steps include: definition membership function and fuzzy control rule sets, solution is fuzzy. The results show that, swinging rod Angle and the car position control process are good dynamic performance and stable performance.Keywords: inverted pendulum; Fuzzy logic control; The computer simulation; Matlab一、引言在人类自然科学的发展历史上,人们总是以追求事物的精确描述为目的来进行研究,并取得了大量的成果。
晶闸管双闭环直流调速系统设计引言:直流调速系统广泛应用于电机控制领域,其中晶闸管双闭环直流调速系统具有较好的性能和可靠性。
本文将介绍晶闸管双闭环直流调速系统的设计原理和步骤,并分析其性能和可行性。
一、系统设计原理:晶闸管双闭环直流调速系统由速度环和电流环组成。
其中速度环通过测量电机转速与期望速度之间的误差并反馈控制,通过调整电机的输入电压来改变电机的转速。
电流环通过测量电机输出电流与期望电流之间的误差并反馈控制,通过调整晶闸管的导通角来改变电机的输出电流。
速度环和电流环通过PID控制器进行控制,实现闭环控制。
二、系统设计步骤:1.确定系统参数:包括电机参数、电压参数、电流参数和速度参数等。
根据实际情况选择合适的参数值。
2.设计速度环:首先选择合适的速度传感器进行速度测量,如光电编码器或霍尔元件。
然后根据测量值与期望速度之间的误差计算PID控制器的输出值,进一步控制电机的输入电压。
3.设计电流环:选择合适的电流传感器进行电流测量,如电流互感器或霍尔元件。
根据测量值与期望电流之间的误差计算PID控制器的输出值,进一步控制晶闸管的导通角。
4.设计反馈回路:将测量到的速度和电流信号经过滤波器进行滤波处理,减小干扰。
然后将滤波后的信号输入到PID控制器,计算控制器的输出值。
最后将控制器的输出值经过扩大器进行放大,最终作为输入信号驱动电机。
5.系统仿真和优化:使用MATLAB等仿真软件进行系统仿真,分析系统的性能和稳定性。
根据仿真结果,调整控制参数和系统结构,优化系统性能。
三、系统性能和可行性分析:晶闸管双闭环直流调速系统具有较好的稳态和动态性能。
速度环能够实现对电机速度的精确控制,适应不同负载的要求。
电流环能够实现对电机输出电流的精确控制,保证电机的安全运行。
经过优化设计的系统具有较快的响应速度、较小的超调量和较好的稳定性。
总结:本文介绍了晶闸管双闭环直流调速系统的设计原理和步骤,并分析了其性能和可行性。
光伏并网逆变器M及双闭环控制技术研究一、概述随着全球能源危机和环境污染问题的日益严重,可再生能源的开发和利用受到了广泛关注。
光伏发电作为一种清洁、可再生的能源形式,已经成为全球能源转型的重要方向。
光伏并网逆变器作为光伏发电系统的核心设备,其性能直接关系到整个系统的发电效率和电能质量。
对光伏并网逆变器及其控制技术的研究具有重要的现实意义和应用价值。
光伏并网逆变器的主要功能是将光伏电池板产生的直流电能转换为交流电能,并将其并入电网中供用户使用。
在这一过程中,逆变器需要实现最大功率点跟踪(MPPT),以最大化光伏电池板的发电效率同时,还需要保证并网电流的波形质量,减少对电网的污染。
为了实现这些功能,光伏并网逆变器通常采用双闭环控制技术,即外环控制负责调整逆变器的输出功率,内环控制则负责调节并网电流的质量。
目前,光伏并网逆变器的控制技术已经得到了广泛的研究和应用。
随着光伏发电系统规模的扩大和电网对电能质量要求的提高,传统的控制技术已经难以满足实际需求。
研究新型的光伏并网逆变器及其控制技术,提高系统的发电效率和电能质量,是当前光伏领域的重要研究方向。
本文将对光伏并网逆变器及其双闭环控制技术进行深入研究和分析。
介绍光伏并网逆变器的基本原理和结构详细阐述双闭环控制技术的基本原理和实现方法分析现有控制技术存在的问题和不足提出一种新型的光伏并网逆变器及其控制技术,并通过仿真和实验验证其有效性和优越性。
本文的研究成果将为光伏发电系统的优化设计和高效运行提供理论支持和技术指导。
1.1 研究背景与意义随着全球能源结构的转型和可持续发展理念的深入人心,光伏产业作为清洁能源的重要组成部分,正日益受到各国政府和科技界的关注。
光伏并网逆变器作为光伏发电系统的核心设备,其性能直接关系到电能转换效率、系统稳定性及电网接入质量。
研究和优化光伏并网逆变器的控制技术,对于提高光伏发电系统的整体性能、推动光伏产业的健康发展以及实现能源的绿色转型具有重要意义。
V-M双闭环不可逆直流调速系统设计1主电路结构设计变压器调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有3种:旋转电流机组,静止可控整流器,直流斩波器和脉宽调制变换器。
旋转变流机组简称G-M系统,适用于调速要求不高,要求可逆运行的系统,但其设备多、体积大、费用高、效率低、维护不便。
静止可控整流器又称V-M系统,通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变U d,从而实现平滑调速,且控制作用快速性能好,提高系统动态性能。
直流斩波器和脉宽调制交换器采用PWM受器件限制,适用于中、小功率的系统。
根据本设计的技术要求和特点选V-M系统。
在V-M系统中,调节器给定电压,即可移动触发装置GT输出脉冲的相位,从而方便的改变整流器的输出瞬时电压U d。
由于要求直流电压脉动较小,故采用三相全控桥式整流电路。
考虑使电路简单、经济且满足性能要求,选择晶闸管三相全控桥整流器供电方案。
因三相桥式全控整流电压的脉动频率比三相半波高,因而所需的平波电抗器的电感量可相应减少约一半,这是三相整流电路的一大优点。
并且晶闸管可控整流装置无噪声、无磨损、响应快、体积小、重量轻、投资省。
而且工作可靠,能耗小,效率高。
同时,由于电机的容量较大,又要求电流的脉动小。
综上所述,选晶闸管三相全控桥整流电路供电方案。
三相桥式全控整流电路的原理如图1-1所示,习惯将其中阴极连接在一起到3个晶闸管(VT1、VT3、VT5)称为共阴极;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极,另外通常习惯晶闸管从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a,b,c三相电源相接的3个晶体管分别是VT1、VT3、VT5,共阳极组中与a,b,c三相电源相接的3个晶闸管分别是VT4、VT6、VT2。
其工作特点如下:1)每个时刻均需两个晶闸管同时导通,形成向负载供电的回路,其中一个晶闸管是共阴极组的,一个是共阳极组的,且不能为同一相的晶闸管。
PMSM双闭环平滑非奇异终端滑模控制1. 引言1.1 引言为了克服传统滑模控制的这些问题,平滑非奇异终端滑模控制应运而生。
该方法在保持传统滑模控制鲁棒性的基础上,通过引入非奇异终端控制律和平滑控制律,有效地改善了系统的动态特性和控制性能。
本文将介绍PMSM双闭环平滑非奇异终端滑模控制方法的原理和设计过程,并通过仿真分析验证该控制方法的有效性。
希望通过本文的研究,能够为PMSM控制领域的进一步研究和实际应用提供一定的参考和借鉴。
2. 正文2.1 绪论为了克服这些问题,控制系统设计变得至关重要。
传统的PID控制器无法满足PMSM高性能控制的要求,因此研究者们开始探索更加先进的控制方法。
双闭环控制系统是一种有效的控制策略,可以提高系统的稳定性和动态性能。
滑模控制是一种常用的非线性控制方法,具有较好的鲁棒性和抗干扰能力。
传统的滑模控制在系统的起始阶段会出现“抖动”现象,影响系统的性能。
平滑非奇异终端滑模控制是一种改进的滑模控制策略,可以在系统的起始阶段避免“抖动”,提高系统的性能和鲁棒性。
本文将介绍PMSM双闭环平滑非奇异终端滑模控制的原理和实现方法,并通过仿真分析验证该控制策略的有效性和优越性。
通过本文的研究,可以为PMSM控制系统的设计和优化提供参考和指导。
2.2 PMSM双闭环控制系统PMSM双闭环控制系统是一种针对永磁同步电机的控制策略。
在传统的PMSM控制算法中,通常只考虑到单一的闭环控制结构,如速度闭环控制或电流闭环控制。
这种单闭环控制结构往往会导致系统性能的局限,对于PMSM这种高性能电机来说,需要更加复杂和精细的控制策略来满足其高要求。
PMSM双闭环控制系统是一种综合了速度和电流两个闭环控制结构的控制方法。
通过同时控制电流和速度两个环节,可以更好地调节电机的性能,提高系统响应速度和稳定性。
在PMSM双闭环控制系统中,速度闭环控制用于跟踪期望速度指令,而电流闭环控制用于保持电机电流在合适的范围内,从而保证电机的稳定运行。
一阶倒立摆双闭环PID控制实验报告一、实验目的1. 学习并掌握一阶倒立摆原理及其数学模型;2. 了解反馈控制理论,学习PID控制原理及其在一阶倒立摆控制中的应用;3. 熟悉MATLAB/Simulink软件的使用,能够建立一阶倒立摆的模型,并进行控制仿真。
二、实验原理一阶倒立摆是指在一根杆上挂一个质量小于杆的质量的小球,通过控制杆上电动机的电流来控制小球的倾斜角度,实现倒立控制。
2. 数学模型根据机械臂的动力学方程,可以得到一阶倒立摆的状态方程:其中,θ为小球倾斜的角度,M为电机的转矩,l为杆的长度,g为重力加速度,J为小球和杆组成的转动惯量。
3. PID控制PID控制是目前最常用的控制方法之一,包括比例控制、积分控制和微分控制。
PID控制器的控制对象通常是一个差值,由控制器在比例、积分和微分的作用下不断调整输出,使差值达到期望设定值。
其中,比例作用是根据误差的大小进行调整,积分作用是积累误差从而消除静差,微分作用是根据误差的变化率进行调整,消除系统震荡和过冲。
三、实验步骤1. 建立模型首先建立一阶倒立摆的模型,输入电机的转矩,输出小球的倾斜角度。
模型如下所示:2. 设计控制器在模型基础上,设计PID控制器,控制小球的倾斜角度达到预定值。
3. 进行仿真四、实验结果根据一阶倒立摆的数学模型,建立了如下图所示的Simulink模型:输入变量为电机的转矩M,输出变量为小球的倾斜角度θ。
根据反馈控制理论和PID控制原理,设计了如下的PID控制器:其中,Kp、Ki和Kd分别为比例、积分和微分增益。
利用上述模型和控制器进行仿真,得到了小球的倾斜角度随时间的变化曲线如下图所示:可以看出PID控制器在控制小球倾斜方面表现良好,小球在稳态时达到了预定角度,并在稳定范围内波动。
五、结论1. 本次实验成功建立了一阶倒立摆的数学模型;。
单相电压型双闭环pwm整流电路控制stm32【实用版】目录1.单相电压型双闭环 PWM 整流电路概述2.STM32 在双闭环 PWM 整流电路中的应用3.双闭环 PWM 整流电路的控制原理4.STM32 实现双闭环 PWM 整流电路的控制方法5.双闭环 PWM 整流电路的优点与应用场景正文一、单相电压型双闭环 PWM 整流电路概述单相电压型双闭环 PWM 整流电路是一种基于 PWM(脉宽调制)技术的电力电子装置,主要由电压环和电流环两个闭环控制部分组成。
该电路通过调整 PWM 信号的脉宽,实现对交流电压的有效控制,从而达到恒定输出电压的目的。
在双闭环控制策略下,该电路具有较强的稳定性和良好的动态响应性能。
二、STM32 在双闭环 PWM 整流电路中的应用STM32 是一种高性能、低功耗的微控制器,广泛应用于各种嵌入式系统中。
在双闭环 PWM 整流电路中,STM32 可以作为控制核心,实现对电路的精确控制。
借助其强大的计算能力和丰富的外设接口,STM32 能够轻松应对双闭环 PWM 整流电路的实时控制需求。
三、双闭环 PWM 整流电路的控制原理1.电压环控制:电压环主要负责控制输出电压的恒定。
通过采集输入电压和输出电压的误差信号,计算出所需的 PWM 脉宽,进而调整开关器件的占空比,实现对输出电压的控制。
2.电流环控制:电流环主要负责控制整流器的电流。
根据输出电压和电流的误差信号,通过内模解耦控制策略,计算出所需的电流控制信号,从而实现对整流器电流的控制。
四、STM32 实现双闭环 PWM 整流电路的控制方法基于 STM32 的双闭环 PWM 整流电路控制方法主要包括以下几个步骤:1.初始化 STM32 的硬件资源,包括定时器、PWM 输出等功能模块。
2.配置电压环和电流环的控制参数,如比例增益、积分时间常数等。
3.通过 ADC(模数转换器)等传感器采集输入电压、输出电压和电流等信号,计算出误差信号。
PMSM双闭环平滑非奇异终端滑模控制PMSM双闭环平滑非奇异终端滑模控制是一种电机控制算法,用于永磁同步电机(PMSM)的运动控制。
本文将对PMSM双闭环平滑非奇异终端滑模控制进行详细介绍。
PMSM是一种具有高效率、高功率密度、高转矩与转速控制能力的电机类型,被广泛应用于工业和汽车领域。
PMSM系统的非线性、耦合和扰动等因素使得其控制成为一项复杂的任务。
传统的PMSM控制方法包括矢量控制和直接转矩控制。
这些方法在快速响应和鲁棒性方面存在一定的局限性。
近年来,研究者们提出了一些新的控制策略来改善PMSM系统的性能。
PMSM双闭环平滑非奇异终端滑模控制是其中一种先进的控制策略。
它结合了滑模控制和模糊控制的优点,并克服了传统滑模控制的摆动问题和模糊控制的模糊化问题。
PMSM双闭环平滑非奇异终端滑模控制的主要思想是将转子电流和转子转矩作为内环控制量,将电机转速作为外环控制量,构建一个双闭环控制系统。
滑模控制器用于内环控制,模糊滑模控制器用于外环控制。
1. 建立PMSM的数学模型。
根据电机的物理特性和电路方程,建立PMSM的数学模型。
2. 设计滑模控制器。
根据PMSM的数学模型,设计合适的滑模控制器,用于控制转子电流和转子转矩。
4. 进行仿真和实验验证。
使用电机仿真软件和实验设备,对设计的控制系统进行仿真和实验验证,评估其性能和鲁棒性。
通过PMSM双闭环平滑非奇异终端滑模控制,可以实现PMSM系统的高性能控制。
与传统的控制方法相比,该控制方法具有更好的响应速度、抗扰性和鲁棒性。
它在许多应用场景下具有广泛的应用前景,包括工业机械、电动车辆和航空航天等领域。
尽管PMSM双闭环平滑非奇异终端滑模控制在PMSM系统的控制中取得了一定的成功,但仍然存在一些挑战和问题。
控制器参数的选择、模型误差的影响、系统抗干扰能力的改进等。
在今后的研究中,还需要进一步深入地研究和改进PMSM双闭环平滑非奇异终端滑模控制算法,以提高其性能和可靠性。
双闭环直流调速系统设计及仿真———————————————————————————————— 作者:———————————————————————————————— 日期:1绪论直流调速是现代电力拖动自动控制系统中开展较早的技术。
在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。
晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。
尽管目前交流调速的迅速开展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢送。
但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反响控制理论根底上的直流调速原理也是交流调速控制的根底[1]。
现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但根本控制原理有其共性。
对于那些在实际调试过程中存在很大风险或实验费用昂贵的系统,一般不允许对设计好的系统直接进展实验。
然而没有经过实验研究是不能将设计好的系统直接放到生产实际中去的。
因此就必须对其进展模拟实验研究。
当然有些情况下可以构造一套物理装置进展实验,但这种方法十分费时而且费用又高,而且在有的情况下物理模拟几乎是不可能的。
近年来随着计算机的迅速开展,采用计算机对控制系统进展数学仿真的方法已被人们采纳。
但是长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。
以使系统模型等为计算机所承受,然后再编制成计算机程序,并在计算机上运行。
因此产生了各种仿真算法和仿真软件[2]。
由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。
MATLAB提供动态系统仿真工具Simulink,那么是众多仿真软件中最强大、最优秀、最容易使用的一种。
它有效的解决了以上仿真技术中的问题。
3.2.2 电流的直接控制 电流直接控制,就是采用跟踪型的PWM控制技术对电流波形的瞬时值进行反馈控制,可以采用滞缓比较方式,也可采用三角波比较方式,进行电流的直接控制。采用PWM技术的直接控制方法从原理上来说可以有效地滤除系统中的无功电流和全部有害电流。与间接控制方法相比较,直接控制方法具有更高的响应速度和控制精度,但它要求开关频率高,因为大功率器件很难以高开关频率运行,因此不采用电流直接控制。一般来说,电流直接控制适合于小功率场合。但从目前世界上运行的无功补偿器的情况看来,电流直接控制在中、大容量系统也有应用。日本新农用于输电80Mvar的SVG和日本神户用于钢厂负荷补偿20Mvar的SVG均采用了电流直接控制方式。前者在电网严重不对称,甚至短路时仍可照常工作;后者对炼钢电极短路引起的电网电压闪变有很好的抑制作用。电流直接控制的SVG控制系统有两种基本结构:1.滞环比较控制;2.电压电流双闭环控制. 本文主要讨论电压电流双闭环控制方法。控制结构如图3.2所示,采用了dq轴下的瞬时控制系统。SVG发出的电流瞬时值经dq0坐标变换变为diqi0i,与有功电流、无功电流参考值作比较后,经PI调节器所得值,再经dq0反变换,得到三相电压信号,进行三角波比较电流跟踪型PWM控制。其中,有功电流参考值由直流侧电压参考值与直流侧电容电压反馈值比较后经PI调节器得到。由于参考值*di和*qi,和反馈值diqi在稳态时均为直流信号,因此通过PI调节器可以实现无稳态误差的电流跟踪控制。即此方法中采用了双闭环反馈控制,环是电流环控制,外环是电压环控制。
*dcu
PIabcdq
di
qi
*di
dcu*qi
控制脉冲
dqabcaibi
ci
PI
PI
图3.3 电流电压双闭环控制原理图 SVG采用电流直接控制后,其响应速度和控制精度将比间接控制法有很大提高。在这种控制方法下,SVG实际上相当于一个受控电流源。由于受电力半导体器件开关频率限制,这种控制方法对较小容量SVG比较适用。 还有一种电流直接控制方法为空间矢量调制控制方法,其原理可参考相关文献,本文不再给出。 以上介绍了SVG的两类控制方法,电流的间接控制和电流的直接控制。通过对比我们可以得出如下结论: (1)电流的间接控制方法相对简单,技术相对成熟,但间接控制与直接控制相比,控制精度较低,电流响应速度较慢。 (2)电流直接控制法对电力半导体器件的开关频率要求高,因此适用于较小容量SVG控制;间接控制法适用于较大容量的SVG控制。 (3)采用电流间接控制的大容量SVG可采用多个变流器多重化联结、多电平技术或PWM控制技术来减小谐波。而采用电流PWM跟踪控制的直接控制方法电流谐波较少。
3.3 控制系统参数计算 将双闭环控制器设计方法用于SVG,只需要经过为数不多的几步简单计算,就可以确定控制器的参数,特别适合控制器参数的现场整定。另一特点是在频域设计控制器时,可以比较方便地将系统中诸如变换器延时,滤波延时等小滞后环节考虑进去。因此,在SVG控制系统设计中,一般采用双环控制,即电压外环和电流环。电压外环的作用主要是控制三相PWM整流器直流侧电压,而电流环的作用是要按电压外环输出的电流指令进行电流控制。 3.3.1 电流环控制系统设计 如图2.2所示,在相坐标系VSR(d,q)中,其dq模型可描述为:
ddd
qqd
eiuLpRLeiLLpRu
(3.5)
32ddqqdcdcuiuiui (3.6)
式中 de、qe——电网电动势矢量dqE的d、q分量
du、qu——三相VSR交流侧电压矢量dqU的d、q分量 di、qi——三相VSR交流侧电流矢量dqI的d、q分量 P——微分算子 设dq坐标系中q轴与电网电动势矢量dqE重合,则电网电动势矢量d轴分量
de=0。 从三相VSR dq模型方程式(3.5)可看出,由于VSR d、q轴变量相互耦合,因而给控制器设计造成一定困难。为此,可采用前馈解耦控制策略,当电流调节器采用PI调节器时,则du、qu的控制方程如下: iI
qipqqdq
KuKiiLies
(3.7)
iI
dipddqd
KuKiiLies
(3.8)
式中 ipK、iIK——电流环比例调节增益和积分调节增益; qi、di——qi、di电流指令值; 将式(3.7)(3.8)代入式(3.6),并化简得:
010iIipdddiIipqqqiIipKRKsiiiKLpKiiLsiKRKsL
(3.9)
显然式(3.9)表明:前馈的控制算法式(3.7)和(3.8)使三相VSR电流环dqii实现了解耦控制,由于两电流环的对称性,因而下面以qi控制为例讨论电流调节器的设计。考虑电流环信号采样的延迟和PWM控制的小惯性特性,已解耦的qi电流环结构如图3.4所示:
图3.4 无qe扰动时的qi电流环简化结构 图3.4中,sT为电流环电流采样周期(即亦为PWM开关周期),PWMK为桥路PWM等效增益。为简化分析将PI调节器的传递函数写成零点形式,即: 1ipiIiipipiIiiKKsKKKss (3.10)
将小时间常数2sT、sT合并。 电流调节器设计方案有两种。当考虑电流环需获得较快的电流跟随性能时, 可按典型I型系统设计电流调节器,从图3.4可看出,只需以PI调节器零点抵消电流控制对象传递函数的极点即可,即iLR。校正后,电流环的开环传递函数为:
1.51ipPWMoiisKKWsRsT
(3.11)
由典型I型系统参数整定关系,当取系统阻尼比=0.707时,有: 1.512sipPWMiTKKR (3.12)
求解得: 3iipsPWMRKTK (3.13)
3ipiIisPWMKRKTK (3.14) 式(3.13)(3.14)即为电流环PI调节器控制参数计算公式。 3.2.2 外环控制系统的设计 由于电压外环的主要控制作用是稳定三相VSR直流电压,故其控制系统整定时,应着重考虑电压环的抗扰性能.显然,可按典型型系统设计电压调节器,电压环的简化控制结构由图3.5所示:
图3.5 三相VSR电压环简化结构 得电压环开环传递函数为: 2
0.7511uuouueuKTsWsCTsTs (3.15)
由此,得电压环中频宽uh为: uueu
ThT (3.16)
由典型型系统控制器参数整定关系得: 220.7512uuuueuKhCThT (3.17)
综合考虑电压环控制系统的抗扰性及跟随性,工程上一般取中频宽5uueuThT,将5uh代入(3.17),计算得电压环PI调节器参数为:
55343ueuusuusTTTCKT
(3.18)
另一方面,当采用典型型系统设计电压环时,电压环控制系统截止频率c为: 1112cueuTT
(3.19)
当取usT时,5320uueuussThTTT (3.20) 将式(3.20)代入式(3.19)得: 1113220420csssTTT
(3.21)
则电压环控制系统频带宽度bvf为: 30.0242202cbvssffT
(3.22)
式中sf——PWM开关频率。