水性聚氨酯的改性综述
- 格式:docx
- 大小:31.19 KB
- 文档页数:7
水性聚氨酯引言为了减少涂料对环境的污染和对消费者健康的损害, 许多国家对溶剂型涂料的限制越来越严格, 从而使涂料由溶剂型向水基型的转变成为必然。
早在2005 年我国就已开始控制新的溶剂型涂料生产企业的审批, 到2008 年将对溶剂型涂料的生产和销售实行控制。
低污染涂料的发展方向有水性化、高固体分化和粉末化三种。
与其他两种涂料相比, 水性涂料因为具有来源方便、易于净化、成本低、黏度低、良好的涂布适应性、无毒性、无刺激及不燃性等特点, 已成为环境友好型涂料的主要发展方向。
一、水性聚氨酯涂料的性能聚氨酯( PU) 涂料是涂料业中增长速度最快的品种之一。
水性聚氨酯( WPU) 涂料是以水性聚氨酯树脂为基础, 以水为分散介质配制的涂料, 除具有水性涂料的特点以外, 它还有以下突出的优点:1)涂膜对塑料、木材、金属及混凝土等表面的附着力好, 抗磨性、耐冲击性好。
脂肪族聚氨酯水性涂料的户外耐久性好, 综合性能接近溶剂型聚氨酯涂料2) 和其他乳胶涂料相比, 其低温成膜性好, 不需要成膜助剂, 也不需要外加增塑剂、乳化剂或分散剂。
3) 容易通过交联反应进行改性, 可提高耐溶剂性和抗化学性, 改进耐水性, 对颜料( 包括金属颜料) 有良好的适应性, 也可提供高光泽涂膜。
所含羟基可以适用一些交联剂和固化剂, 可进一步改进涂膜性能。
4) PU 分子具有可裁剪性, 结合新的合成和交联技术可有效控制涂料的组成和结构, 为改进其性能提供了更多的途径。
WPU 诸多的优点, 使其成为目前发展最快的涂料品种之一。
2 水性聚氨酯涂料的研究进展WPU 分为单组分和双组分。
单组分WPU 涂料聚合物的对分子质量较大, 成膜过程中一般不发生交联反应, 具有施工方便的优点; 双组分WPU涂料由含羟基的水性树脂和含异氰酸酯基的固化剂组成, 施工前将两者混合, 成膜过程中发生交联反应, 涂膜性能好。
由于在水性聚氨酯分子中引入了亲水基团, 所以耐水性、耐溶剂性和耐候性等较差是WPU 涂料存在的主要问题, 为此, 近几年来国内外学者对WPU 的改性进行了大量研究, 并取得了很大进展。
水性聚氨酯胶黏剂的改性方法分析作者:王建缘来源:《商品与质量·学术观察》2013年第05期摘要:水性聚氨酯胶黏剂具有优良的化学黏结力,简便的粘结工艺,稳定性好,抗低温等优点,但是它自身具有一定的缺点。
水性聚氨酯胶黏剂初黏力较低、耐水性相对较差、硬度低等缺点。
为解决这些问题,我国的科研机构及科研人员不断加强对水性聚氨酯胶黏剂改性方法的研究,并取得了一定的成就。
本文主要介绍了一些水性聚氨酯胶黏剂的改性方法,并对其优缺点进行对比,以找出各种改性方法的适用领域,研究其发展趋势。
关键词:水性聚氨酯胶黏剂改性方法水性聚氨酯是一种把水当作分散介质的聚氨酯体系。
水性聚氨酯胶黏剂的溶剂为水,具有无污染,无毒性,良好的相容性,优良的机械性能,容易改性等优点,因而被当作环保型涂料和胶黏剂而得到广泛的应用。
尽管水性聚氨酯胶黏剂有很多的优点,但是仍然无法避免出现不足之处。
水性聚氨酯胶黏剂的成膜速度相对较慢,初黏力较低等缺点,另外水性聚氨酯胶黏剂还存在着较差的耐水性和耐溶剂性,硬度较低,手感不佳等缺点。
因此,多年来我国的研究机构和研究人员都对水性聚氨酯胶黏剂的改性进行深入研究,旨在提高水性聚氨酯的性能,改进不足,扩大应用领域。
目前,国内外的水性聚氨酯胶黏剂改进方法主要有环氧树脂改性、有机硅改性、丙烯酸改性、纳米材料改性等。
一、国内外水性聚氨酯胶黏剂的研究现状及存在的问题水性聚氨酯胶黏剂虽然无毒环保,但是其在具体的使用当中仍然存在着许多的问题,有待进一步的改进。
1.1固含量相对较低当前我国的水性聚氨酯胶黏剂中固含量比较低,大多数仅仅占30%左右,致使水性聚氨酯胶黏剂的干燥速度降低,同时运输费用增高。
提高其固含量,有利于提高它的干燥速度,但是这通常又会引起黏度过大,乳液分散相对困难,降低稳定性等问题。
如何解决这些问题,是研究者们的一个重要课题。
1.2 固化速度相对较慢因水性聚氨酯胶黏剂的分散介质是水,而水的挥发速度和干燥速度比较慢,这导致水性聚氨酯胶黏剂的固化速度变慢,增加了能量的消耗,同时生产效率也有了很大的降低。
水性聚氨酯胶黏剂简介一、水性聚氨酯胶黏剂分类到目前为止,水性聚氨酯的研究已有60多年,其有各种各样的分类方式,通常采用的分类方式有以下六种。
1、按使用形式分类按使用形式分类,可分为单组份与双组分水性聚氨酯。
(1)单组份水性聚氨酯单组份水性聚氨酯应用最早,一般指可直接投入生产使用的或者无需交联剂的水性聚氨酯,有着耐水性较差的缺点,但通过交联改性可以获得较高的稳定性、力学性能、耐水性的提升。
(2)双组分水性聚氨酯双组分水性聚氨酯是指多异氰酸酯预聚体与多元醇两个组分,其单独使用时不能直接投入生产,必须添加交联剂。
使用时将两组分混合,多异氰酸酯与多元醇和空气中的水反应,生成聚脲与聚氨酯,从而产生交联。
双组分水性聚氨酯的耐水性较好,但多异氰酸酯与水反应生成CO2,导致聚氨酯胶膜气泡较多,外观较差,且不环保。
2、按亲水基团分类根据水性聚氨酯分子主链或者侧链上的离子基团性质或是否携带离子基团,可将其分为阴离子、阳离子和非离子型。
(1)阴离子型水性聚氨酯因为反应完全、综合性能好而最为常用,可以分为羧酸型和磺酸型,其离子基团一般在侧链上。
(2)阳离子型水性聚氨酯为主链或侧链上含有锍离子或铵离子的水性聚氨酯,亲水的铵离子一般由含氨基的扩链剂经酸化或者烷基化的反应形成,也可以将含氨基的聚氨酯与环氧氯丙烷以及酸反应生成,阳离子型水性聚氨酯的主要缺点是热稳定性与力学性能较差。
(3)非离子型水性聚氨酯的分子主链或侧链中不带有亲水离子基团。
要使非离子型水性聚氨酯乳化,就必须加入乳化剂并在高速旋转的剪切乳化机下乳化,也可以通过形成非离子亲水基团来进行乳化,如羟甲基,非离子型的水性聚氨酯耐水性较差。
3、按原料分类水性聚氨酯的主要原料为低聚多元醇和多异氰酸酯。
(1)低聚多元醇按主要原料多元醇分类,有聚酯多元醇、聚醚多元醇、聚四氢呋喃、聚丙烯酸多元醇、丙烯酸酯、聚碳酸酯多元醇、聚己内酯二醇、蓖麻油、聚酯酰胺、聚丁二烯二醇等,主要使用的是聚酯型二元醇和聚醚型二元醇。
闫福安,陈俊(武汉工程大学化工与制药学院,武汉430073)摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。
水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。
关键词:水性聚氨酯;合成;改性0引言聚氨酯是综合性能优秀的合成树脂之一。
由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。
据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。
美国人均年消耗聚氨酯材料约5.5kg,西欧约4.5kg,而我国的消费水平还很低,年人均不足0.5kg。
溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。
水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。
进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。
在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。
1水性聚氨酯的合成单体1.1多异氰酸酯(polyisocynate)多异氰酸酯可以根据异氰酸酯基与碳原子连接的部位特点,可分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,TDI)、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,HDI)、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,IPDI。
水性聚氨酯在涂料领域广泛研究和应用0综述了水性聚氨酯涂料的主要特点和应用,介绍了防腐蚀水性聚氨酯涂料、防水水性聚氨酯涂料、防霉杀菌水性聚氨酯涂料、阻燃水性聚氨酯涂料、抗涂鸦水性聚氨酯涂料等功能性水性聚氨酯涂料的特点和研究进展,并指出了功能性水性聚氨酯涂料的热点研究方向。
关键词:水性聚氨酯涂料功能性涂料进展聚氨酯(PU)是由含羟基、羧基、氨基等官能团的化合物与含异氰酸酯基化合物反应得到的高分子化合物,分子主链中除含有许多重复的氨基甲酸酯键(-NHCOO-)外,还含有醚键、酯键、脲键、脲基甲酸酯键。
聚氨酯被誉为性能最优异的树脂,以其制得的涂料具有许多优异的性能,如高硬度、耐磨损、柔韧性好、耐化学品、附着力强、成膜温度低、可在室温固化等。
但是,传统的溶剂型聚氨酯涂料在制备和施工的过程中都需添加不少有机溶剂,对人类健康和环境造成危害。
此外,双组分聚氨酯涂料中游离的多异氰酸酯(如TDI)对皮肤、眼睛和呼吸道有强烈的刺激作用,长期接触会引起慢性支气管炎等疾病。
因此,随着人们环保意识的加强和各国环保法律法规对挥发性有机化合物(VOC)排放量的限制,水性聚氨酯的研究与开发日益受到重视.水性聚氨酯是以水为分散介质,聚氨酯树脂溶解或分散于水中而形成的二元胶态体系,以其制备的水性聚氨酯涂料中不含或含有极少量的有机溶剂。
水性聚氨酯涂料,不仅具有无毒无臭味、无污染、不易燃烧、成本低、不易损伤被涂饰表面、施工方便、易于清理等优点,还具有溶剂型聚氨酯涂料所固有的高硬度、耐磨损等优异性能[3],因而在木器涂料、汽车涂料、建筑涂料、塑料涂料、纸张涂层以及织物和皮革涂饰等许多领域得到了广泛的应用。
为了满足人们在生产和生活方面对具有新型功能的水性涂料的需求,近年来,人们通过对水性聚氨酯改性或添加助剂开发出了许多具有特殊物理和化学性质的水性聚氨酯涂料,提高了水性聚氨酯涂料的功能性,扩大了水性聚氨酯涂料的应用范围。
本文综述了几种功能性水性聚氨酯涂料的最新研究进展。
聚氨酯的合成、改性及其应用作者:薛婷来源:《商情》2016年第26期【摘要】聚氨酯(PU)树脂是由异氰酸酯与多元醇反应制成的一种具有氨基甲酸酯链段重复结构单元的聚合物。
本文研究了聚氨酯的合成方法,改性方法,论述了其在生产生活中的重要地位及广泛应用。
【关键词】聚氨酯聚合物合成改性应用聚氨酯(PU)树脂是由异氰酸酯与多元醇反应制成的一种具有氨基甲酸酯链段重复结构单元的聚合物。
聚氨酯是一种高分子材料,其主要特征是分子链中含有多个重复的“氨基甲酸酯”基团,既有橡胶的弹性,又有塑料的强度和优异的加工性能,因其具有橡胶和塑料的双重优点,可以认为是橡胶和塑料优异性能的结合体。
聚氨酯材料性能优异,用途广泛,制品种类多,其中尤以聚氨酯泡沫塑料的用途最为广泛。
一、聚氨酯的工业合成方法水性聚氨酯的合成过程主要为:①由低聚物多元醇、扩链剂、二异氰酸酯形成中高相对分子质量的PU预聚体;②中和后预聚体在水中乳化,形成分散液。
各种方法在于扩链过程的不同。
1.外乳化法。
该方法是使用最早的制备水性聚氨酯的方法,它是1953年美国DuPont公司W. Yandott发明的,其制备工艺是在有机溶剂中,用两官能团的多元醇与过量的二异氰酸酯反应合成了带有NCO封端的预聚体,再加入适当的乳化剂,经强剪切力作用分散于水介质中并用二元胺进行扩链,但因该方法存在乳化剂用量大,反应时间长以及乳液颗粒粗而导致储存性差,胶层物理机械性能不佳等缺点,目前生产基本不用该方法。
2.自乳化法。
自乳化法通常是在聚氨酯结构中引入部分亲水基,使自身分散形成乳液。
根据亲水基团的类型用该法制得的水性PU可分为阴离子型、阳离子型、两性型和非离子型4种,其中以阴离子型占主导地位。
其制备方法主要分为丙酮法、预聚物混和法、热熔法、酮亚胺/ 酮连氮法,其共同特点是首先制备相对分子质量适中、端基为NCO或封闭NCOPU预聚体,区别主要在扩链过程中。
目前工业生产主要采用丙酮法和预聚物混和法。
磺酸型水性聚氨酯的研究进展综述了磺酸型水性聚氨酯乳液(SWPU)的制备、性能以及国内外研究进展。
介绍了其应用领域和国内外应用情况,并对SWPU的发展及应用前景进行展望。
标签:磺酸盐;水性聚氨酯(WPU);合成;改性在聚氨酯主链或侧链上引入带电荷的离子基团,制成聚氨酯离子聚合体,这种带离子的聚合体分散到水中形成自乳化型水性聚氨酯(WPU)[1]。
水性聚氨酯节能环保,已被广泛用于涂料、胶粘剂、油墨、生物材料、建筑材料、汽车和纺织品等领域[2]。
目前应用最多的是羧酸型WPU,其亲水单体形成的是弱酸弱碱盐,离子强度低,稳定的WPU分散体需要羧酸盐亲水单体量较多,还存在对非极性基材润湿性差,初粘性低,耐电解质性、耐酸碱性和耐高低温性能较差等缺点。
与羧酸盐型水性聚氨酯相比,磺酸型水性聚氨酯(SWPU)更易得到高固含量的产品,其耐酸碱性、耐热及耐水性都有很大的改善,且无需使用中和剂,具有良好的经济价值和市场前景[3~5]。
按照亲水单体的不同,可以将SWPU分为含小分子磺酸盐亲水单体的SWPU和含大分子磺酸盐亲水单体的SWPU。
1 前以小分子磺酸盐为亲水单体的SWPU1.1 乙二胺基乙磺酸钠鲍俊杰,张海龙等[6]以乙二胺基乙磺酸钠(AAS-Na)为亲水单体,聚己二酸新戊二醇酯(PNA)、聚己二酸-1,4-丁二醇酯(PBA)、聚己二酸乙二醇丁二醇酯(PEBA)等长链多元醇,异佛尔酮二异氰酸酯(IPDI)、六亚甲基二异氰酸酯(HDI)等二异氰酸酯为原料,采用丙酮法合成了高固含量磺酸型聚氨酯分散体[7~16]。
其合成方法是:将真空脱水后的大分子多元醇加入到有N2保护的烧瓶中,控温70~85 ℃,机械搅拌;加入二异氰酸酯、催化剂二月桂酸二丁基锡,反应一定时间后,加入小分子二元醇扩链剂、稀释剂丙酮,在80 ℃反应,直到体系中的异氰酸酯基含量达到一定值时,停止加热,冷却到室温后加入乙二胺基乙磺酸钠(AAS-Na)亲水单体,反应一定时间后加入计量的去离子水高速分散乳化;最后加入乙二胺扩链,一段时间后减压脱丙酮,得到SWPU。
环氧树脂改性环氧树脂(EP)材料具有高模量、高强度和耐化学性好等优点,由于环氧树脂含有活泼的环氧基团,可直接参与水性聚氨酯的合成反应。
常见环氧改性的水性聚氨酯是将环氧树脂与聚氨酯反应后部分形成网状结构,以提高水性聚氨酯涂膜的机械性能及耐热性、耐水性和耐溶剂性等综合性能。
环氧树脂改性通常采用机械共混或共聚的方法。
采用机械共混法时EP和PU 之间没有化学键的结合,利用EP的疏水性和PU链中的羧基以及聚醚链段的亲水性,使PU包覆EP,最终形成核-壳结构而达到改性的效果。
共聚法是将EP接枝到PU链上,在乳液的稳定性上,共混法比共聚法更具有优势。
机械共混法由于环氧基团被包裹在核内进行开环反应,所以体系较稳定。
而共聚法在预聚阶段生成的支链结构导致相对分子质量增大,使预聚体的粘度增大;环氧基团的催化开环使得部分乳液粒子形成交联物而缓慢沉淀。
体系中的NCO基团还可能同EP链上的环氧基团反应,生成噁唑酮结构。
黄先威等研究了环氧树脂用量、加入方式、温度等因素对乳液稳定性并分析了影响涂膜性能的因素,发现当EP的质量分数超过7%时,预聚体粘度过大,而且乳液稳定性也变差。
其原因可能是随着环氧树脂加入量的增加,乳液中位于胶粒外壳的环氧基团也随之增加,其在三乙胺的催化作用下进行开环反应,乳液粒子之间形成的交联物增多而沉淀。
Jang J K等研究了不同NCO\OH比值(R值)对树脂及涂膜性能的影响,R值较小时,分散液的外观及其涂膜的硬度、耐水性等较差,随着R 值的增大,一方面聚合物链中硬段含量增大,提高了涂膜的硬度;另一方面体系中游离的NCO增多,在乳化扩链的过程中形成更多的交联,生成更多的疏水性链段--氨基甲酸酯,使硬段更集中,增强了硬段结晶微区的交联作用,降低了PU 的吸水率,提高了涂膜的耐水性。
2.2.3有机硅氧烷改性有机硅树脂表面能较低,具有耐高温、耐水性、耐候性及透气性好等优点,已广泛用于聚氨酯材料的改性。
近年来有许多关于用聚硅氧烷改性聚氨酯制取低表面能材料的报道。
水性聚氨酯及其改性进展 摘要:介绍了水性聚氨酯的发展背景、成分、性能的影响因素及一些改性进展和改性手段,并指出现阶段水性聚氨酯的改性要求和发展趋势。
关键词:水性聚氨酯、有机硅改性、环氧树脂改性、丙烯酸改性 水性聚氨酯材料是一种具有优异的机械耐磨性、软硬可调性、耐介质性和优良的装饰性能的材料。随着人们环保意识的增强,水性聚氨酯(WPU)以其无毒、价廉、安全、不燃等优点表现出巨大的市场前景,并有逐步取代溶剂型产品的趋势。但是单一水性聚氨酯在其应用上存在固含量低、自增稠性差、硬度低、成膜光泽低、成膜时间长、耐水性差的缺陷。目前水性聚氨酯研究的热点是通过改性,提高水性聚氨酯的综合性能并扩大其应用范围。 1.水性聚氨酯的发展背景 聚氨酯是氨基甲酸酯的简称,通常由多异氰酸酯与多元醇逐步聚合而成。在实际制备的聚氨酯树脂中,除含有氨基甲酸酯基团外,还含有脲、缩二脲等基团。所以,从广义上讲,聚氨酯是异氰酸酯的加聚物。1937年德国化学家拜耳教授首先利用异氰酸酯与多元醇化合物发生加聚反应制得聚氨酯树脂,随后英、美等国家于1945~1949年从联邦德国获得了有关聚氨酯制造技术,并在1953年相继实现工业化。日本从德国拜耳公司和美国引入技术后于1955年开始聚氨酯工业化生产。我国聚氨酯工业化生产是在20世纪60年代才开始的。水性聚氨酯的研究开发及其生产几乎与聚氨酯树脂的工业化同时进行。1943年德国另一位化学家斯克拉克在乳化剂及保护胶体的存在下,将异氰酸酯在水中乳化,并在剧烈搅拌下添加二胺,第一次成功地制备出聚氨酯乳液。1953年Du Pont公司Wyandotl将由二异氰酸酯和聚醚多元醇制成的-NCO预聚体用苯溶液分散于水中,此后又用二胺扩链合成了水性聚氨酯,并在1967年首次工业化。1972年德国拜耳公司正式将聚氨酯水分散体作为皮革涂料,引起各国的极大重视。1975年德国拜耳公司科研人员将聚氨酯分子链中引入亲水成分,让其在水中自乳化,从而得到高性能乳液,应用领域也逐步拓展。进入20世纪80年代后,由于合成技术的发展,水性聚氨酯进入飞速发展阶段。进入21世纪,世界范围内日益高涨的环保要求,更是加快了水性聚氨酯工业发展的步伐。国内对水性聚氨酯的研究开发于1972年开始,经过几十年的发展,也取得了一定的成绩。水性聚氨酯以水作溶剂,取代了有机溶剂,不仅具有不污染、运输安全、工作环境好等特点,而且具有良好的综合性能,在建筑、家具、汽车、印刷、皮革等行业使用越来越普遍,因此开发水性聚氨酯具有十分重要的意义。 2.水性聚氨酯的合成原料 水性聚氨酯的合成原料主要有10大类:(1)多异氰酸酯,常用的有甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯( MDI)、六次亚甲基二异氰酸酯(HDI)、多次甲基多苯基多异氰酸酯(PAPI)、异佛尔酮二异氰酸酯(IPDI)以及特殊用途的其它异氰酸酯;(2)多元醇或多元胺等含氢化合物。多元醇化合物主要有聚酯多元醇、聚己内酯、聚醚多元醇、氨基聚醚多元醇、聚己二醇、聚四氢呋喃、端羟基聚丁二烯橡胶、环氧树脂和含羟基的丙烯酸树脂等大分子多元醇。小分子多元醇有一缩二己二醇、1,4-丁二醇、三羟基丙烷、季戊四醇等。多元胺有丙二胺、二乙烯三胺、异佛尔酮二胺等;(3)扩链剂:1,4—丁二醇、乙二醇、己二醇、乙二胺等 水性聚氨酯制备中常常使用扩链剂,其中可引入离子基团的亲水性扩链剂有多种,除了这类特种扩链剂外,经常还使用1,4—丁二醇、乙二醇、一缩二乙二醇、己二醇、乙二胺、二亚乙基三胺等扩链剂;(4)水:蒸馏水、离子水;(5)亲水性扩链剂:二羟甲基丙酸(DMPA)、二羟基半酯、乙二胺基乙磺酸钠、二亚乙基三胺等; (6)成盐剂:HCL、醋酸、环氧丙烷 。(7)溶剂:丙酮、甲乙酮、甲苯等;(8)乳化剂:聚氧化乙烯-氧化丙烯共聚物;(9)交联剂:环氧树脂、三聚氰胺-甲醛树脂、多异氰酸酯; (10)增稠剂:羧甲基纤维素、羟甲基纤维素等。 3.水性聚氨酯性能的影响因素 任何高分子材料的性能均由其结构决定,聚氨酯结构包含化学结构和聚集结构两方面。化学结构即分子链结构,是合成之初配方设计中需要着重考虑的因素;聚集结构是指大分子链段的堆积状态,受分子链结构、合成工艺、使用条件等的影响。研究结构因素对性能的影响也就找到了提高水性聚氨酯性能的途径。具体有以下几方面的影响: 3.1 软段对性能的影响 聚氨酯弹性体的软链段主要影响材料的弹性,并对其低温性能和拉伸性能有显著的贡献。一般情况下聚酯型聚氨酯弹性体比聚醚型聚氨酯弹性体具有更好的物理机械性能,而聚醚型聚氨酯具有更好的耐水解性和低温柔顺性能。聚醚软段具有较低的玻璃化转变温度,因而低温使用范围更广。而聚醚或聚酯软链段的规整度都能提高其结晶度,因而可改善材料的抗撕裂性能和抗拉强度,同时也能增加聚合物的滞后特性。 3.2 硬段对性能的影响 硬段结构基本上是低分子量的聚氨酯基团或聚脲基团,这些基团的性质在很大程度上决定了弹性体的主链间相互作用以及由微相分离和氢键作用带来的物理交联结构。异氰酸酯原料的结构对聚氨酯弹性体的性能起着关键作用,主要是它们庞大的体积可以引起较大的链间位阻,使材料具有较高的撕裂强度和模量。 3.3 交联的影响 聚氨酯弹性体基本上属于具有线性分子特征的热塑性树脂,但也可由多官能度扩链剂或脲基等方式引入一定程度的交联。适当交联可以改善材料的物理机械性能,提高聚氨酯的耐水性和耐候性。但也有研究表明,高交联度导致处于橡胶态的聚氨酯弹性体模量下降,原因是硬链段微区里的交联会阻碍链段的最佳堆砌和降低玻璃态或次晶微区的含量。 3.4 微相分离结构的影响 聚氨酯的特殊性能来源于其明显的微相分离结构,不同大分子链的硬段聚集成晶区,起到了物理交联的作用,提高了体系的强韧性、耐温性和耐磨性能。硬段微区与软段基质存在氢键等形式的结合,因此起到活性填料的作用,是材料强韧化的根源。影响聚氨酯微相分离的因素很多,包括软硬嵌段的极性、分子量、化学结构、组成配比、软硬段间相互作用倾向及热力史、样品合成方法等。相互分离的微相中也存在链段之间的混合,从而导致软段玻璃化温度的提高和硬段玻璃化温度的减小,缩小了材料的使用温度范围,并使材料耐热性能下降。 3.5 氢键的影响 聚氨酯弹性体在硬段与硬段之间和硬段与软段之间都能形成氢键,室温下聚氨酯分子中大约75%~95%的NH基都形成了氢键。氢键的作用在于能使聚氨酯耐受更高的使用温度,使聚氨酯弹性体在较高温度时可以保持橡胶态时的模量。 3.6 软硬段比例对性能的影响 在聚氨酯结构中,硬链段由于氢键作用会聚集,造成软硬链段的微相分离。硬链段含量的多少,直接影响制品的硬度、弹性和强度。一般情况下,随着-NCO与一OH 摩尔比增大,膜的拉伸强度增大,成膜变硬,断裂伸长率随着-NCO与一OH摩尔比增大而降低。 4.水性聚氨酯的改性进展 制约水性聚氨酯广泛应用的因素是成本较高和某些性能低于溶剂型聚氨酯。成本较高是由于成膜物合成过程繁杂、反应条件严格、产量不高等原因。以异氰酸酯固化的水性聚氨酯体系,需要用昂贵的封闭异氰酸酯,其活化能高。选用低温或无需加热即可固化的廉价异氰酸酯是涂料行业努力的方向,并取得了显著进展。其主要成就如下。 4.1 提高固含量 普通合成工艺制得的水性聚氨酯产品的固含量多为 20 %~ 40 %,这样会增加运输费用和干燥时间。设法将固体分提高到 50 %以上是国外研究的课题之一。德国 Goldschmidt 公司制得的固含量 55 %的水性聚氨酯对电解质和冷冻稳定。该公司采用了分子中既含有端羟基又含有磺酸基的聚氧化烷撑和聚酯二醇为合成水性聚氨酯的原料,聚合物中的亲水基团进行自乳化,能显著提高乳液的稳定性。 此工艺的注意点是:乳化剂分散后进行扩链,必须加入比异氰酸酯反应活性更高的扩链剂来提高聚合物的相对分子质量;当亲水基分子中既含有异氰酸酯基,又含有反应性基团时,需尽力控制其自身聚合,否则会导致产品性能劣化。 4.2 提高成膜性能 在合成聚氨酯乳液时稍加溶剂 ( 称作助溶剂或潜溶剂 ) 降低反应体系的粘度,一方面利于反应体系的控制,促进固化过程中涂膜的形成;另一方面可改进乳液的流动性和对基材的湿润性,提高粘接强度。一般可用丙酮、甲苯或丁酮等作为潜溶剂。但它们沸点较低,或有一定毒性,有着火和中毒的危险。改进的办法是加人一定量能和水互溶的高沸点 N —甲基— 2 —吡咯烷酮来改进成膜性。另外,也可通过加入高沸点磷酸酯来提高成膜性能。值得注意的是,使用水性聚氨酯,固化速度不宜太快,因为有些助溶剂和聚合物有一定的亲水性,溶剂挥发太快,会降低涂膜的附着力。 4.3 提高稳定性 水性聚氨酯分散体的粒径小于 1μm 时,贮存稳定性才令人满意,最佳粒径值为 0.03 ~ 0.8μm 。自乳化型的粒径小于强制乳化型的粒径,所以前者比后者稳定。粒径随聚合物分子链亲水性的增加而变小,但同时一 NCO 亲水活性增加,导致涂膜的耐水性下降。 为改善水性聚氨酯的耐水性,向聚氨酯分子链中引入表面能低的硅氧烷链段或功能性氟单体,以增强水性聚氨酯的疏水性和耐沾污性。为防止乳液分层和避免低粘度施工时涂料过多渗入多孔基材,常加入乙烯基增稠剂。乙烯基增稠剂的加入,可使被涂基材的密封性、涂饰性以及聚氨酯对底材的粘附性等方面有明显的改善。 4.4 提高初粘性 水性聚氨酯的初粘性较低也是阻碍其广泛使用的原因之一。改进初粘性除加入增稠剂的方法外,大日本油墨和化学品公司合成了环氧树脂—水性聚氨酯体系,显示了良好的初粘性,且其耐水性、耐溶剂性、耐热蠕变以及附着性能都有明显改善,被用作高级涂装材料,如胶合板 PVC 贴面的粘接。