固井水泥浆失重
- 格式:pptx
- 大小:3.54 MB
- 文档页数:20
地球物理测井原理测井解释习题集带答案选择50题(1)1.可用于含水纯砂岩地层评价的是()曲线。
(A)微电极(B)井斜(C)方位(D)井径答案(A )2.石灰岩、石膏的骨架时差通常取()μs/ft和()μs/ft。
(A)55.5,52 (B)47.5,52 (C)189,171 (D)43.5,50答案(B )3.测井解释中一般取砂岩、岩盐的骨架时差分别为()μs/ft和()μs/ft。
(A)189,220 (B)47.5,67 (C)189,164 (D)55.5,67答案(D )4.测井解释中一般取白云岩的骨架时差为()us/m。
(A)189 (B)43.5 (C)143 (D)47.5答案(C )5.利用自然电位曲线计算泥质相对含量的表达式正确的是()。
(A)Vsh=SPmax-SPmin (B)Vsh=SP-SPmin(C)Vsh=SPmax-SP (D)Vsh=(SP-SPmin)/(SPmax-SPmin )答案(D )6.利用自然电位计算泥质含量的前提条件是()。
(A)Rw>Rmf (B)Rw<Rmf (C)Rw =Rmf (D) Rw ≠Rmf答案(D )7.声波测井主要分为()两大类。
(A)声速测井和声波时差测井(B)声波幅度测井和声波频率测井(C)声速测井和声幅测井(D)声速测井和声波频率测井答案(C)8.既能测量声波波速,又能测量声幅的测井项目是( )。
(A)变密度测井(B)噪声测井(C)全波列声波测井(D)补偿声波测井答案(C)9.声波在两种介质的界面会发生反射和折射,如果声波传播方向和界面之间的夹角合适,进入界面后的()将会沿界面传播,这就是滑行波。
A.反射波(B)纵波(C)横波(D)折射波答案(D)10.磁性定位测井曲线应连续记录,()信号峰显示清楚,且不应出现畸形峰。
(A)套管(B)油管(C)节箍(D)筛管答案(C)11.磁性定位测井曲线的干扰信号幅度小于节箍信号幅度的()。
什么是固井一、固井:在已钻出的井眼中下入一定尺寸的套管,并在套管与井壁或套管与套管之间的环形空间内注入水泥的工艺过程。
二、井身结构包括以下几方面的内容:所下套管的层次、直径、各层套管下入的深度、井眼尺寸(钻头尺寸)、各层套管的水泥反高等。
三、设计井深的主要依据:地层压力、地层破坏压力和坍塌压力。
四、套管的类型:⒈导管;⒉表层套管;⒊技术套管;⒋生产套管;⒌尾管。
五、井深结构设计的原则:①能有效的保护油气层,使油气层不受钻井液的损害;②能够避免漏、喷、塌、卡等复杂情况产生,保证全井顺利钻进,使钻井周期达到最短;③钻达下部高压地层时所用的较高密度的钻井液产生的液柱压力,不至于把上一层套管鞋处薄弱的裸露地层压裂;④下套管过程中,钻井液液柱压力和地层压力之间的压差,不至于造成卡阻套管。
六、套管柱的受力:轴向压力、外挤压力和内压力。
七、套管柱的附件:⒈引鞋(套管鞋、浮鞋);⒉回压法;⒊套管扶正器;⒋磁性定位套管;⒌联顶节。
八、水泥熟料主要成分:①硅酸三钙(C3S);②硅酸二钙(C2S);③铝酸三钙(C3A);④铁铝酸四钙(C4AF)。
九、水化作用:油井水泥与水混合后,水泥中各种矿物分别与水发生水解和水化反映,某些水化产物还能发生二次反映。
十、水化反映的不断进行水泥浆形成水泥石可分为三个阶段:①胶溶期;②凝结期;③硬化期。
十一、稠化时间:指油井水泥浆在规定压力和温度条件下,从开始搅拌至稠度达100Bc所需要的时间。
十二、稠度:水合水泥混合后会逐渐变稠,变稠的速率。
十三、注水泥的设备:水泥车、水泥混合漏斗、水泥分配器、水泥头、胶塞、储灰罐。
十四、碰压:胶塞被推至浮箍时,泵压突然升高。
十五、注水泥主要工序包括:循环和接地面管汇→打隔离液→顶胶塞→碰压→候凝。
十六、提高泥浆的顶替效率:⒈紊流顶替;⒉打前置液;⒊活动套管;⒋调整完井液和水泥浆的性能;⒌使用扶正器。
十七、引起油、气、水窜的原因:水泥浆在凝固过程中的失重是导致油、气、水窜的主要原因,井壁存在泥饼、水泥硬化过程体积收缩也是造成油、气、水窜的原因。
固井技术规定第一章总则第一条固井是钻井工程的关键环节,其质量好坏不仅关系到钻井工程的成败和油气井的寿命,而且影响到油气田勘探开发的整体效果。
为保证固井工程质量,特制定本规定。
第二条固井工程必须从设计、准备、施工、检验四个环节严格把关,采用适合地质特点及各种井型的先进固井工艺技术,确保质量,达到安全、可靠、经济。
第三条固井作业必须按固井设计执行,否则不得施工。
第二章固井设计第一节设计格式与审批第四条固井设计格式按勘探与生产分公司发布的《xx井xx套(尾)管固井设计》要求执行。
第五条固井审批程序按勘探与生产分公司发布的《中油股份公司勘探与生产工程技术管理办法》执行。
第二节套管柱强度要求第六条套管柱强度设计方法SY/5322-2000执行。
其中,在高压气井和超深井的强度设计时,必须考虑密封因素。
对安全系数的要求见下表数据。
第七章套管柱抗挤载荷计算在正常情况下按已知产层压力梯度、钻井液压力梯度或预测地层孔隙压力值计算。
遇到盐岩层等特殊地层时,该井段套管抗挤载荷计算取上覆地层压力梯度值,且该段高强度套管柱长度在盐岩层段上下至少附加50m第八条套管柱强度设计应考虑热采高温注蒸汽过程中套管受循环热应力的影响。
第九条对含有硫化氢等酸性气体井的套管柱强度设计,在材质选择上应明确提出抗酸性气体腐蚀的要求。
有关压裂酸化、注水、开采方面对套管柱的技术要求,应由采油和地质部门在区块开发方案中提出,作为设计依据。
第三节冲洗液、隔离液和水泥浆要求第十条冲洗液及隔离液1、使用量:在不造成油气侵及垮塌的原则下,一般占环空高度的300~500m。
2、性能要求:冲洗液和隔离液能有效冲洗、稀释、隔离、缓冲钻井液,与钻井液及水泥浆具有良好的相容性,并能控制失水量,不腐蚀套管,不影响水泥环的胶结强度。
第十一条水泥浆试验按SY/T5546-92执行,试验内容主要包括:密度、稠化时间、滤失水、流变性能、抗压强度等。
对于定向井的自由水测定,应先将水泥浆置于井底循环温度条件下,测试装置倾斜至实际井下斜度或45°,然后测定自由水。
固井同行业事故案例分析1固井井喷事故1)基础资料(1)表层套管:φ339.7mm,下深60.28m。
(2)技术套管:φ244.5mm,下深1281.41m。
(3)裸眼:φ215.9mm钻头,钻深2264m。
(4)防喷装置:双闸板防喷器一套,只能封钻杆,不能封套管。
(5)钻井液性能:密度1.22g/cm3,粘度27s。
2)事故发生经过胜利油田某年某月在GD-10-1井施工作业,完井后,下入φ139.7mm油层管至2252.66m,循环时将钻井液密度由1.22g/cm3降至1.15g/cm3。
固井时,依次注入清水3m3,密度1.01g/cm3的平衡液10m3,密度1.25g/cm3的先导浆36m3,密度1.78 g/cm3的尾浆57.5 g/cm3。
替钻井液时,排量30L/s,替入18 m3时,井口返出量明显减少,替入21 m3时,井口不返,坚持替完水泥浆碰压。
候凝1h10min 后,井口涌出钻井液,接弟发生井喷,喷出物为油气,喷高20m多。
3)事故原因分析(1)本井是因井漏环空液面下降到一定深度,失去压力平衡,再加上水泥失重的影响,诱发井喷。
(2)虽然装有防喷器,但防喷器闸板规范不配套,发生了井喷,依然用不上。
所以在下套管以前,一定要把防喷器闸板换装成与所下套管外径规范相匹配的闸板。
(3)忽视了观察进口和向井内灌钻井液的工作。
固井碰压后,一般井队都是刀枪入库,马放南山。
但在井漏的情况下,绝不可疏忽大意,只要注意向井内灌钻井液,或许会避免此类事故的发生。
(4)固井过程中,发生井漏,有两种情况,一种是因环空堵塞而发生井漏,泵压一定要升高,环空液面也不会下降,此种情况,不会发生井喷。
另一种情况是在水泥浆上返过程中,随着环空液注压力的增高,将低压层压漏,此时泵压不会上升,但井口液面要下降,遇到这种情况,必须观察井口动态,做好灌注钻井液的工作,必要时关井候凝。
4)防止固井后发生井喷事故的预防措施(1)在高压油气层固井,要用膨胀水泥或在水泥中添加防气窜剂,维持水泥凝结时体积不变,不给油气上窜留下通道。
第八章固井复杂问题固井是钻井工程的最后一个环节,也是最重要的一个环节,固井的主要任务是在地层与井口之间建立可靠的联系通道,并能可靠的封隔开油、气、水层,为油气井长期稳定有效的进行生产奠定基础。
固井工作又是一次定型的工作,•如果固井工作出现问题,将会导致油气井终身残废或前功尽弃,所以人们对固井工作都非常重视。
但是由于各方面的原因,•还是经常出现一些问题,使人们回天无术,抱憾终身。
固井的重要环节是下套管和注水泥,我们就将这两个环节中出现的问题分别加以论述。
并且对一些特殊的固井方法加以介绍。
第一节下套管过程中可能出现的问题下套管和下钻杆的程序一样,•只是要求一次下入,并不希望起出,所以要求对下套管的工作要做得非常认真仔细。
下套管过程中容易出现的问题有:一 .卡套管卡套管的原因有两种:•一是粘吸卡,由于套管接箍外径相对的小于钻杆接头外径,套管本身的外径又往往大于钻杆外径,•套管与井壁的接触面积大于钻杆与井壁的接触面积,而套管的连接螺纹时间又多于钻杆的连接螺纹时间,所以粘卡的机会比钻杆多,•特别在钻井液性能不好的情况下,卡套管的机会更多。
七十年代初江汉油田会战时,使用的是钻井粉处理的钻井液,油层套管的粘卡率在25%以上,每次下油层套管都是一场攻坚战,以最快的速度操作,•尚不能逃脱厄运。
二是井壁坍塌或砂桥卡。
在下套管过程或下套管以后发生井塌或砂桥,卡住套管,阻塞了钻井液和水泥浆的循环通道,这是灾难性的后果。
1 卡套管的原因:(1)钻井液性能不好,越是高密度的钻井液,越是分散性的钻井液,卡套管的机会越多,可参看卡钻一章。
(2)电测和井壁取心时间过长,通井时没有很好的循环处理钻井液,没有把井内的砂子带乾净,井壁的稳定性不够。
或者在电测、取心后不通井循环,直接下套管,以致环空堵塞,把套管卡住。
(3)下套管时没能按技术要求及时足额灌好钻井液,把回压阀挤毁,产生强烈的倒流抽吸,环空液面下降,•液柱压力下降,造成井壁坍塌或钻屑集中,堵塞环空。
第一章总论影响注水泥顶替效率的主要影响因素:套管居中、紊流顶替、合理的隔离液与冲洗液的性能及用量、紊流接触时间、活动套管、水泥浆与钻井液流变性能的合理匹配、增加水泥浆与钻井液的密度差、降低钻井液的触变性及滤失性能等。
通常下需要控制紊流触变时间不小于8-10min。
油、气、水窜的主要因素:水泥浆凝结过程中浆柱压力的降低;水泥浆失重:由于水泥浆胶凝、体积收缩及桥堵引起。
钻井液和水泥浆流变模型:更符合带静切力的三参数幂律模型,包括赫谢尔—巴尔克莱(H-B)流变模型和罗伯逊-斯蒂夫(R-S)流变模型。
水泥浆滤失性:水泥浆的失水量比钻井液的滤失量大数十倍,一般可达到500-2000ml/30min(7MPa),但对于储层油层和气层固井时水泥浆失水量分别控制在200ml/300min(7MPa)和50-100ml/300min(7MPa)。
通常下水泥浆滤液污染深度一般不超过5cm,渗透率下降率在10%左右。
微硅的化学组成为: SiO2 92.46%; Al2O30.29%; Fe2O3 0.88%; CaO 1.78%; MgO 0.3%; P2O5 1.77%。
第二章油井水泥硅酸盐水泥(波兰特水泥)主要成分:氧化钙(CaO)、二氧化硅(SiO2)、三氧化铝(Al2O3)和三氧化二铁(Fe2O3)水灰比对水化速度影响:通常下水灰比均限制在0.4-0.7范围,在允许的条件下尽可能降低水灰比。
常用的G级水泥试验时的水灰比为0.44.在高于350℃的热采井、地热井中,采用加硅粉的技术已不适用,而需应用高铝水泥代替。
水化反应的主要阶段为:调凝期、凝固期、硬化期。
矿渣G级水泥混合物(硅酸盐水泥和高炉矿渣混合物)第三章油井水泥浆与水泥石性能密度:水泥浆密度须满足注水泥全过程浆柱压力与地层压力的平衡关系,即水泥浆柱所产生的静液柱压力和流动阻力须大于或等于地层流体压力,同时小于地层破裂压力或漏失压力。
在设计水泥浆密度时,要求水泥浆密度略大于钻井液密度。
固井施工作业常用公式一、 水灰比的确定设水灰比为λ,水泥浆密度为s ρ g/cm 3,干灰密度为c ρ g/cm 3,则有:λ=1--s sc ρρρ 二、 1m 3水泥浆所需的干水泥量设水泥浆密度为s ρ g/cm 3,干灰密度为c ρ g/cm 3T c =1)1(--c s c ρρρ 吨三、 1m 3水泥浆所需的水量V=1--c SC ρρρ m 3 四、 造浆量的计算V s =)1()1(100--s c c ρρρ 1/100kg五、 水泥浆到达井底压力计算:设钻井液密度为m ρg/cm 3,井垂深深为hm 井底压力P=m ρgh/1000 Mpa六、 井底循环温度计算1已知地温梯度为p ℃/m,井垂深深为hm,循环温度系数为λ取值在之间,地表温度为T S ℃井底循环温度T c =T S +ph λ ℃2已知钻井液出口温度为T o ℃井垂深深为hm井底循环温度T c =T o +h/168 ℃七、 注水泥升温时间计算已知套管内容积Qm 2,套管下深hm,设计注入水泥浆量Lm 3,注水泥排量为q 1m 3/min,替泥浆排量为q 2m 3/min :(1) 当Qh <L,则升温时间t=1q Qhmin (2) 当Qh >L,则升温时间t=1q L +2q L Qh min 八、 稠化时间计算已知套管内容积Qm 2,套管下深hm,设计注入水泥浆量Lm 3,注水泥排量为q 1m 3/min,替泥浆排量为q 2m 3/min稠化时间t=1q L +1q Qh+附加安全时间60-90minmin 九、 失水量的计算Q 30=2Q tT30式中:Q 30——30min 失水量,mlQ t ——在时间t 时收集的滤液量,mlT ——试验结束时的时间,min十、 流变参数计算流变模式判别:F=100300100200θθθθ-- 式中:F ——流变模式判别系数,无量纲;300θ——转速300r/min 时仪器读数 200θ——转速200r/min 时仪器读数 100θ——转速100r/min 时仪器读数当F=±时选用宾汉流变模式,否则选用幂律流变模式;宾汉模式 ηp =300θ- 100θ τ= 300θ-511ηp式中:ηp ——塑性粘度,τ——动切力,Pa幂律模式 n=100300θθ k=n511511.0300θ 式中:n ——流性指数,无量纲;k ——稠度系数,十一、 游离液的计算:FF=%100⨯sf V V式中:FF ——游离液占的比例;V f ——游离液体积 mlV s ——水泥浆体积 ml十二、 固井配水用量计算(1) 固体外加剂固体用量:W=1000V a λ%kg式中 : a%为固体在干灰中的加量,λ为水灰比,V 为配水总量,单位为m 3;(2) 液体外加剂液体用量:W=1000l c V w aρλkg 式中: a 为试验加量,单位mlW c 为试验干灰用量,单位gλ为水灰比V 为配水总量,单位为m 3ρl 为液体密度,单位g/cm 3十三、 套管内容积计算已知套管外径Dmm,壁厚hmm套管内容积Q=4πD-2h 2mm 2 十四、 环空容积计算已知井径D 1mm,套管外径D 2mm环空容积Q=4πD 12-D 22mm 2 十五、 环空流体所占环空高度已知注入流体体积为Vm 3,所占环空的环空容积为QL/m该流体所占环空高度H=QV1000m 十六、 环空返速及注水泥排量计算环空返速V=Qq 60 注水泥排量q=60QV式中: Q 为环容,单位L/mq 为注水泥排量,单位L/minV 为环空返速,单位m/s十七、 钻井液替量计算已知套管阻位为Hm,套管内容为QL/m钻井液替量L=QH/1000m 3;十八、 静压差计算已知钻井液密度为ρm g/cm 3,注入前置液所占环空高度为H f m,密度ρf g/cm 3,注入水泥浆所占环空高度为H s m,密度为ρs g/cm 3,g 为重力加速度;则静压差ΔP= H s ρs -ρm +H f ρm -ρf1000gMpa十九、 井底当量密度计算已知钻井液密度为ρm g/cm 3,井垂深Hm,注入前置液所占环空高度为H f m,密度ρf g/cm 3,注入水泥浆所占环空高度为H s m,密度为ρs g/cm 3,井底流动阻力为ΔPMpa,g 为牛顿/千克;井底静态当量密度=HH H H H H ms f s s f f ρρρ)(--++井底动态态当量密度= gHPg H H H H H m s f s s f f ∆+--++1000))((ρρρ二十、 平衡前置液所用重浆计算已知钻井液密度为ρm g/cm 3,重浆密度为ρh g/cm 3,重浆所占环空的环容为QL/m,注入前置液所占环空高度为H f m,密度ρf g/cm 3平衡所需重浆量L=Q H m h f m f )()(ρρρρ--1000m 3二十一、水泥浆失重时,全井平衡所需重浆计算已知钻井液密度为ρm g/cm 3,重浆密度为ρh g/cm 3,重浆所占环空的环容为QL/m,注入水泥浆所占环空高度为H s m,密度ρs g/cm 3全井平衡所需重浆量L=Q H m h m s )()(ρρρ--11000m 3 二十二、起压替量计算已知套管内容为Q i L/m,总替量为Qm 3,裸眼平均环容Q a L/m,钻井液密度为ρm g/cm 3,注入水泥浆量为L s m 3,水泥浆密度为ρs g/cm 3起压替量Q t =Q-ai iS Q Q Q L +⋅1、动态起压时间计算:设管内外压力平衡时,管内泥浆液柱高度为H im则:⎪⎪⎭⎫ ⎝⎛+-∆⋅⋅+-=V C C C H c mc i im P H ρρ001001 ……⑴QH C T imi⋅= ……⑵式中 H im —管内泥浆液柱高度,m ;H —井深,m ;C i —套管内每米容积,m 3/m ;C o —平均环空每米容积,m 3/m ;ρc —水泥浆密度,g/cm 3;ρm —泥浆密度,g/cm 3;V c —注水泥浆量,m 3;Q—顶替排量,m3/min;T—起压时间,min;Δp—循环压耗,MPa;循环压耗Δp采用经验公式:当Δp=0时,计算结果为静态起压时间当套管下深<1000m时:Δp=+MPa当套管下深5000m>L>1000m时: Δp=+MPa2、环空液柱压力当量密度ρm的计算:Him钻井液 H水泥浆设井深为H;环空中前置液的高度为H前;前置液的密度为ρ前;水泥浆的高度为H水泥;水泥浆的密度为ρ水泥;泥浆的密度为ρ泥浆;则()HH HHHH m前泥浆泥浆前前水泥水泥--+⋅+⋅=ρρρρ……⑶注:ρρ为地层破裂压力当量密度ρ0为地层孔隙压力当量密度 在固井设计过程中ρm 应满足: 二十三、热采井预应力计算基本数据:∮×N80 套管下深1670m,泥浆密度按,设计注蒸汽的温度为3201、套管内产生的最大应力:P max =E ·C ·Q max=××107××10-6×320-72= KPa2、应施加的预应力:P= P max —A ·Y=)94.1578.17(427400076.022-∏•·= KPa3、套管在井内的自重考虑浮力m=q ·K B=×1670×÷1000= t注: K B 为泥浆密度为cm 3时的浮力系数4、井口拉力:S 为套管横截面积 P=1000S P ⋅∆+m-f 0 =1000067.9871.485.28056÷⨯+1000067.981500094.1542⨯⨯∏ =+ = t注: f 0表示是蹩压15MPa 候凝时产生的力f 0=·P 蹩÷S 0是套管内截面积5、井口处套管接箍的安全系数 n=G/P==6、套管伸长:ΔL=SE L P •••510=71.481080665.952.1167074.381075⨯⨯⨯•• =若不蹩压候凝,井口拉力为, 套管伸长为。