磁共振基本原理及读片
- 格式:ppt
- 大小:9.60 MB
- 文档页数:115
[MR读片指南——从入门到精通]编书大纲第一章 MR读片基础知识必读1、 MR是如何成像的?磁共振成像是利用原子核在磁场内所产生的信号经重建成像的一种技术。
人体内的氢质子分布最广,含量最高。
每一个氢质子可被视为一个小磁体,正常情况下,这些小磁体自旋轴的分布和排列是杂乱无章的,若人体置于一个强大的外磁场内时,这些小磁体的自旋轴将按磁场的方向重新有规律的排列,此时施加一个能够影响磁场方向的射频脉冲,使其产生共振,当射频脉冲停止后,磁场会恢复的原来的状态,并以射频信号的形式释放出吸收的能量,这个视频信号被接收后,经计算机处理后重建成图像。
2、 常用MR机有哪几种按照所用的磁体不同,磁共振可分为常导型、永磁型、超导型。
前二者因磁场稳定性差,目前应用最多的为超导型。
后者磁场稳定而均匀,不受外界温度影响,场强高,可调节。
但缺点是造价高,维护费用增高。
3、 何为纵向驰豫与横向驰豫纵向驰豫又称自旋-晶格驰豫,简称T1,是指900射频脉冲停止后,纵向磁化矢量从最小值恢复至平衡态的63%所经历的驰豫时间。
不同组织的T1时间不同,其纵向驰豫率的快慢亦不同,故产生MR信号强度的差别。
MR信号主要依赖T1而重建的图像称为T1加权像。
横向驰豫又称为自旋-自旋驰豫,简称T2,是指射频脉冲停止后,横向磁化由最大量衰减到37%时所经历的时间。
T2值也是一个具有组织特异性的时间常数,不同组织以及正常组织和病理组织之间有不同的T2值。
MR信号主要依赖T2而重建的图像称为T2加权像。
4、 MR图像特点图像反映组织间驰豫时间的差别;多方位成像;可以直接轴位、冠状位、矢状位成像。
多参数成像;可同时得到T1加权像、T2加权像、质子密度加权像。
流空效应;可在不使用造影剂的情况下,使血管显示。
5、 MR对比增强的原理及意义由于正常与异常组织的驰豫时间有较大重叠,故MR影像特异性较差,为提高影像的对比度,可以人为改变组织的MRI的特征性参数,即缩短T1和T2驰豫时间。
磁共振读片入门知识
嘿,朋友们!今天咱来聊聊磁共振读片入门知识,这可真是个有意思的事儿呢!
咱就先说说磁共振成像吧,它就像是给我们身体内部拍了一组超级清晰的照片。
你想想看,我们能透过这些片子看到身体里那些平时看不到的小秘密,是不是很神奇呀!
那怎么来看这些片子呢?这可有点讲究哦。
首先呢,咱得知道片子上那些黑白灰的颜色可不是随便来的呀,它们都代表着不同的含义呢。
比如说白色的地方,那可能就是密度比较高的组织,像骨头啥的;黑色的呢,一般就是空气或者液体啦。
然后再看看片子的不同层面,就好像是把身体切成了一片片的来看。
这时候你就得发挥一下你的想象力啦,把这些层面在脑子里组合起来,想象成一个完整的身体内部结构。
是不是有点像拼拼图呀?
再说说那些小细节,就像血管啊、神经啊,它们在片子上有时候可不好找呢。
但你要是仔细观察,总能发现一些蛛丝马迹。
就好像你在找一只调皮的小猫咪,得有点耐心才行呢。
还有啊,不同的部位在磁共振片子上也有不同的特点哦。
比如说大脑的片子和膝盖的片子,那差别可大了去了。
这就需要我们多看看,多积累经验啦。
你说这磁共振读片难不难?其实也没那么难啦,只要你有兴趣,肯花时间去琢磨,肯定能学会的呀!就像学骑自行车一样,一开始可能会摇摇晃晃的,但多练习几次不就会了嘛!
咱再想想,如果医生不会看磁共振片子,那怎么能准确地诊断病情呢?那不是就像盲人摸象一样,只能瞎猜啦!所以呀,学会磁共振读片入门知识,那可是相当重要的哟!
总之呢,磁共振读片入门知识就像是一把打开身体秘密大门的钥匙,让我们能更好地了解自己的身体。
大家可别小瞧了它,好好学一学,说不定哪天就能派上大用场呢!。
第1篇目录第一章引言第二章磁共振成像基本原理第三章磁共振成像技术参数第四章磁共振成像常见疾病解读第五章磁共振成像读片技巧第六章磁共振成像报告解读第七章磁共振成像与其他影像学检查的比较第八章磁共振成像在临床中的应用第九章磁共振成像常见问题及解答第十章总结第一章引言随着医学影像技术的不断发展,磁共振成像(MRI)已成为临床诊断和科研的重要手段之一。
磁共振成像读片指南旨在帮助影像科医生、放射科医生、临床医生以及医学生等读者,掌握磁共振成像的基本原理、技术参数、常见疾病解读、读片技巧、报告解读等方面的知识,提高诊断准确性和临床应用水平。
第二章磁共振成像基本原理磁共振成像(MRI)是一种利用强磁场、射频脉冲和计算机技术进行人体内部成像的医学影像学技术。
以下是磁共振成像的基本原理:1. 强磁场:MRI设备产生强磁场,人体组织中的氢原子核(质子)在磁场中排列整齐。
2. 射频脉冲:射频脉冲使氢原子核产生共振,释放能量。
3. 质子回波:释放的能量使氢原子核重新排列,产生质子回波信号。
4. 成像:计算机处理质子回波信号,形成人体内部结构的图像。
第三章磁共振成像技术参数磁共振成像技术参数主要包括以下内容:1. 磁场强度:磁场强度越高,成像分辨率越高。
2. 激励脉冲序列:包括自旋回波(SE)、梯度回波(GRE)、反转恢复(IR)等。
3. 回波时间(TE):指射频脉冲停止后到质子回波信号出现的时间。
4. 反转时间(TR):指射频脉冲重复发射的时间间隔。
5. 翻转角度:射频脉冲对氢原子核的激发角度。
6. 层厚、层间距、矩阵:影响成像分辨率和扫描时间。
第四章磁共振成像常见疾病解读以下是磁共振成像在常见疾病诊断中的应用:1. 脑部疾病:如脑肿瘤、脑梗塞、脑出血、脑积水、脑炎等。
2. 脊柱疾病:如椎间盘突出、椎管狭窄、脊柱结核、脊柱转移瘤等。
3. 骨关节疾病:如骨折、关节退行性病变、骨肿瘤、关节积液等。
4. 肌肉、软组织疾病:如肌肉损伤、肌肉肿瘤、脂肪瘤、滑囊炎等。