冶炼电炉烟气全余热回收装置-高温烟道式余热锅炉(最新版)
- 格式:docx
- 大小:51.59 KB
- 文档页数:14
一种铜冶炼系统冶炼渣余热回收利用系统及
其运行方法
铜冶炼系统冶炼渣余热回收利用系统及其运行方法
铜冶炼过程中,产生大量的渣余热能,为了有效利用这些热能资源,设计了一
种铜冶炼系统冶炼渣余热回收利用系统。
该系统主要由两个部分组成:余热回收装置和热能利用装置。
余热回收装置位
于冶炼炉的尾部,通过管道和传热设备连接冶炼炉和热能利用装置。
热能利用装置则将回收的余热转化为可供使用的热能。
在运行方法方面,该系统首先将冶炼炉产生的热能通过余热回收装置引导出来。
余热回收装置利用高效传热设备,将高温废气中的热能传递给能源传导介质(如水和空气),从而使热能得以回收。
传热设备的选择和设计要考虑热能的传导效率和系统的安全性。
之后,回收的热能通过管道输送至热能利用装置。
热能利用装置根据实际需求,可以将热能转化为蒸汽、热水或直接供应给其他生产设备。
例如,可以利用蒸汽发电装置将热能转化为电能,或者将热水输送至加热设备中,用于提供热能。
在运行过程中,需要考虑余热回收装置和热能利用装置之间的连接和协调。
有
效的管道布置和传热设备的选择可以最大限度地提高热能转化效率。
此外,应根据冶炼系统的具体情况,结合工艺参数和产能要求,对余热回收装置和热能利用装置进行优化设计。
综上所述,一种铜冶炼系统冶炼渣余热回收利用系统及其运行方法的设计可以
有效地利用冶炼过程中产生的渣余热能资源。
通过回收和转化这些热能,可以实现能源的节约和环境的保护,并为冶炼生产提供可持续发展的解决方案。
一、锅炉烟气余热回收简介:工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。
热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。
节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。
改造投资3-10个回收,经济效益显著。
(一)气—气式热管换热器(1)热管空气预热器系列应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。
设备优点:*因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍;*因为烟气在管外换热,有利于除灰;*因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀;*通过设计,可调节壁温,有利于避开露点腐蚀结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,见图1;热管倾斜放置型,烟气和空气反向垂直上下流动,见图2。
(二)气—液式热管换热器应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。
设备优点:*烟气侧为翅片管,水侧为光管,传热效率高;*通过合理设计,可提高壁温,避开露点腐蚀;*可有效防止因管壁损坏而造成冷热流体的掺混;结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置),如图3所示(三)气—汽式热管换热器应用场合:应用热管作为传热元件,吸收较高温度的烟气余热用来产生蒸汽,所产生的蒸汽可以并倂入蒸汽管网(需达到管网压力),也可用于发电(汽量较大且热源稳定)或其他目的。
对钢厂,石化厂及工业窑炉而言,这是一种最受欢迎的余热利用形式。
燃气锅炉烟气余热深度回收技术及应用分析1、概述燃气锅炉作为主要的采暖设备,燃烧产生的烟气温度通常很高,这些烟气含有大量的显热和潜热,如果不经处理直接排放到大气中会造成能量浪费。
排烟温度越高,排烟热损失越大,一般排烟温度升高15~20 ℃,就会使排烟热损失增加1%,如果能将这部分热量回收利用起来,不仅节约能源,而且提高了锅炉热效率。
目前,烟气余热回收技术主要有两种:热泵式烟气余热回收技术和换热器式烟气余热回收技术。
热泵式烟气余热回收技术前期投资成本高,所需安装空间较大;换热器式烟气余热回收技术一般仅在锅炉尾部烟囱上加装烟气余热回收装置,但受被加热介质温度等方面的限制,处理后的低温烟气温度仍然较高,大部分水蒸气汽化潜热未被回收利用,造成能源浪费和环境污染。
由于天然气成分绝大部分为烃,燃气锅炉排烟中水蒸气的体积分数较高,烟气可利用的热能中,水蒸气的汽化潜热所占份额相当大,若将烟气冷却到露点温度以下,并深度回收利用天然气燃烧时产生的水蒸气凝结时放出的大量潜热,可进一步提升燃气锅炉热效率。
2、冷凝热回收计算锅炉烟气显热的回收量主要体现在锅炉排烟的温降幅度,而潜热回收量主要体现在烟气中水蒸气的凝结量,即当排烟温度低于露点温度,有水蒸气凝结时,烟气的放热量应用烟气的焓差表示。
不同地区燃气成分不同,不同锅炉燃烧工况不同,所以燃烧产物即烟气的成分和状态各不相同,特别是烟气中水蒸气含量各异,使得烟气热回收潜力存在差异。
选取过量空气系数α=1.1,相应露点温度为 58.15℃的工况进行相关参数的计算。
根据供热系统实际运行工况,相对于锅炉本体排烟温度(一级余热回收装置进口烟温)为 110 ℃时,不同排烟温度下显热回收量、潜热回收量、水蒸气冷凝率以及锅炉热效率增量的计算结果。
由计算结果可知,排烟温度越低,水蒸气冷凝率越高,潜热和显热回收量也相应越高。
当排烟温度低于 60 ℃(接近烟气露点温度)时,回收总热量及锅炉热效率的变化值迅速增大,这主要是由于排烟温度低于露点温度,烟气中水蒸气的汽化潜热得以回收;当排烟温度继续降至40℃时,水蒸气冷凝率65% ,每燃烧 1 m3 天然气所回收的显热为 1 090 kJ,潜热为2650 kJ,锅炉热效率可提高10.17% 。
五鑫铜业余热锅炉系统简介余热锅炉系统由奥炉余热锅炉(ASFWHB)、转炉余热锅炉(CFWHB)、硫酸转化余热锅炉,2 台同规格阳极炉余热锅炉(RFWHB)等5 台余热锅炉以及一套100t的大气式热力除氧器和两套磷酸盐加药装置、209台弹簧振打除灰装置组成。
第一节、澳炉余热锅炉1、概述奥炉余热锅炉为强制循环系统,由循环泵提供动力。
整个炉体由辐射炉膛(上升烟道、下降烟道、水平烟道)和四组对流管束组成。
在上升烟道的入口处和下降烟道的出口处设有三维膨胀节,使其既能满足炉体的密封,又能独立于炉体其它结构之外,使得上升烟道和下降烟道能悬吊于厂房顶部横梁上,实现向下自由膨胀。
而水平烟道在内柱上设有滑动支撑机构,可以实现向后膨胀位移。
2、烟气条件和锅炉参数1)、澳炉余热锅炉入口烟气条件:2)、澳炉余热锅炉参数:额定蒸发量:43.7t/h工作压力:5.5MPa饱和蒸汽温度:271℃给水温度:104℃4)、汽包内径1800mm圆筒长度8000mm壁厚60mm总容水量21.83m33、锅炉结构简介Ausmelt熔炼余热锅炉包括上升烟道、下降烟道、水平烟道、对流室、凝渣管束、对流管束、集箱、锅炉循环管道、钢架等部件。
过路的上升烟道、下降烟道、水平烟道、对流室为完全密封的膜式壁结构。
Ausmelt熔炼炉高温烟气经熔炼炉炉顶烟罩出口后先后流过上升烟道、下降烟道、水平烟道、再流经凝渣管、对流管I、对流管II、及对流管III至锅炉出口。
锅炉同时起到部分除尘、降温的作用。
为了确保锅炉各烟道少结灰、结渣并使灰渣容易清除,根据烟道不同的温度设计了不同的膜式壁节距,使膜式壁的整体壁温保持在合理的水平上。
因烟气中烟尘的熔点较低,为了不使烟尘在对流受热面中严重结灰,对流受热面入口烟温控制在670℃以下,并通过凝渣管束冷却使烟温进一步降低,以确保对流受热面的安全运行。
整台锅炉不设省煤器,过热器,全部为蒸发免收热。
为了提高锅炉的除灰效果,锅炉所有受热面的除灰均采用弹簧振打装置。
AOD炉烟尘处理及余热回收技术开发应用张卫东;施剑;曹春华;杨乙斌【摘要】AOD炉在冶炼过程中产生大量高温烟尘,温度达到1850㎜左右,烟尘量达100 g/m3,在降温除尘的同时,产生饱和蒸汽,再利用蒸汽使汽轮机电机混合驱动除尘风机,达到资源利用的目的.【期刊名称】《冶金动力》【年(卷),期】2018(000)001【总页数】6页(P36-41)【关键词】AOD炉;混合驱动;回收余热;洁净处理【作者】张卫东;施剑;曹春华;杨乙斌【作者单位】无锡三达环保科技有限公司,江苏无锡,214131;西格斯先进技术有限公司上海办事处,上海,200085;无锡三达环保科技有限公司,江苏无锡,214131;无锡三达环保科技有限公司,江苏无锡,214131【正文语种】中文【中图分类】TK115我国是世界上最大的冶金生产大国,全国现有冶金行业用于冶炼的40~100 t AOD炉约800多座,AOD炉市场更多。
余热据统计,我国大中型企业吨钢产生的余热总量为8.44 GJ,各种熔渣的显热约占9%,各种废(烟)气占37%,余热资源丰富。
而国外先进钢铁企业余热余能的回收利用率平均达80%以上,如日本新日铁高达92%。
我国大型钢铁企业余热利用率约为30%耀50%。
目前余热最新发展趋势:国内大型钢铁企业,重视高温余能回收等重大节能技术应用和相关装备的投入,如高温高压干熄焦(CDQ)发电技术、烧结余热回收技术、高炉余热发电技术等。
近几年,余热回收工作逐步向中低温余热回收利用方向发展,大批中低温余热回收利用项目的陆续投产,如加热炉、退火炉烟气余热回收等,都在向中低温余热回收利用降耗和节能方向发展。
通常钢厂大多只考虑实施除尘这一方面,在资源再利用方面还很欠缺,余热技术的利用不够。
本项目的研发不仅仅局限于除尘,还能有副产品如饱和蒸汽、电能、动能的产生。
本项目采用多项专利技术是为了解决AOD炉除尘技术诸多共性难题。
如冶金行业现有余热利用技术中:(1)高温烟尘烧布袋、排放浓度达不到国家最新标准及无法余热回收综合利用。
重有色冶金炉窑余热回收利用技术规范(送审稿)编制说明《重有色冶金炉窑余热回收利用技术规范》编制组2019年11月《重有色冶金炉窑余热回收利用技术规范》编制说明1.工作简况1.1重有色冶金可持续发展的需要随着社会的不断进步以及经济的快速发展,人们对有色金属的冶炼也提出了越来越高的要求。
其中,能源消耗大和环境保护要求高是有色冶炼行业中面临的主要问题。
为满足各项环保指标要求和降低能源消耗成本,开发针对有色金属冶炼系统中主要能耗设备冶金炉窑的预热回收技术至关重要。
当前,冶金炉窑的余热回收目前在国内外已有多种成熟的技术,各类技术不尽相同,缺少对该技术的技术性指导文件。
因此,通过制定《重有色冶金炉窑余热回收利用技术规范》来对冶金炉窑的余热回收规范化管理,有利于技术的标准化和规范化,同时将为贯彻执行相关法律法规及产业政策起到纽带作用。
我国有色金属工业单位产品能耗(标煤)约为 4.76t,约占全国能源消费量的3.5%以上。
其中铜、铝、铅、锌冶炼能耗占有色金属工业总能耗90%以上。
余热利用率低是造成能耗高的重要原因之一。
从另一角度看,我国工业余热资源丰富,广泛存在于工业各行业生产过程中,余热资源约占其燃料消耗总量的17%~67%,其中可回收率达60%,余热利用率提升空间大,节能潜力巨大。
工业余热回收利用被认为是一种“新能源”,近年来成为推进我国节能减排工作的重要内容。
有色金属工业作为高能耗行业,生产集中度小,但能耗高。
随着当今社会经济水平的不断提高以及现代工业的快速发展,有色金属的冶炼作为工业生产过程中的重要环节,其能源消耗情况以及资源回收利用水平不仅会对企业自身效益产生极其重要的直接影响,还会对社会经济、节能环保等方面产生间接影响。
伴随工业产业的不断发展以及能源消耗总量的不断增加,资源短缺也成为了未来一个时期人类发展所面对的一项重要问题,而烟气余热的回收和利用正是应对该问题的一个有效解决方案。
未来,余热回收在节能工作中仍占有极为重要的地位。
( 安全技术 ) 单 位:_________________________
姓 名:_________________________
日 期:_________________________
精品文档 / Word文档 / 文字可改
冶炼电炉烟气全余热回收装置-高温烟道式余热锅炉(最新版)
Technical safety means that the pursuit of technology should also include ensuring that people make mistakes 实用文本 | DOCUMENT TEMPLATE 冶金安全
第 2 页 冶炼电炉烟气全余热回收装置-高温烟道式余热锅炉(最新版)
在电炉冶炼的过程中,要产生大量的高温烟气,其最高温度可达2100℃,含尘量高,且所含氧化铁尘具有工业回收价值。高温含尘烟气携带的热量约为电炉输入总能量的11%,有的甚至高达20%。这些高温烟气不仅带走大量的热,而且给电炉的除尘系统带来了巨大的负担,不但降低了氧化铁尘的回收率,而且造成了严重的污染问题。随着钢铁行业的发展,电炉炼钢的铁水比例逐渐上升,有的甚至超过了30%。铁水比例的升高,引起电炉炼钢烟气量增加、热量浪费和除尘问题的日趋严重。如何将这部分高温烟气中的显热充分地回收,变“废”为宝,使之转化为热能,并使得电炉烟气更加稳定,为高效除尘创造条件,从而降低除尘系统运行成本和企业的生产成本,这是电炉炼钢企业必须重视的问题。公司组建了专业的技
备注:传统安全中认为技术只要能在人不犯错误时保证人安全就达到了技术的根本要求,但更进一步的技术安全观对技术的追求还应该包括保证防止人犯错,乃至在一定范围内缓冲、包容人的错误。 实用文本 | DOCUMENT TEMPLATE 冶金安全
第 3 页 术队伍开始了电炉烟气全余热回收装置的研究,从提高余热回收量、烟尘沉降效率、锅炉的压力及使用寿命3个角度进行研发,从而降低电炉的吨钢能耗。并在江苏某企业110t电炉成功投运,并对装置出口烟气温度、吨钢回收蒸汽量等关键参数进行了现场测试,测试结果显示装置达到了预期指标。 1、电炉烟气冷却方式现状 目前电炉烟气冷却的方式有水冷+机力风冷、废钢预热+水冷、水冷+热管余热锅炉等几种。 1.1水冷+机力风冷 水冷+机力风冷系统的流程见图1。电炉第四孔出口的高温烟气进入水冷烟道,同时,混入从电炉四孔水冷弯头和水冷滑套间的缝隙吸入的空气,进行燃烧,之后进入燃烧沉降室,在燃烧沉降室进行燃烧和灰尘沉降后,从燃烧沉降室出来的高温烟气经过水冷烟道冷却到600℃左右,进入机力风冷器,冷却后的烟气与电炉密闭罩的除尘烟气混合降温后进入布袋除尘器除尘,之后通过风机、消声器,从烟囱排出。 实用文本 | DOCUMENT TEMPLATE 冶金安全
第 4 页 目前国内外有大量电炉烟气采用水冷方式的案例。例如2006年投产的太原钢铁(集团)有限公司1座160t电炉,2009年投产的日本新日铁1座100t电炉,2009年投产的印度EASSR公司2座180t电炉,均采用了水冷烟道冷却烟气的方式。水冷烟道具有一次投资少、技术可靠、运行稳定的特点,所以目前还在大量应用。该方式最大的弊端就是烟气中大量的显热无法被利用,浪费了能源,增加了冷却水的消耗量,同时工业水的循环又消耗大量的电能。 1.2废钢预热+水冷 电炉烟气冷却的另一种方案为废钢预热+水冷。先利用电炉烟气预热废钢,之后800~500℃的高温烟气再经过燃烧沉降室、喷雾冷却器冷却后进入布袋除尘器,其后续工艺和水冷+机力风冷相同。 因此该种方式也存在较大部分烟气余热未利用,喷入大量冷水,增加除尘负荷等问题。同时该技术在二恶英排放、废钢预热效果等方面仍存在问题。 1.3水冷+热管余热锅炉 该方案中,机力风冷器前流程与水冷+机力风冷相同,仅以热管实用文本 | DOCUMENT TEMPLATE 冶金安全
第 5 页 余热锅炉替代机力风冷器,将原来通过机力风冷器排放到大气中的余热加以回收利用,产生蒸汽。2006年投产的山钢集团莱芜钢铁集团有限公司50t电炉余热回收系统便属于该种形式。 该方案的缺点主要是在建设余热锅炉系统时,仍需建设庞大的水冷系统,回收的热量有限,仅回收部分(约800~250℃)的烟气余热。另一个问题是热管余热锅炉的换热效率随时间下降很快。某钢厂100t电炉余热锅炉采用热管形式,投产初期冶炼期内蒸汽回收量8t/h,3年左右下降到3.5t/h。同时由于常用的碳钢-水重力热管本身结构的原因,温度过高会引起其内部H2的积累,热管锅炉进口温度一般要求低于850℃,这样使得热管余热锅炉的压力很难提高,一般情况下其出口蒸汽压力小于2.0MPa,蒸汽的利用较为困难。 2、电炉烟气全余热回收装置(汽化烟道)及其优势 由于目前的几种电炉烟气冷却方式存在部分余热没有回收利用、增加除尘装置负荷、能耗高、余热蒸汽利用困难等问题,公司开发了电炉烟气全余热回收装置,并进行了工程实践。 电炉烟气全余热回收装置流程见图2,烟气由电炉抽出后,与从实用文本 | DOCUMENT TEMPLATE 冶金安全
第 6 页 水冷弯头和水冷滑套间环缝混入的空气一起进入汽化冷却弯管,在汽化冷却弯管内的烟气经初步降温后进入燃烧沉降室。在燃烧沉降室内,烟气中剩余的CO会进行完全燃烧,同时烟气携带的粉尘粗颗粒也会经重力除尘沉降下来。其后烟气进入高压汽化冷却烟道进行换热,进一步降温后进入列管余热锅炉,降温至250℃以下后与电炉密闭罩出口的除尘风混合,降温至80℃后送入布袋除尘器,除尘达标后的烟气经过风机、消声器从烟囱排出。 相比前述几种烟气冷却方式,电炉烟气全余热回收装置具有突出优势。 汽化烟道(也称为余热锅炉)是电炉炼钢的主要配套设备之一,该设备在工作时要最大限度地收集高温烟气,承受最高的炉气温度与剧烈频繁的温度变化,同时工况最为恶劣,最容易粘结喷溅的钢渣。汽化烟道的使用环境是非常恶劣的,炼钢过程中产生的烟气,其温度高达1100-1400℃,最高可达1600℃,并且含有硫及其化合物,高温渣、石灰等大量粉尘。炉内钢水喷溅到烟道内会造成内壁的粘黏,这样设备频繁承受高温高压的剧烈变化。因此,转炉汽化实用文本 | DOCUMENT TEMPLATE 冶金安全
第 7 页 烟道有很大的受热面,用来降低烟气温度,一般由20g低碳钢管组成受热面。该受热面承受着固体物料的冲刷,酸性气体的腐蚀以及高温氧化。汽化烟道长期在上述环境下工作,特别是其受热面承受着硫气腐蚀、高温氧化和冲蚀磨损,极易在水冷管上产生大量竹节状热疲劳裂纹、麻点、穿孔漏水,影响炼钢的生产效率,而且造成浪费使成本提高,同时给生产带来了安全隐患。汽化烟道系统主要由活动烟罩、炉口段烟道、二段烟道、末段烟道组成。该系统是煤气回收和汽化冷却两套装置的首段,它设计的好坏不仅直接影响到煤气回收和蒸汽的质量,同时也关系到环境保护,其结构的合理性将影响到烟道寿命,即直接影响到炼钢生产,所以对烟道的设计总结了多年来我们在使用中的经验、精心设计制造。 2.1电炉烟气全余热回收 从图2可以看出,电炉烟气全余热回收装置从水冷滑套开始到列管式余热锅炉,回收电炉第四孔出口烟气约2100~250℃的全部余热。同时该装置采用高低压复合循环的冷却方式,充分回收电炉烟气余热的同时,采用自然循环的列管式余热锅炉,与水冷系统相比,实用文本 | DOCUMENT TEMPLATE 冶金安全
第 8 页 循环水量显著减小,节约了电能。 2.2最佳的过剩空气系数 电炉烟气全余热回收装置根据燃烧沉降室出口的烟气成分,合理控制水冷滑套的开度,确保了最佳的过剩空气系数。 电炉烟气中含有一定浓度的CO,由于CO含量低于煤气回收下限,一般采用二次燃烧技术回收一氧化碳的潜热,而不进行煤气回收。尽管目前国内出现了电炉大量兑铁水,CO浓度显著增加的现象,但电炉的优势主要体现在短流程炼钢,因此CO进行燃烧而不直接回收煤气的工艺不会改变,在这种条件下,合理控制电炉余热锅炉系统混风量,既要保证CO的燃尽又要保持余热锅炉尽量高的热效率就显得尤为重要。 电炉冶炼过程中,参与炉气燃烧的氧气主要来源由3部分组成: 1)吹氧冶炼炉气中本身含有氧气, 2)从电炉的观察孔、电极孔等漏入的空气, 3)为了保证炉气中的CO全部燃尽从水冷滑套进入的空气。 因此根据燃烧沉降室出口烟气成分控制水冷滑套混入的空气,实用文本 | DOCUMENT TEMPLATE 冶金安全
第 9 页 就能控制最佳的过剩空气系数,使得余热回收系统及除尘系统更加节能。 2.3高效沉降 电炉烟气全余热回收装置另一个突出优势是高效沉降。中冶赛迪根据电炉烟气粉尘浓度和粉尘粒径,及粉尘的沉降机理,进行了数值模拟,开发了高效燃烧沉降室。燃烧沉降室的作用主要有3个: 1)冶炼初期加热烟气,促进CO的燃烧; 2)促进烟气与空气的混合,保证CO等可燃成分的燃尽; 3)对电炉烟气进行粗除尘,减少进入余热锅炉烟道的烟尘量,保证余热锅炉的换热效率和使用寿命。 电炉在冶炼过程中,烟气的成分和烟气的温度都是随时间变化的,电炉烟气中的可燃成分主要为CO,CO在空气中的着火点为610℃,即只有当CO和空气混合后的温度超过610℃时,才能确保CO在燃烧沉降室内的燃烧。 烟尘的有效沉降可以保障后续对流受热面余热锅炉的换热效率,同时减少了烟气对锅炉壁面的磨损,因此实现燃烧沉降室内烟