基于神经网络的移动机器人路径规划方法
- 格式:pdf
- 大小:374.31 KB
- 文档页数:4
轮式机器人的路径规划与控制技术研究随着科技的不断进步,轮式机器人已经成为了人工智能领域中的重要组成部分。
轮式机器人可广泛应用于各种环境下,包括室内、室外、平地、山地、水下等多种环境,使其具有广泛的应用前景。
但是,要让轮式机器人能够在复杂的环境下进行准确的路径规划并执行动作,需要借助于强大的技术支持。
本文将主要介绍轮式机器人的路径规划与控制技术研究。
一、路径规划技术路径规划是一项基本但十分关键的技术,它需要根据机器人所处的环境及任务需求,选择适当的路径来实现任务。
对于轮式机器人,我们通常采用三种不同的技术来完成路径规划:传统的基于轨迹的技术、图形化的技术以及基于学习的强化学习技术。
1. 基于轨迹的路径规划基于轨迹的路径规划是一种较为传统且较为简单的路径规划方式,适用于较为简单的环境。
该方法通过计算机模拟机器人的运动轨迹,进而进行路径规划。
这种方法的优点是计算速度较快,适用于较为简单的机器人应用场合。
但是该方法在复杂环境下的精度会受到很大的影响。
2. 图形化的路径规划图形化的路径规划方法是一种基于图形化交互的路径规划技术。
这种方法主要利用计算机程序来模拟出机器人及其周围的环境,通过交互式屏幕及热键的控制来对机器人进行路径规划。
相对于传统的基于轨迹的路径规划方法,该方法克服了精度不够高的问题,具有更好的精度和适用性。
但是该方法需要进行大量的手动操作,并且需要较高的人机交互能力。
3. 基于学习的强化学习技术基于学习的强化学习技术是一种先进而全新的路径规划技术,该技术运用了神经网络的方法,对机器人进行实时学习,使其能够适应更加复杂的环境,并识别出各种条件下的最佳路径。
该方法不仅可以减少规划过程的工作量,而且还能够自动对机器人进行学习和优化,大大提高了机器人的工作效率和速度。
但是由于该方法需要高度的计算能力和运算时间,所以目前还不引导广泛使用。
二、控制技术控制技术是机器人完成任务的基本技术之一,对于轮式机器人这样的移动式机器人,准确的控制其运动轨迹是十分重要的。
机器人视觉系统中的目标检测与路径规划机器人视觉系统在现代科技领域中扮演着重要的角色。
它不仅可以帮助机器人感知周围环境,还能为其提供目标检测和路径规划的功能。
本文将详细介绍机器人视觉系统中的目标检测与路径规划技术,并探讨其在不同领域的应用。
一、目标检测技术目标检测是机器人视觉系统中的关键环节之一。
通过目标检测技术,机器人能够识别和定位环境中的目标物体,从而为后续的路径规划和动作执行提供依据。
1.1 图像处理和特征提取目标检测的第一步是图像处理和特征提取。
机器人通过摄像头获取环境图像,并对图像进行处理,以提取目标物体的特征。
常见的图像处理技术包括灰度化、边缘检测、图像增强等。
在特征提取方面,主要采用的方法有颜色特征、纹理特征、形状特征等。
1.2 目标检测算法目标检测算法是实现目标检测的关键。
在机器学习和深度学习的发展下,目标检测算法得到了极大的改进和拓展。
其中,常见的目标检测算法包括传统的Haar特征级联检测算法、基于特征的卷积神经网络(CNN)算法、基于区域的卷积神经网络(R-CNN)算法等。
这些算法能够在图像中准确地检测出目标物体,并给出其位置和边界框。
1.3 实时目标检测在机器人的视觉系统中,实时性是非常重要的考虑因素。
实时目标检测能够在较短的时间内完成目标检测任务,并输出结果。
为了实现实时目标检测,需要结合高效的算法和硬件加速等技术手段。
同时,还需要优化目标检测算法的计算速度和精度,以满足机器人快速响应和决策的需求。
二、路径规划技术路径规划是机器人视觉系统中的另一个重要环节。
它决定了机器人在环境中行动的路径,并将目标检测结果与路径规划相结合,实现机器人的智能导航。
2.1 环境建模在路径规划之前,需要对环境进行建模。
机器人通过激光雷达或摄像头等传感器获取环境信息,并将其转化为机器人可识别的地图或模型。
这些模型包括栅格地图、图像地图、三维点云等,以提供给路径规划算法使用。
2.2 路径规划算法路径规划算法是决定机器人行动路径的核心。
智能机器人制造关节移动轨迹规划算法模型构建智能机器人在现代工业生产和日常生活中扮演着越来越重要的角色。
而机器人的关节移动轨迹规划是实现其灵活运动与精确定位的关键技术。
本文将探讨智能机器人关节移动轨迹规划算法模型的构建过程,从数学模型的建立到计算方法的选择,为读者提供一个全面的视角。
一、关节移动轨迹规划的背景与意义智能机器人的关节移动轨迹规划是指通过确定机器人各个关节之间的连续位置和姿态来实现精确的运动控制。
这种规划对于机器人在复杂环境中的避障、路径规划、目标追踪等任务都具有重要作用。
关节移动轨迹规划的意义在于提高机器人在工业生产中的自主性和生产效率,同时也能使机器人在服务领域中更好地与人类进行交互。
因此,构建准确且高效的关节移动轨迹规划算法模型对于智能机器人的发展至关重要。
二、关节移动轨迹规划算法模型的建立1.数学建模关节移动轨迹规划问题可以抽象为求解连续多关节机器人的运动学正逆问题。
在数学建模中,可以使用欧拉角、四元数等方法来表示机器人的位姿,并根据机器人的机械结构和约束条件建立正逆运动学方程。
此外,为了实现更加灵活的运动规划,可以采用样条插值、多项式拟合等方法对轨迹进行平滑和优化,以避免机器人在运动过程中的抖动和不连续性。
2.路径规划与碰撞避障在关节移动轨迹规划中,路径规划和碰撞避障也是重要的问题。
路径规划主要是确定机器人的运动轨迹,可以使用插值方法、基于图搜索的方法等来解决。
而碰撞避障则是通过检测机器人周围的环境信息,利用感知技术和避障策略来避免机器人与障碍物的碰撞。
3.优化算法为了提高关节移动轨迹规划的效率和精度,可以使用优化算法来求解问题。
常见的优化算法包括遗传算法、粒子群算法、模拟退火算法等。
这些算法可以帮助寻找最优解,避免局部极小值和陷入发散。
三、关节移动轨迹规划算法模型的选择在实际应用中,根据机器人的要求和任务需求,需要选择适合的关节移动轨迹规划算法模型。
1.常规方法对于简单的任务和机器人,常规方法如递推方法、插值方法等可以满足要求。
WMR具有结构简单、控制方便、运动灵活、维护容易等优点,但也存在一些局限性,如对环境的适应性、运动稳定性、导航精度等方面的问题。
轮式移动机器人的定义与特点特点定义军事应用用于生产线上的物料运输、仓库管理等,也可用于执行一些危险或者高强度任务,如核辐射环境下的作业。
工业应用医疗应用第一代WMR第二代WMR第三代WMRLagrange方程控制理论牛顿-Euler方程动力学建模的基本原理车轮模型机器人模型控制系统模型030201轮式移动机器人的动力学模型仿真环境模型验证性能评估动力学模型的仿真与分析开环控制开环控制是指没有反馈环节的控制,通过输入控制信号直接驱动机器人运动。
反馈控制理论反馈控制理论是运动控制的基本原理,通过比较期望输出与实际输出之间的误差,调整控制输入以减小误差。
闭环控制闭环控制是指具有反馈环节的控制,通过比较实际输出与期望输出的误差,调整控制输入以减小误差。
运动控制的基本原理PID控制算法模糊控制算法神经网络控制算法轮式移动机器人的运动控制算法1 2 3硬件实现软件实现优化算法运动控制的实现与优化路径规划的基本原理路径规划的基本概念路径规划的分类路径规划的基本步骤轮式移动机器人的路径规划方法基于规则的路径规划方法基于规则的路径规划方法是一种常见的路径规划方法,它根据预先设定的规则来寻找路径。
其中比较常用的有A*算法和Dijkstra算法等。
这些算法都具有较高的效率和可靠性,但是需要预先设定规则,对于复杂的环境适应性较差。
基于学习的路径规划方法基于学习的路径规划方法是一种通过学习来寻找最优路径的方法。
它通过对大量的数据进行学习,从中提取出有用的特征,并利用这些特征来寻找最优的路径。
其中比较常用的有强化学习、深度学习等。
这些算法具有较高的自适应性,但是对于大规模的环境和复杂的环境适应性较差。
基于决策树的路径规划方法基于强化学习的路径规划方法决策算法在轮式移动机器人中的应用03姿态与平衡控制01传感器融合技术02障碍物识别与避障地图构建与定位通过SLAM(同时定位与地图构建)技术构建环境地图,实现精准定位。
AGV与人工智能算法的结合优化路径规划人工智能(Artificial Intelligence, AI)技术在各行各业都有广泛的应用,其中与自动导航设备自动引导车(Automated Guided Vehicle, AGV)结合使用的路径规划是其中之一。
AGV是一种能够自主在指定区域内进行运输、搬运等操作的机器人设备。
而通过结合人工智能算法,可以对AGV的路径规划进行优化,提高工作效率和自主性。
一、AGV与人工智能算法的基本原理AGV是通过搭载传感器、扫描仪和导航系统等设备,实现自主导航和路径规划的机器人。
AGV的导航系统通过识别环境中的障碍物和目标点,确定最优的路径,并通过传感器实时感知环境变化,以保证行驶的安全性和准确性。
在传统的路径规划中,我们通常使用A*算法、Dijkstra算法等来确定AGV的运动路径,但这些算法无法应对复杂的环境变化和实时信息。
而人工智能算法,如深度强化学习和遗传算法等,能够通过不断的学习和优化,使AGV可以在复杂的环境中做出更加智能且高效的决策。
二、AGV路径规划的优化方法1. 深度强化学习深度强化学习是一种利用神经网络来实现学习和决策的方法。
通过对大量样本进行模拟或实际的训练,AGV可以学习到在不同场景下的最优行为。
在路径规划中,AGV可以通过深度强化学习来确定每个时间步的最佳动作,以达到效率和准确性的最大化。
2. 遗传算法遗传算法是一种模拟生物进化原理的优化算法。
在AGV的路径规划中,通过将不同的路径方案视为个体,使用遗传算法来生成新的路径方案。
通过交叉、变异等操作对路径方案进行进化和优化,以得到适应度更高的路径。
3. 蚁群算法蚁群算法是模拟蚂蚁在寻找食物过程中的群体行为而得到的一种优化算法。
在AGV的路径规划中,蚁群算法可以模拟蚂蚁释放信息素的行为,使得AGV在选择路径时能够更快速地找到最优路径。
蚁群算法具有并行性和自适应性的特点,能够很好地适应复杂的环境和目标变化。
基于脉冲神经网络的机器人智能控制研究进展目录一、内容综述 (2)1.1 背景与意义 (3)1.2 国内外研究现状 (4)1.3 研究内容与方法 (5)二、脉冲神经网络概述 (6)2.1 脉冲神经网络基本原理 (7)2.2 脉冲神经网络与传统神经网络的区别 (8)2.3 脉冲神经网络的优点与挑战 (9)三、基于脉冲神经网络的机器人控制方法 (10)3.1 基于脉冲神经网络的轨迹规划方法 (12)3.2 基于脉冲神经网络的路径跟踪方法 (13)3.3 基于脉冲神经网络的自主导航方法 (14)四、脉冲神经网络优化算法研究 (15)4.1 神经网络权重优化方法 (17)4.2 神经网络结构优化方法 (18)4.3 脉冲神经网络的参数优化策略 (20)五、脉冲神经网络在机器人智能控制中的应用案例 (21)5.1 在机器人路径跟踪中的应用 (23)5.2 在机器人自主导航中的应用 (24)5.3 在机器人情感识别中的应用 (25)六、结论与展望 (27)6.1 研究成果总结 (28)6.2 存在的问题与不足 (29)6.3 未来发展方向与展望 (29)一、内容综述随着科技的飞速发展,机器人智能控制技术在众多领域的应用逐渐深入。
在这一背景下,基于脉冲神经网络的机器人智能控制研究成为当前的研究热点。
脉冲神经网络,以其模拟生物神经系统脉冲传递信息的独特方式,在信息处理与计算领域展现出强大的潜力。
特别是在机器人控制领域,脉冲神经网络为机器人提供了更加灵活、高效的智能控制手段。
基于脉冲神经网络的机器人智能控制研究取得了显著的进展,脉冲神经网络以其独特的动态特性和时空编码机制,在机器人控制任务中展现出优异的性能。
研究者在机器人路径规划、动态决策、自适应控制等方面进行了深入研究,并取得了一系列重要突破。
随着深度学习技术的发展,深度脉冲神经网络在机器人控制中的应用也逐渐增多,为复杂环境下的机器人智能控制提供了新的解决方案。
《基于四足机器人的导航与路径规划方法研究》一、引言四足机器人技术作为近年来机器人学的重要分支,正受到越来越多领域的研究和应用。
该类机器人的独特结构使它们能够更稳定地在非结构化环境中运动。
本文的研究目的在于,基于四足机器人进行导航与路径规划方法的研究,通过这一方法实现机器人自主高效地在未知环境中运动,达到其应用的目的。
二、四足机器人概述四足机器人是一种模仿生物体运动方式的机器人,其结构由四个可独立控制的腿组成。
这种结构使得四足机器人在复杂地形上具有较强的运动能力,尤其是在不平坦、非结构化的环境中,四足机器人能以更稳定、灵活的方式运动。
然而,如何使四足机器人实现自主导航和路径规划成为了一个关键的技术挑战。
三、导航方法研究针对四足机器人的导航问题,我们首先需建立其运动模型和传感器系统。
这些模型和系统将为机器人的定位、地图构建和路径规划提供必要的信息。
常见的导航方法包括基于全局定位系统(GPS)的导航、基于激光雷达(Lidar)的导航和基于视觉的导航等。
对于四足机器人而言,考虑到其能在复杂环境中工作的特性,我们建议采用基于视觉的导航方法。
视觉导航主要依赖于机器视觉技术,通过图像处理和模式识别等方法获取环境信息,实现机器人的定位和导航。
对于四足机器人来说,视觉导航不仅可以提供丰富的环境信息,还可以在GPS信号无法覆盖或信号质量差的环境中工作。
四、路径规划方法研究路径规划是四足机器人导航的关键技术之一。
在已知环境信息的基础上,路径规划算法需要为机器人规划出一条从起点到终点的最优路径。
常见的路径规划算法包括基于图论的算法、基于采样的算法等。
然而,这些传统的路径规划算法在面对复杂环境时,可能无法有效地找到最优路径或无法处理动态环境中的障碍物。
因此,我们提出了一种基于深度学习和强化学习的路径规划方法。
该方法通过训练神经网络来学习环境中的动态信息,并根据学习到的信息为机器人规划出最优路径。
此外,我们还将该方法和传统的路径规划算法相结合,以提高算法在复杂环境中的适应性和效率。
机器人路径规划中的避障算法在机器人的路径规划中,避障算法扮演着重要的角色。
机器人需要能够准确地感知环境中的障碍物,并且通过合适的算法来规划避开这些障碍物的路径。
本文将讨论机器人路径规划中常用的几种避障算法,包括代价地图法、局部感知法和深度学习法,以及它们的优缺点和应用领域。
1. 代价地图法代价地图法是一种基于环境建模的避障算法。
它通过在机器人周围建立一个代表环境障碍物信息的地图,来引导机器人规划路径。
代价地图通常由栅格地图或者连续场景地图构成,其中每个栅格或者像素都有一个代表障碍物的代价值。
机器人规划器会根据这些代价值来选择通行的路径,避开高代价区域。
代价地图法的优点是可以精确地规划路径,同时能够考虑到环境中的障碍物分布情况。
然而,它需要对环境进行建模和传感器信息处理,对算法的实现和计算资源要求较高。
2. 局部感知法局部感知法是一种基于即时感知的避障算法。
它通过机器人的传感器实时感知到周围的障碍物,并且根据这些信息进行路径规划。
局部感知法通常采用传统的避障策略,比如沿着障碍物边缘行进、避开障碍物的凹陷区域等。
局部感知法的优点是简单易于实现,对硬件资源的要求较低。
然而,它只关注机器人周围的局部环境,可能无法全局优化路径。
在复杂的环境下,可能会导致路径不够优化和高频率的避障操作。
3. 深度学习法深度学习法近年来在机器人路径规划领域取得了显著的进展。
它利用深度神经网络来学习环境中的表示和对应的路径规划策略。
深度学习法可以通过大量的数据来训练,能够有效地处理复杂的环境和障碍物分布情况。
深度学习法的优点是可以自动从数据中学习环境的隐藏规律,具有很强的泛化能力。
然而,深度学习法需要大量的训练数据和计算资源,并且对网络结构和参数的选择也是一项挑战。
综上所述,机器人路径规划中的避障算法有代价地图法、局部感知法和深度学习法等。
不同的算法适用于不同的应用场景,可以根据具体需求来选择合适的算法。
未来的研究需要进一步提高算法的效率和实时性,以满足日益复杂和动态的环境要求。
移动机器人路径规划研究现状及展望摘要:移动机器人路径规划技术是机器人研究领域中的核心技术之一。
通过对全局路径规划和局部路径规划中各种方法的分析,指出了各种方法的优点和不足以及改进的办法,并对移动机器人路径规划技术的发展趋势进行了展望。
移动机器人按照某一性能指标搜索一条从起始状态到目标状态的最优或次最优的无碰路径。
全局路径规划,局部路径规划.其中全局路径规划:离线全局路径规划,环境信息完全已知。
可视图法(V-Graph)、栅格法(Grids)等。
可视图法的核心思想是将机器人应该到达的点作为顶点,点的连线作为备选的路径,于是问题就变成了图搜索问题。
由于连线(又叫弧)的选取方法不同,也就有了连接各个障碍物顶点的直线、用障碍物的切线表示弧和做出障碍物顶点的voronoi图的边作为弧的方法,用voronoi方法可以使得路径尽可能的远离障碍物。
栅格法是用累积值表明该栅格存在障碍物的可能性。
局部路径规划:在线局部路径规划,环境信息部分或者完全未知。
人工势场法(Artificial Potential Field):目标对被规划对象存在吸引力,而障碍物对其有排斥力,引力与斥力的合力作为机器人运动的加速力,从而计算机器人的位置和控制机器人的运动方向。
其缺陷是:存在陷阱区域、在相近的障碍物群中不能识别路径、在障碍物前震荡、在狭窄通道中摆动。
模糊逻辑算法( Fuzzy Logic Algorithm):类似人的避障,经验化的方法。
基于传感器的信息,采用模糊逻辑算法通过查表得到规划出的信息,完成局部路径规划。
关键词:移动机器人;全局路径规划;局部路径规划;遗传算法移动机器人是装备了机械腿、轮子、关节、抓握器等执行器以及控制器来完成特定任务的一种实体智能体。
近年来,随着科学技术的飞快发展,移动机器人在工业、农业、医疗、服务、航空和军事等领域得到了广泛的应用,已成为学术研究的重点。
在移动机器人的研究中,导航研究是核心,而路径规划是机器人导航研究的重要环节之一。
机器人手臂路径规划与碰撞检测算法研究机器人技术在现代工业生产和日常生活中扮演越来越重要的角色。
机器人手臂是机器人的重要部分,其路径规划与碰撞检测算法的研究对机器人的运动控制和安全性具有重要意义。
本文将从路径规划和碰撞检测两个方面来探讨相关算法的研究。
一、路径规划算法研究路径规划是指机器人手臂在规定的空间内,根据任务要求找到一条合适的运动路径的过程。
传统的路径规划算法包括最小平方和算法、B样条曲线算法等。
然而,这些算法存在着一些问题,例如计算复杂度高、无法处理复杂环境等。
为了解决这些问题,学者们提出了一系列新的路径规划算法。
近年来,退火算法、遗传算法、蚁群算法等进化计算算法在路径规划中被广泛应用。
这些算法主要通过模拟自然界中各种生物的行为,从而寻找到最优的路径规划结果。
例如,蚁群算法模拟了蚂蚁在寻找食物过程中释放信息素的行为,通过信息素的浓度分布来指导路径的搜索,从而实现了较好的路径规划效果。
此外,机器学习算法在路径规划中也展现了巨大的潜力。
例如,深度强化学习算法可以根据机器人的运动状态和环境信息学习到最佳的动作策略,从而实现自主学习和规划路径。
二、碰撞检测算法研究碰撞检测是指机器人手臂在运动过程中,根据传感器获取到的环境信息来判断是否会与障碍物发生碰撞的过程。
碰撞检测算法的研究与机器人的安全性密切相关。
传统的碰撞检测算法主要基于几何模型和物理模型。
例如,包围盒碰撞检测算法使用简单的包围盒模型来近似表示机器人手臂的几何形状,通过检测包围盒之间的相交关系来进行碰撞检测。
虽然这些算法简单高效,但是无法处理复杂的几何形状和接触约束问题。
为了解决这些问题,学者们提出了一些新的碰撞检测算法。
例如,基于距离场的碰撞检测算法利用距离场来表示机器人手臂与环境的关系,通过计算距离场的梯度信息来判断是否会与障碍物发生碰撞。
这种算法可以有效地处理复杂的几何形状和接触约束问题。
此外,机器学习算法在碰撞检测中也有着广泛的应用。
自主移动机器人的实现方法随着科技的不断进步,自主移动机器人在工业、医疗、农业等领域的应用越来越广泛。
自主移动机器人是一种能够独立完成任务的智能机器人,它具备感知、决策和执行能力,能够自主规划路径、避开障碍物并完成指定的任务。
实现自主移动机器人需要借助先进的技术和方法,下面将对几种常见的实现方法进行介绍。
一、机器人定位与导航技术定位与导航是自主移动机器人最基础也是最关键的一步。
常见的定位与导航技术包括全球定位系统(GPS)、激光雷达、视觉传感器等。
1. 全球定位系统(GPS)全球定位系统(GPS)是一种基于卫星导航的定位技术,它利用卫星信号来计算机器人的位置信息。
通过安装GPS接收器,机器人可以准确地获取自身的经纬度坐标,从而实现全球范围内的定位与导航。
然而,GPS在室内环境或者高密度城市地区的信号弱、多路径效应等问题限制了其应用。
2. 激光雷达激光雷达是一种使用激光束进行测距和地图构建的传感器。
机器人搭载激光雷达可以通过扫描周围环境来生成三维地图,并实现高精度的室内定位和导航。
激光雷达具有高精度、高速度的特点,被广泛应用于自主移动机器人的感知系统。
3. 视觉传感器视觉传感器可以通过获取环境中的图像信息来实现机器人的定位和导航。
一种常见的视觉传感器是摄像头,它可以捕捉实时图像并通过图像处理算法来提取特征点,进而实现机器人的定位和导航。
视觉传感器具有信息量大、感知能力强的特点,但对光线和环境条件的要求较高。
二、路径规划与避障算法路径规划与避障是机器人实现自主移动的核心任务。
根据机器人所处的环境和任务要求,选择合适的路径规划和避障算法十分关键。
1. A*算法A*算法是一种经典的图搜索算法,适用于离散的路径规划问题。
它通过估算每个节点到目标节点的代价函数,选择代价最小的路径来进行搜索。
A*算法简单高效,能够得到最优解,因此在自主移动机器人中得到了广泛应用。
2. 动态窗口法动态窗口法是一种常用的避障算法,它通过定义机器人的运动窗口和障碍物的情况,动态地调整机器人的速度和角度,使机器人能够自主避开障碍物,规划安全的路径。
第16卷.第.4期 2006年4月
计算机技术与发展
COMI UI1、ER FE( HN()I.(X JY AN[)DEVEII)P IENq V‘)1.16 NO.4
Aj)r.2006
改进的生物激励神经网络的机器人路径规划 范莉丽,王奇志 (北京交通大学计算机与信息技术学院,北京100044)
摘要:介绍了基于生物激励神经网络的移动机器人路径规划。机器人的路径生成过程是由神经网络组成动态变化的冲 经元活性值状态路线图实现的 通过神经元活性值的传播,机器人被吸引到目标点,而同时障碍物使自己处在活性值最低 点,起到推开机器人避碰的目的。仿真研究表明该方法生成的由起始点到目标点的路径是连续的、平滑的.避障的,不会陷 入u形障碍物,与障碍物形状和所处位置无关,能对快速变化的环境做出迅速反应。但在当前位置邻近位置中具有最大 活性值的位置不惟一的情况下,产生路径可能不理想,即到达目标点的避障路径是较L毛的,而不是最短或者是接近最短的。 文中对该不足进行了分析,并提出了改进方法,使生成路径是最短的或是接近最短。对改进方法进行了仿真,实验结果证 明该方法是有效的和可行的。 关键词:移动机器人;路径规划;神经网络;神经元活性值;障碍回避 中图分类号:TP24 文献标识码:A 文章编号:1005—3751(2006)04—0019~03
Robot Path Planning of Modified Biologically Inspired Neural Networks FAN IJ—li,WANG Qi—zhi (School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China)
Abstract:The biologically inspired neural networks based path planning approaches of mobile robot were introduced The generated path of mobile i"Ohot is realized by the dynamics neural activity landscape consisting of networks.Robot was attracted to the target through the neu— ral activity propagation,while the obstacles put away the robot to avoid collision by making themselves stay at the valley of the activity landscape.Simulation demonstated that the generated path was continuous。smooth,and obstacle avoidance。not trapped in cx)ncave U— s ̄ped obstacle,has nothing to do with the shape and location of the obstacles,can respond quickly to the fast changing environment.But the generated path may not be idea1.in the sense that the obstacle avoided path is not the shortest or approximatly shortest but relatively long in the situation that the number of the neighboring tx ̄ition po ̄see,sing the max activitiy of current position is not sole.This disadvan— tage Was analyzed in the paper.and a modified method w鹧proposed to make the generated path is the shorest or approximatly shorest. Simulate the mtxtified meth(xt.the simulation results show that the method is valid and feasible, Key words:mobile robot;path planning;neural networks;neural dynamics;obstacle avoidance