单晶金刚石刀具
- 格式:pptx
- 大小:3.79 MB
- 文档页数:17
一、概述单晶金刚石是一种非常硬的材料,具有优异的热导率、化学稳定性和耐腐蚀性,因此在工业领域中具有广泛的应用前景。
在单晶金刚石的制备过程中,位错密度是一个非常重要的参数,高纯低位错密度的单晶金刚石具有更优异的力学性能和光学性能。
本文将探讨高纯低位错密度单晶金刚石的制备与表征。
二、高纯低位错密度单晶金刚石的制备1. 化学气相沉积(CVD)法制备化学气相沉积(CVD)法是目前制备单晶金刚石的主要方法之一。
该方法通过在反应室中生成高温高压的热平衡环境,使金刚石晶种在金属基底上沉积形成单晶金刚石。
在CVD法中,控制气相中的原料浓度、反应温度和压力是制备高纯低位错密度单晶金刚石的关键。
2. 高温高压合成法制备高温高压合成法是另一种常用的单晶金刚石制备方法。
该方法通过在高温(>1500°C)和高压(>5GPa)下,利用碳源材料和金属催化剂在金刚石的热稳定性区域合成单晶金刚石。
在高温高压合成法中,原料纯度、反应温度和压力均对产物的位错密度有较大影响。
三、高纯低位错密度单晶金刚石的表征1. X射线衍射分析X射线衍射分析是一种常用的单晶金刚石晶体结构表征方法。
通过观察X射线在样品表面的衍射图案,可以得到金刚石晶体的结晶形貌、晶胞参数和晶面取向等信息,为研究位错密度提供重要依据。
2. 电子显微镜观察电子显微镜是一种高分辨率的表征技术,可以观察到金刚石晶体内部的位错结构和缺陷状况。
透射电子显微镜(TEM)和扫描电子显微镜(SEM)是常用的电子显微镜观察方法,能够提供金刚石晶体的高清晰度图像,并可通过图像处理方法定量分析位错密度。
3. Raman光谱分析Raman光谱是一种用于分子振动和晶格结构分析的表征技术,对于金刚石晶体的位错密度和晶体结构具有较高的灵敏度。
通过分析Raman 光谱的峰位、峰型和强度,可以推断金刚石晶体的结构完整性和位错密度情况。
四、高纯低位错密度单晶金刚石的应用前景由于高纯低位错密度的单晶金刚石具有优异的力学性能和光学性能,因此在多个领域具有广泛的应用前景。
金刚石材料基本概念:金刚石就是我们常说的钻石(钻石是它的俗称),它是一种由纯碳组成的矿物。
金刚石的化学式 NC----N个C,金刚石是原子晶体,一块金刚石是一个巨分子,N个C的聚合体.只能用它的结构式表示.代表材料:天然单晶金刚石,人造单晶金刚石,人造聚金刚石,CVD金刚石膜1、天然单晶金刚石天然单晶金刚石是一种各向异性的单晶体。
硬度达HV9000-10000,是自然界中最硬的物质。
这种材料耐磨性极好,制成刀具在切削中可长时间保持尺寸的稳定,故而有很长的刀具寿命。
天然金刚石刀具刃口可以加工到极其锋利。
可用于制作眼科和神经外科手术刀;可用于加工隐形眼镜的曲面;可用于金刚石手术刀切割光导玻璃纤维;用于加工黄金、白金首饰的花纹;最重要的用途在于高速超精加工有色金属及其合金。
如铝、黄金、巴氏合金、铍铜、紫铜等。
用天然金刚石制作的超精加工刀具其刀尖圆弧部分在400倍显微镜下观察无缺陷,用于加工铝合金多面体反射镜、无氧铜激光反射镜、陀螺仪、录像机磁鼓等。
表现粗糙度可达到Ra(0.01-0.025)μm。
天然金刚石材料韧性很差,抗弯强度很低,仅为(0.2-0.5)Gpa。
热稳定性差,温度达到700℃-800℃时就会失去硬度。
温度再高就会碳化。
另外,它与铁的亲和力很强,一般不适于加工钢铁。
2、人造单晶金刚石人造单晶金刚石作为刀具材料,市场上能买到的目前有戴比尔斯(DE-BEERS)生产的工业级单晶金刚石材料。
这种材料硬度略逊于天然金刚石。
其它性能都与天然金刚石不相上下。
由于经过人工制造,其解理方向和尺寸变得可控和统一。
人造单晶金刚石刀具随着高温高压技术的发展,人造单晶金刚石最大尺寸已经可以做到8mm。
由于这种材料有相对较好的一致性和较低的价格,所以受到广泛的注意。
作为替代天然金刚石的新材料,人造单晶金刚石的应用将会有大的发展。
3、人造聚晶金刚石人造聚晶金刚石(PCD)是在高温高压下将金刚石微粉加溶剂聚合而成的多晶体材料。
四大材料刀具的性能与选择刀具材料的发展对切削技术的进步起着决定性的作用。
本文介绍了切削中所使用的金刚石、聚晶立方氮化硼、陶瓷、硬质合金、高速钢等刀具材料的性能及适用范围。
刀具损坏机理是刀具材料合理选用的理论基础,刀具材料与工件材料的性能匹配合理是切削刀具材料选择的关键依据,要根据刀具材料与工件材料的力学、物理和化学性能选择刀具材料,才能获得良好的切削效果。
就活塞在切削加工时的刀具材料选用作了阐述。
高速钢:活塞加工中铣浇冒口、铣横槽及铣膨胀槽用铣刀,钻油孔用钻头等都为高速钢材料。
硬质合金:YG、YD系列硬质合金刀具被广泛应用于铝活塞加工的各个工序中,特别是活塞粗加工和半精加工工序。
立方氮化硼:立方氮化硼刀具被用于镶铸铁环活塞的车削铸铁环槽工序中。
同时也应用于活塞立体靠模的加工中。
金刚石:金刚石刀具可利用金刚石材料的高硬度、高耐磨性、高导热性及低摩擦系数实现有色金属及耐磨非金属材料的高精度、高效率、高稳定性和高表面光洁度加工。
在切削铝合金时,PCD刀具的寿命是硬质合金刀具的几十倍甚至几百倍,是目前铝活塞精密加工的理想刀具,已经应用于精车活塞环槽、精镗活塞销孔、精车活塞外圆、精车活塞顶面及精车活塞燃烧室等精加工工序中。
刀具材料性能的优劣是影响加工表面质量、切削加工效率、刀具寿命的基本因素。
切削加工时,直接担负切削工作的是刀具的切削部分。
刀具切削性能的好坏大多取决于构成刀具切削部分的材料、切削部分的几何参数及刀具结构的选择和设计是否合理。
切削加工生产率和刀具耐用度的高低、刀具消耗和加工成本的多少、加工精度和表面质量的优劣等等,在很大程度上都取决于刀具材料的合理选择。
正确选择刀具材料是设计和选用刀具的重要内容之一。
每一品种刀具材料都有其特定的加工范围,只能适用于一定的工件材料和切削速度范围。
不同的刀具材料和同种刀具加工不同的工件材料时刀具寿命往往存在很大的差别,例如:加工铝活塞时,金刚石刀具的寿命是YG类硬质合金刀具寿命的几倍到几十倍;YG类硬质合金刀具加工含硅量高、中、低的铝合金时其寿命也有很大的差别。
数控刀具基本知识汇编1、硬度和耐磨性。
刀具材料的硬度必须高于工件材料的硬度,一般要求在60HRC以上。
刀具材料的硬度越高,耐磨性就越好。
2、强度和韧性。
刀具材料应具备较高的强度和韧性,以便承受切削力、冲击和振动,防止刀具脆性断裂和崩刃。
3、耐热性。
刀具材料的耐热性要好,能承受高的切削温度,具备良好的抗氧化能力。
4、工艺性能和经济性。
刀具材料应具备好的锻造性能、热处理性能、焊接性能;磨削加工性能等,而且要追求高的性能价格比。
刀具材料的种类、性能、特点、应用1金刚石刀具材料金刚石是碳的同素异构体,它是自然界已经发现的最硬的一种材料。
金刚石刀具具有高硬度、高耐磨性和高导热性能,在有色金属和非金属材料加工中得到广泛的应用。
尤其在铝和硅铝合金高速切削加工中,金刚石刀具是难以替代的主要切削刀具品种。
可实现高效率、高稳定性、长寿命加工的金刚石刀具是现代数控加工中不可缺少的重要工具。
1、金刚石刀具的种类①天然金刚石刀具:天然金刚石作为切削刀具已有上百年的历史了,天然单晶金刚石刀具经过精细研磨,刃口能磨得极其锋利,刃口半径可达0.002μm,能实现超薄切削,可以加工出极高的工件精度和极低的表面粗糙度,是公认的、理想的和不能代替的超精密加工刀具。
② PCD金刚石刀具:天然金刚石价格昂贵,金刚石广泛应用于切削加工的还是聚晶金刚石(PCD),自20世纪70年代初,采用高温高压合成技术制备的聚晶金刚石(Polycrystauine diamond,简称PCD刀片研制成功以后,在很多场合下天然金刚石刀具已经被人造聚晶金刚石所代替。
PCD原料来源丰富,其价格只有天然金刚石的几十分之一至十几分之一。
PCD刀具无法磨出极其锋利的刃口,加工的工件表面质量也不如天然金刚石,现在工业中还不能方便地制造带有断屑槽的PCD刀片。
因此,PCD只能用于有色金属和非金属的精切,很难达到超精密镜面切削。
③ CVD金刚石刀具:自从20世纪70年代末至80年代初,CVD金刚石技术在日本出现。
硬质材料刀具在机械加工中的应用摘要:当前,我国的机械加工业迅速发展,一些切割难度比较大的材料在材料工业和精密机械工业中得到了广泛的应用。
而要想满足现代机械加工业的发展需求,还需要科学使用一些强度高、韧性好的工具。
因此,硬质材料刀具便逐渐应用到机械加工业中。
本篇文章针对硬质材料刀具的发展历程,着重探讨了硬质材料刀具在机械加工中的应用,以供同行业朋友相互参考借鉴。
关键词:硬质材料刀具;机械加工;应用中图分类号:s756文献标识码: a 文章编号:现代制造技术随着激烈的市场竞争迅速发展,机械制造业对机械设备零件的要求也日益提高,尤其是对于机械零件结构性能的要求不断提升。
因此,社会上便逐渐出现了具备各种性能的新材料,这些新材料不仅对传统的机械加工刀具提出了严峻的挑战,而且加工难度相当大。
这时,先进的切削刀具便成为机械加工业发展的关键,而硬质材料刀具无可厚非地应用到了现代机械加工中。
一、硬质材料刀具的发展历程上世纪五十年代,美国科学家将人造金刚石、结合剂,以及碳化硼微粉作为原材料,在高温高压的条件下进行反应,将烧结出的聚晶块作为刀具的主要材料。
发展到上世纪七十年代之后,人们逐渐研究出复合片材料,这样的材料是对金刚石与硬质合金结合生产的,或者是氮化硼与硬质合金结合生产的。
这样的技术将硬质合金视为基体,使用压制或者烧结等方法在基体的表面形成一层金刚石而得到的,金刚石大约厚0.5到1毫米。
这样的材料不仅能够提升材料的抗弯性,而且将传统材料不易焊接的问题有效解决。
这便促进了硬质材料刀具进入应用阶段。
二、硬质材料刀具在机械加工中的应用(一)单晶金刚石刀具的应用单晶金刚石通常又被分为人工合成金刚石与天然金刚石。
通常情况下,如果使用单晶金刚石制作刀具,那么就需要选择那些颗粒较大、质量大于0.1克,直径长度大于3毫米的金刚石。
天然金刚石是目前矿物中坚硬程度最高的材料,其不仅耐磨性好,而且使用其制作的刀具非常锋利,同时抗粘结性高,导热率低,加工出的刀具既光滑,质量又好。
精密和超精密加工技术复习思考题答案第一章1。
试述精密和超精密加工技术对发展国防和尖端技术的重要意义。
答:超精密加工技术在尖端产品和现代化武器的制造中占有非常重要的地位。
国防方面,例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的.制造惯性仪表,需要有超精密加工技术和相应的设备。
尖端技术方面,大规模集成电路的发展,促进了微细工程的发展,并且密切依赖于微细工程的发展。
因为集成电路的发展要求电路中各种元件微型化,使有限的微小面积上能容纳更多的电子元件,以形成功能复杂和完备的电路。
因此,提高超精密加工水平以减小电路微细图案的最小线条宽度就成了提高集成电路集成度的技术关键。
2。
从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工。
答:通常将加工精度在0。
1-lμm,加工表面粗糙度在Ra 0.02-0。
1μm之间的加工方法称为精密加工。
而将加工精度高于0。
1μm,加工表面粗糙度小于Ra 0.01μm的加工方法称为超精密加工。
3。
精密和超精密加工现在包括哪些领域.答:精密和超精密加工目前包含三个领域:1)超精密切削,如超精密金刚石刀具切削,可加工各种镜面。
它成功地解决了高精度陀螺仪,激光反射镜和某些大型反射镜的加工.2)精密和超精密磨削研磨。
例如解决了大规模集成电路基片的加工和高精度硬磁盘等的加工。
3)精密特种加工。
如电子束,离子束加工.使美国超大规模集成电路线宽达到0。
1μm。
4.试展望精密和超精密加工技术的发展。
答:精密和超精密加工的发展分为两大方面:一是高密度高能量的粒子束加工的研究和开发;另一方面是以三维曲面加工为主的高性能的超精密机械加工技术以及作为配套的三维超精密检测技术和加工环境的控制技术.5.我国的精密和超精密加工技术和发达国家相比情况如何。
答:我国当前某些精密产品尚靠进口,有些精密产品靠老工人于艺,因而废品率极高,例如现在生产的某种高精度惯性仪表,从十几台甚至几十台中才能挑选出一台合格品。
竹钢简介--一种新型的结构材料篇一:竹钢绿色环保建材“竹钢”科技名词定义中文名称:高性能竹基纤维复合材料(竹钢)英文名称:woodenbamboo定义:高性能竹基纤维复合材料,主要是指以竹基纤维帘为基本构成单元按顺纹理方向经热(冷)压胶合而成的板材。
依托中国林科院专利技术,由洪雅竹元科技有限公司制造的高性能竹基纤维复合材料,商标名称为“竹钢”,为世界首创的竹制品,是完全由中国人自主开发的新材料。
简介“竹钢”是以我国南方地区大量生长的竹材资源为原料,通过纤维化竹束帘制备技术、酚醛树脂均匀导入技术、连续式网带干燥技术、大幅面板坯铺装技术、成型固化技术等多项技术集成,实现竹基纤维复合材料的高性能和可调控,最终制造成高性能多用途竹基纤维复合材料。
竹钢剖面该产品技术节省了传统的剖蔑工序,是我国在竹材加工应用领域的一项重大突破,属于竹材工业化利用的第五代技术,竹材的利用率从目前的20%~50%,可以提高到95%以上。
产品的力学性能指标,如抗弯强度可以达到350mpa以上,抗拉强度达360mpa以上,抗压强度达到140mpa以上,弹性模量达到30gpa以上,其强重比超过玻璃钢纤维复合材料,可以应用于风电叶片材料的制造。
高性能竹基纤维复合材料具有广谱可设计性,既可以用于制造高强度风电叶片材料、船舶甲板、集装箱底板以及建筑结构等工程材料,又可以用作室内装饰装潢材料、高耐候性室外材料、家具材料,具有广阔的应用前景。
材料特点“竹钢”采用纯天然慈竹经酚醛树脂热压胶合而成,具有高强度、低碳环保、高耐候性、阻燃、净化空气、使用寿命长等特点,是“以竹代木、以竹代钢”的最佳产品;是一种将竹材重新组织并加以强化成型的竹质新材料,对增加竹农的收入、促进农民就业和发展竹产区经济具有十分重要的意义。
1绿色环保随着全球气候变暖,森林愈发显得弥足珍贵,竹钢的出现,更加有效地保护了人类的生存环境。
同面积的竹林可比树林多释放35%的氧气,也可以这样说:竹产业不仅仅是低碳产业,而更应该是负碳产业。
1-1试述精密和超精密加工技术对发展国防和尖端技术的重要意义。
精密和超精密加工是国际竞争取得成功的关键技术。
许多现代技术产品需要高精度制造。
发展尖端技术,发展国防工业,发展微电子工业等都需要精密和超精密加工制造出来的仪器设备。
1-2从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工精密加工:加工精度0.1~1um表面粗糙度Ra在0.02~0.1um超精密加工:加工精度高于0.1um表面粗糙度Ra小于0.01um1-3精密和超精密加工现在包括那些领域。
1)超精密切削(各种镜面)2)精密和超精密磨削研磨(集成电路基片和高精度磁盘)3)精密特种加工(电子束、离子束加工使美国超大规模集成电路线宽达到0.1um)1-4试展望精密和超精密加工技术的发展。
对精密和超精密加工技术给予足够的重视,投入较多的人力物力进行研究和发展,在生产中稳定纳米加工,扩大应用亚微米加工技术,并开始纳米级加工的试验研究,则在10~15年内有希望达到美国等先进国家的水平。
可先在某些单项技术上取得突破,逐步使我国的精密和超精密加工技术达到国际先进水平。
1-5我国的精密和超精密加工技术和发达国家相比情况如何与发达国家相比,仍有不少的差距。
不少精密机电产品尚靠进口。
有些靠老工人手艺,且报废高。
某些精密机电产品我国虽已能生产,但其中的核心关键部件仍需依靠进口,我国每年需进口大量尚不能生产的精密数控机床设备。
1-6我国要发展精密和超精密加工技术,应重点发展哪些方面的内容?1)超精密切削、磨削的基本理论和工艺2)超精密设备的关键技术、精度、动特性和热稳定性3)超精密加工的精度检测、在线检测和误差补偿4)超精密加工的环境条件;5)超精密加工的材料2-1金刚石刀具超精密切削有哪些应用范围?用于加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料。
用于加工陀螺仪、激光反射镜、天文望远镜的反射镜、红外反射镜和红外透镜、雷达的波导管内腔、计算机磁盘、激光打印机的多面棱镜、复印机的硒鼓、菲尼尔透镜2-2金刚石刀具超精密切削的切削速度如何选择?根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。
人民币什么是PCD刀片?2009-11-26 11:06:24| 分类:资料|举报|字号订阅PCD定义,PCD英文Polycrystalline diamond简称,文直译过来聚晶金刚石意思.它与单晶金刚石相对应.。
聚晶金刚石(PCD)刀具发展1.概述1.1 PCD刀具发展金刚石作为一种超硬刀具材料应用于切削加工已有数百年历史。
刀具发展历程,从十九世纪末到二十世纪期,刀具材料以高速钢为主要代表;1927年德国首先研制出硬质合金刀具材料并获得广泛应用;二十世纪五十年代,瑞典美国分别合成出人造金刚石,切削刀具从此步入以超硬材料为代表时期。
二十世纪七十年代,人们利用高压合成技术合成了聚晶金刚石(PCD),解决了天然金刚石数量稀少、价格昂贵问题,使金刚石刀具应用范围扩展到航空、航天、汽车、电子、石材等多个领域。
1.2 PCD刀具性能特点金刚石刀具具有硬度高、抗压强度高、导热性及耐磨性好等特性,可高速切削获得很高加工精度加工效率。
金刚石刀具上述特性由金刚石晶体状态决定。
金刚石晶体,碳原子四个价电子按四面体结构成键,每个碳原子与四个相邻原子形成共价键,进而组成金刚石结构,该结构结合力方向性很强,从而使金刚石具有极高硬度。
由于聚晶金刚石(PCD)结构取向不一细晶粒金刚石烧结体,虽然加入了结合剂,其硬度及耐磨性仍低于单晶金刚石。
但由于PCD烧结体表现为各向同性,因此不易沿单一解理面裂开。
PCD刀具材料主要性能指标:①PCD硬度可达8000HV,为硬质合金80~120倍;②PCD导热系数为700W/mK,为硬质合金1.5~9倍,甚至高于PCBN 铜,因此PCD刀具热量传递迅速;③PCD摩擦系数一般仅为0.1~0.3(硬质合金摩擦系数为0.4~1),因此PCD刀具可显著减小切削力;④PCD热膨胀系数仅为0.9×10 -6~1.18×10 -6,仅相当于硬质合金1/5,因此PCD刀具热变形小,加工精度高;⑤PCD刀具与有色金属非金属材料间亲力很小,加工过程切屑不易粘结刀尖上形成积屑瘤。
精密和超精密加工技术的发展我国目前已是一个“制造大国”,制造业规模名列世界第四位,仅次于美国、日本和德国,近年来在精密加工技术和精密机床设备制造方面也取得了不小进展。
但我国还不是一个“制造强国”,与发达国外相比仍有较大差距。
目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。
为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。
下面对国内外精密和超精密加工技术的最新发展情况介绍如下。
精密机床技术的发展精密机床是精密加工的基础。
当今精密机床技术的发展方向是:在继续提高精度的基础上,采用高速切削以提高加工效率,同时采用先进数控技术提高其自动化水平。
瑞士DIXI公司以生产卧式坐标镗床闻名于世,该公司生产的DHP40高精度卧式高速镗床已增加了多轴数控系统,成为一台加工中心;同时为实现高速切削,已将机床主轴的最高转速提高到24000r/min。
瑞士MIKROM公司的高速精密五轴加工中心的主轴最高转速为42000r/min,定位精度达5μm,已达到过去坐标镗床的精度。
从这两台机床的性能可以看出,现在的加工中心与高速切削机床之间已不再有严格的界限划分。
使用金刚石刀具的超精密切削技术超精密切削技术的进展金刚石刀具超精密切削技术是超精密加工技术的一个重要组成部份,不少国防尖端产品零件:如陀螺仪、各种平面及曲面反射镜和透镜、精密仪器仪表和大功率激光系统中的多种零件等:都需要利用金刚石超精密切削来加工。
使用单晶金刚石刀具在超精密机床上进行超精密切削,可以加工出光洁度极高的镜面。
超精密切削的切削厚度可极小,最小切削厚度可至1nm。
超精密切削使用的单晶金刚石刀具要求刃口极为锋锐,刃口半径在0.5,0.01μm。
因刃口半径甚小,过去对刃口的测量极为困难,现在已可用原子力显微镜:AFM:方便地进行测量。
PCD-聚晶金刚石PCD是英文Polycrystalline diamond的简称,中文直译过来是聚晶金刚石的意思.它与单晶金刚石相对应。
聚晶金刚石(PCD)刀具发展1.概述1.1PCD刀具的发展金刚石作为一种超硬刀具材料应用于切削加工已有数百年历史。
在刀具发展历程中,从十九世纪末到二十世纪中期,刀具材料以高速钢为主要代表;1927年德国首先研制出硬质合金刀具材料并获得广泛应用;二十世纪五十年代,瑞典和美国分别合成出人造金刚石,切削刀具从此步入以超硬材料为代表的时期。
二十世纪七十年代,人们利用高压合成技术合成了聚晶金刚石(PCD),解决了天然金刚石数量稀少、价格昂贵的问题,使金刚石刀具的应用范围扩展到航空、航天、汽车、电子、石材等多个领域。
1.2PCD刀具的性能特点金刚石刀具具有硬度高、抗压强度高、导热性及耐磨性好等特性,可在高速切削中获得很高的加工精度和加工效率。
金刚石刀具的上述特性是由金刚石晶体状态决定的。
在金刚石晶体中,碳原子的四个价电子按四面体结构成键,每个碳原子与四个相邻原子形成共价键,进而组成金刚石结构,该结构的结合力和方向性很强,从而使金刚石具有极高硬度。
由于聚晶金刚石(PCD)的结构是取向不一的细晶粒金刚石烧结体,虽然加入了结合剂,其硬度及耐磨性仍低于单晶金刚石。
但由于PCD烧结体表现为各向同性,因此不易沿单一解理面裂开。
PCD刀具材料的主要性能指标:①PCD的硬度可达8000HV,为硬质合金的80~120倍;②PCD的导热系数为700W/mK,为硬质合金的1.5~9倍,甚至高于PCBN和铜,因此PCD刀具热量传递迅速;③PCD的摩擦系数一般仅为0.1~0.3(硬质合金的摩擦系数为0.4~1),因此PCD刀具可显著减小切削力;④PCD的热膨胀系数仅为0.9×10 -6~1.18×10 -6,仅相当于硬质合金的1/5,因此PCD刀具热变形小,加工精度高;⑤PCD刀具与有色金属和非金属材料间的亲和力很小,在加工过程中切屑不易粘结在刀尖上形成积屑瘤。
聚晶金刚石(PCD)和聚晶金刚石复合片(PDC)与大单晶金刚石相比,作为刀具材料的聚晶金刚石(PCD)以及聚晶金刚石复合刀片(PDC)具有以下优点:①晶粒呈无序排列,各向同性,无解理面,因此它不像大单晶金刚石那样在不同晶面上的强度、硬度以及耐磨性有较大区分,以及因解理面的存在而呈现脆性。
②具有较高的强度,特别是PDC材料由于有硬质合金基体的支撑而有较高的抗冲击强度,在冲击较大时只会产生小晶粒碎裂,而不会像单晶金刚石那样大块崩缺,因而PCD或PDC刀具不仅可以用来进行精紧密削加工和一般半精密加工,还可用作较大切削量的粗加工和断续加工(如铣削等),这大大扩充了金刚石刀具材料的使用范围。
③可以制备大块PDC金刚石复合片刀具坯料,充足大型加工刀具如铣刀的需要。
④可以制成特定形状以适合于不同加工的需要。
由于PDC刀具大型化和加工技术如电火花和激光切割技术的提高,三角形、人字形以及其他异形刀坯均可加工成形。
为适应特别切削刀具的需要还可设计成包裹式、夹心式与花卷式PDC刀具坯料。
⑤可以设计或推测产品的性能,给与产品必要的特点以适应它的特定用途。
比如选择细粒度的PDC刀具材料可使刀具的刃口的质量提高,粗粒度的PDC刀具材料能够提高刀具的耐用度,等等。
总之,随着PCD、PDC金刚石复合片刀具材料的讨论进展,其应用已经快速扩展到很多制造工业领域,广泛应用于有色金属(铝、铝合金、铜、铜合金、镁合金、锌合金等)、硬质合金、陶瓷、非金属材料(塑料、硬质橡胶、碳棒、木材、水泥制品等)、复合材料(纤维加强塑料、金属基复合材料MMCs等)的切削加工,尤其在木材和汽车加工业,已经成为传统硬质合金的高性能替代产品。
切削刀具用PDC、PCD材料要求:①金刚石颗粒间能广泛地形成D—D自身结合,残余粘结金属和石墨尽量少,其中粘结金属不能以聚结态或呈叶脉状分布,以保证刀具具有较高的耐磨性和较长的使用寿命。
②溶媒金属残留量少。
最好是在烧结过程中能起溶媒作用,而在烧结过程完成后将以不起溶媒作用的合金形式充填于烧结金刚石晶粒间隙中,或烧结后残留的溶媒性金属被隔离,避开溶媒金属与金刚石表面直接接触,以提高PCD的抗氧化本领,从而保证刀具具有充足的耐热温度。
切割刀片的材质分类和说明介绍国外高速切削刀具材料的进展和应用高速切削时, 对不同的工件材料选用与其合理匹配的刀具材料和允许的切削条件, 才能取得最佳的切削效果。
据此, 针对目前生产中普遍应用的铝合金、铸铁、钢及合金和耐热合金等的高速切削, 已发展的刀具材料主要有: 金刚石、立方氮化硼、陶瓷刀具、涂层刀具和TiC (N) 基硬质合金刀具(金属陶瓷) 等。
金刚石刀具金刚石刀具分为天然金刚石和人造金刚石刀具。
天然金刚石具有自然界物质中最高的硬度和导热系数。
但由于价钱昂贵, 加工、焊接都超级困难, 除少数特殊用途外( 如腕表精密零件、光饰件和首饰雕刻等加工) , 很少作为切削工具应用在工业中。
随着高技术和超精密加工日趋发展, 例如微型机械的微型零件, 原子核反映堆及其它高技术领域的各类反射镜、导弹或火箭中的导航陀螺, 计算机硬盘芯片、加速器电子枪等超精密零件的加工, 单晶天然金刚石能知足上述要求。
最近几年来开发了多种化学机理研磨金刚石刀具的方式和保护气氛钎焊金刚石技术, 使天然金刚石刀具的制造进程变得比较简易, 因此, 在超精密镜面切削的高技术应用领域, 天然金刚石起到了重要作用。
20 世纪50 年代利用高温高压技术人工合成金刚石粉以后, 70 年代制造出金刚石基的切削刀具即聚晶金刚石(PCD) , PCD 晶粒呈无序排列状态, 不具方向性, 因此硬度均匀。
它有很高的硬度(8000~ 12000HV) 和导热性, 低的热胀系数, 高的弹性模量和较低的摩擦系数, 刀刃超级锋利。
它可加工各类有色金属和极耐磨的高性能非金属材料, 如铝、铜、镁及其合金、硬质合金、纤维增塑材料、金属基复合材料、木材复合材料等。
PCD 刀具所含金刚石晶粒平均尺寸不同, 对性能产生的影响也不同, 晶粒尺寸越大, 其耐磨性越高。
在相近的刃口加工量下, 晶粒尺寸越小, 则刃口质量越好。
例如, 选用晶粒尺寸10~ 25Lm 的PCD刀具, 可以500~ 1500m/ min的高速粒尺寸8~ 9Lm 的PCD 加工Si 含量小于12% 的铝合金; 晶粒尺寸4~ 5Lm 的PCD 加工塑料、木材等。
PCD的定义,PCD是英文Polycrystalline diamond的简称,中文直译过来是聚晶金刚石的意思.它与单晶金刚石相对应.摘自:中国机械资讯网聚晶金刚石(PCD)刀具发展1.概述1.1 PCD刀具的发展金刚石作为一种超硬刀具材料应用于切削加工已有数百年历史。
在刀具发展历程中,从十九世纪末到二十世纪中期,刀具材料以高速钢为主要代表;1927年德国首先研制出硬质合金刀具材料并获得广泛应用;二十世纪五十年代,瑞典和美国分别合成出人造金刚石,切削刀具从此步入以超硬材料为代表的时期。
二十世纪七十年代,人们利用高压合成技术合成了聚晶金刚石(PCD),解决了天然金刚石数量稀少、价格昂贵的问题,使金刚石刀具的应用范围扩展到航空、航天、汽车、电子、石材等多个领域。
1.2 PCD刀具的性能特点金刚石刀具具有硬度高、抗压强度高、导热性及耐磨性好等特性,可在高速切削中获得很高的加工精度和加工效率。
金刚石刀具的上述特性是由金刚石晶体状态决定的。
在金刚石晶体中,碳原子的四个价电子按四面体结构成键,每个碳原子与四个相邻原子形成共价键,进而组成金刚石结构,该结构的结合力和方向性很强,从而使金刚石具有极高硬度。
由于聚晶金刚石(PCD)的结构是取向不一的细晶粒金刚石烧结体,虽然加入了结合剂,其硬度及耐磨性仍低于单晶金刚石。
但由于PCD烧结体表现为各向同性,因此不易沿单一解理面裂开。
PCD刀具材料的主要性能指标:①PCD的硬度可达8000HV,为硬质合金的80~120倍;②PCD的导热系数为700W/mK,为硬质合金的1.5~9倍,甚至高于PCBN和铜,因此PCD刀具热量传递迅速;③PCD的摩擦系数一般仅为0.1~0.3(硬质合金的摩擦系数为0.4~1),因此PCD刀具可显著减小切削力;④PCD的热膨胀系数仅为0.9×10 -6~1.18×10 -6,仅相当于硬质合金的1/5,因此PCD刀具热变形小,加工精度高;⑤PCD刀具与有色金属和非金属材料间的亲和力很小,在加工过程中切屑不易粘结在刀尖上形成积屑瘤。
PCD的定义,PCD是英文Polycrystalline diamond的简称,中文直译过来是聚晶金刚石的意思.它与单晶金刚石相对应.摘自:中国机械资讯网聚晶金刚石(PCD)刀具发展1.概述1.1 PCD刀具的发展金刚石作为一种超硬刀具材料应用于切削加工已有数百年历史。
在刀具发展历程中,从十九世纪末到二十世纪中期,刀具材料以高速钢为主要代表;1927年德国首先研制出硬质合金刀具材料并获得广泛应用;二十世纪五十年代,瑞典和美国分别合成出人造金刚石,切削刀具从此步入以超硬材料为代表的时期。
二十世纪七十年代,人们利用高压合成技术合成了聚晶金刚石(PCD),解决了天然金刚石数量稀少、价格昂贵的问题,使金刚石刀具的应用范围扩展到航空、航天、汽车、电子、石材等多个领域。
1.2 PCD刀具的性能特点金刚石刀具具有硬度高、抗压强度高、导热性及耐磨性好等特性,可在高速切削中获得很高的加工精度和加工效率。
金刚石刀具的上述特性是由金刚石晶体状态决定的。
在金刚石晶体中,碳原子的四个价电子按四面体结构成键,每个碳原子与四个相邻原子形成共价键,进而组成金刚石结构,该结构的结合力和方向性很强,从而使金刚石具有极高硬度。
由于聚晶金刚石(PCD)的结构是取向不一的细晶粒金刚石烧结体,虽然加入了结合剂,其硬度及耐磨性仍低于单晶金刚石。
但由于PCD烧结体表现为各向同性,因此不易沿单一解理面裂开。
PCD刀具材料的主要性能指标:①PCD的硬度可达8000HV,为硬质合金的80~120倍;②PCD的导热系数为700W/mK,为硬质合金的1.5~9倍,甚至高于PCBN和铜,因此PCD刀具热量传递迅速;③PCD的摩擦系数一般仅为0.1~0.3(硬质合金的摩擦系数为0.4~1),因此PCD刀具可显著减小切削力;④PCD的热膨胀系数仅为0.9×10 -6~1.18×10 -6,仅相当于硬质合金的1/5,因此PCD刀具热变形小,加工精度高;⑤PCD刀具与有色金属和非金属材料间的亲和力很小,在加工过程中切屑不易粘结在刀尖上形成积屑瘤。
金刚石切削刀具刃磨技术研究进展作者:王其元学院:机电工程学院班级:机械1310班学号:0801130109指导老师:吴旺青完成日期:2019年1月中南大学Central South University摘要:本文主要简述金刚石刀具的材料特性,机加工优势以及金刚石刀具目前的刃磨方法和未来的发展方向与技术。
1 引言制造业是国民经济的主体,是立国之本、兴国之器、强国之基。
十八世纪中叶开启工业文明以来,世界强国的兴衰史和中华民族的奋斗史一再证明,没有强大的制造业,就没有国家和民族的强盛。
打造具有国际竞争力的制造业,是我国提升综合国力、保障国家安全、建设世界强国的必由之路。
2015年5月19日,国务院正式印发《中国制造2025》。
到2025年,我国制造业的主要行业和战略性新兴产业的产品质量标准应接近或达到国际先进水平,涉及民生产品的安全、健康、环保、反欺诈指标达到法律法规和强制性标准要求。
[1]而在制造行业中,机加工切削魔削制造成了高质量高精密制造的基础与代表,而能不能加工出高精度,高效率,满足公差等级与质量标准的机加工零件,不仅需要先进的主机设备,则更需要一把寿命长,质量优良的刀具才能完成,金刚石刀具具有高硬度与耐磨性,可用于很多韧性高的有色金属加工,但刀具面临一个不可避免问题,刀具的磨损,磨损需要刃磨技术弥补,而刃磨技术的研究发展,关系着刀具的使用寿命,与机加工的效率与成本,研究金刚石切削刀具的刃磨技术,对于提高机加工零件的加工效率与成本影响巨大,对于实现中国制造2025走向机械制造强国意义深远。
2 金刚石刀具的材料特性2.1金刚石刀具的分类对于金刚石刀具分类有不同方法,通常以材料种类,或者成型与涂层方法分类,我们按照传统材料方法分类如下图2.2 金刚石刀具的特性及应用金刚石材料可分为天然与人造两种,每种又有单晶体金刚石与多晶体之分,金刚石具有极强强的绝对硬度,是刚玉的4倍,石英的8倍。
金刚石是地球上最硬的物质,已知人造金刚石单晶在立方体晶面,其最大显微硬度介于天然金刚石立方体和菱形十二面体晶面数值之间,它的值达到66000MPa。