乙醇燃料电池熔融碳酸盐总反应
- 格式:doc
- 大小:9.50 KB
- 文档页数:1
熔融碳酸盐燃料电池工作原理熔融碳酸盐燃料电池(Molten Carbonate Fuel Cell,MCFC)是一种高温燃料电池,其原理基于碳酸盐的导电性质。
相比其他类型的燃料电池,MCFC具有较高的效率和较低的碳排放,因此被广泛研究和应用于能源领域。
MCFC的工作原理涉及到碳酸盐的离子导电性。
碳酸盐是一种能够在高温下导电的化合物,当温度达到一定程度时,碳酸盐会分解成离子,其中包括氧离子(O2-)和碳酸根离子(CO3^-2)。
这些离子在高温下能够在固体内部移动,因此MCFC的电解质通常由熔融碳酸盐组成。
MCFC的电解质通常由锂钡钠碳酸盐(LiBaNaCO3)等熔融盐混合物构成。
在高温下,这些盐会熔化形成液态电解质。
液态电解质中的离子能够在固体电极(阳极和阴极)之间进行传导,从而形成电流。
MCFC的阳极和阴极通常由钴氧化物和镍氧化物等催化剂构成。
在阳极处,燃料(如氢气或甲烷)被供应,并与来自外部电路的电子反应产生氢离子(H+)。
这些氢离子在液态电解质中移动,穿过电解质层,到达阴极。
在阴极处,氢离子与氧气反应生成水(H2O)。
同时,阴极上的电子通过外部电路流回阳极,与燃料供应电路相连。
这个过程产生的电子流就是MCFC的输出电流。
MCFC的工作温度通常在600℃到700℃之间,这是为了保证碳酸盐的离子导电性。
高温下,碳酸盐能够快速分解和重新组合,从而实现高效的离子传导。
此外,高温还有助于提高催化剂的反应活性,从而提高电池的效率。
与其他类型的燃料电池相比,MCFC具有几个优势。
首先,MCFC 不受氢气纯度的限制,可以直接使用含有杂质的燃料,如甲烷等。
其次,MCFC的效率较高,可以达到60%以上,比传统的发电方式更加节能环保。
此外,MCFC的碳排放量也相对较低,对环境的影响较小。
然而,MCFC也存在一些挑战和限制。
首先,高温对材料的要求较高,需要耐高温和化学稳定性的材料来构建电池。
此外,高温下的操作和维护也会增加系统的复杂性和成本。
燃料电池电极反应式书写方法与学习方法燃料电池电极反应式书写方法法一:常用方法电极:惰性电极;燃料包含:H2;烃如:CH4;醇如:C2H5OH等。
电解质包含:①酸性电解质溶液如:H2SO4溶液;②碱性电解质溶液如:NaOH溶液;③熔融氧化物如:Y2O3;④熔融碳酸盐如:K2CO3等。
本文来自化学自习室!第一步:写出电池总反应式燃料电池的总反应与燃料的燃烧反应一致,若产物能和电解质反应则总反应为加合后的反应。
本文来自化学自习室!如氢氧燃料电池的总反应为:2H2+O2=2H2O;甲烷燃料电池(电解质溶液为NaOH 溶液)的反应为:CH4+2O2=CO2+2H2O①CO2+2NaOH=Na2CO3+H2O②①式+②式得燃料电池总反应为:CH4+2O2+2NaOH=Na2CO3+3H2O 本文来自化学自习室!本文来自化学自习室!第二步:写出电池的正极反应式本文来自化学自习室!根据燃料电池的特点,一般在正极上发生还原反应的物质都是O2,随着电解质溶液的不同,其电极反应有所不同,其实,我们只要熟记以下四种情况:(1)酸性电解质溶液环境下电极反应式:O2+4H++4e-=2H2O(2)碱性电解质溶液环境下电极反应式:O2+2H2O+4e-=4OH-(3)固体电解质(高温下能传导O2-)环境下电极反应式:O2+4e-=O2-(4)熔融碳酸盐(如:熔融K2CO3)环境下电极反应式:O2+2CO2+4e-=2CO32- 。
第三步:根据电池总反应式和正极反应式写出电池的负极反应式电池的总反应和正、负极反应之间有如下关系:电池的总反应式=电池正极反应式+电池负极反应式故根据第一、二步写出的反应,有:电池的总反应式-电池正极反应式=电池负极反应式,注意在将两个反应式相减时,要约去正极的反应物O2。
以甲烷燃料电池为例来分析在不同的环境下电极反应式的书写方法:1、酸性条件燃料电池总反应:CH4+2O2=CO2+2H2O①燃料电池正极反应:O2+4H++4e-=2H2O②①-②×2,得燃料电池负极反应:CH4-8e-+2H2O=CO2+8H+2、碱性条件燃料电池总反应:C H4+202+2NaOH=Na2CO3+3H2O①燃料电池正极反应:O2+2H2O+4e-=4OH-②①-②×2,得燃料电池负极反应:CH4+10OH--8e-=CO +7H2O3、固体电解质(高温下能传导O2-) 本文来自化学自习室!燃料电池总反应:CH4+2O2=CO2+2H2O①燃料电池正极反应:O2+4e-=2O2-②①-②×2,得燃料电池负极反应:CH4+O2--8e-=CO2+2H2O4,熔融碳酸盐(如:熔融K2CO3)环境下本文来自化学自习室!电池总反应:CH4+2O2=CO2+2H2O。
甲醇在熔融碳酸盐燃料电池电极反应式
甲醇燃料电池的电极方程式:以熔融氧化物为固体电解质(O2-可自由传递)以熔融碳酸盐为固甲醇燃料电池的电极方程式 1.以熔融氧化物为固体电解质(O2-可自由传递)以熔融碳酸盐为固体电解质,空气和二氧化碳的混合气体为阴极燃气(碳酸根可自由传递)。
电池放电时是原电池、充电时是电解池,根据原电池中“负氧化、正还原”,电解池中“阳氧化、阴还原”的规律,蓄电池放电时,负极上失电子发生氧化反应。
由于电解质为熔融的K2CO3,且不含O2和HCO3,生成的CO2不会与CO32反应生成HCO3的,该燃料电池的总反应式为:CH4+2O2=CO2+2H2O。
在熔融碳酸盐环境中,其正极反应式为O2+2CO2 +4e-=2CO32。
甲醇燃烧电池的反应式
2CH3OH +3O2 =2CO2 +4H2O
甲醇燃烧电池的反应式
2CH3OH +3O2 =2CO2 +4H2O
正极:O2 +2CO2 +4e- =2CO32-
负极:2CH3OH + 6CO32- -12e- = 8CO2 + 4H2O。
熔融碳酸盐燃料电池工作原理MCFC的主要组成部分包括阳极、阴极和电解质。
阳极和阴极之间是电解质层,它通常由碳酸盐盐(比如碳酸钠、碳酸锂等)形成的熔融电解质组成。
阳极和阴极则是由催化剂(如镍)覆盖的多孔金属材料构成。
工作过程中,熔融的碳酸盐电解质使得碳酸盐离子变得可以移动。
在阳极一侧,燃料(通常为天然气、煤气或生物气体等)进入电池,通过一个气体分解反应,产生氢气和二氧化碳。
这个反应由阳极上的催化剂促进。
氢气离子自由通过电解质层向阴极一侧迁移。
同时,二氧化碳被碳酸根离子吸收并转化为碳酸根离子。
在阴极一侧,氢气和碳酸根离子相结合,通过氧化反应还原成水和二氧化碳。
整个过程中,氢气的氧化反应释放出电子,这些电子通过外部电路流动,产生电流和电力。
电力可以被电池用于供电,也可以通过外部连接导出供应给其他设备或系统。
同时,电子的流动也导致负离子(碳酸根离子)与正离子(氢气离子)的迁移,维持了电池的整体电中性。
MCFC的优点有很多。
首先,熔融碳酸盐电解质的高温度使得电池的性能更高。
高温下,氢气的氧化速度更快,反应更活跃,可以提供更高的输出功率密度。
其次,MCFC使用非贵金属催化剂,制造成本相对较低。
此外,MCFC还具有高效能,废热可以被回收利用,产生低级能量。
然而,MCFC也有一些挑战和缺点。
首先,高温环境下,电池的乘数变高,维护和故障排除的成本较高。
此外,由于碳酸盐电解质的易溶性,使用寿命较短。
此外,使用碳酸盐电解质会产生二氧化碳,可能导致环境污染。
总的来说,熔融碳酸盐燃料电池是一种高温燃料电池,具有高效能、高输出功率密度和低制造成本的特点。
它可以用于电力和热能产生,为未来能源领域提供了一个可行的解决方案。
燃料电池•燃料电池:燃料电池是一种连续地将燃料和氧化剂的化学能直接转化成电能的化学电池。
(1)氧氧燃料电池以氢气为燃料(作负极),以氧气为氧化剂(作正极),可用酸性电解质(如稀H2SO4),也可用碱性电解质(如KOH)。
①若电解质是酸性的,在电极反应式中不能出现OH-。
负极:正极:总反应式:②若电解质是碱性的,在电极反应式中不能出现H+。
负极:正极:总反应式:(2)甲烷一氧气燃料电池若将金属铂片插入KOH溶液中作电极,在两极上分别通入甲烷和氧气。
负极:正极:总反应式:•新型化学电源的考查及解题指导:近几年高考试题中出现的新型电池,有“氢镍电池”“高铁电池”“锌一锰碱性电池”、我国首创的“海洋电池”“燃料电池”(如新型细菌燃料电池、CO燃料电池)、“锂离子电池”“银锌电池~纽扣电池”等。
这些电池一般具有高能环保、经久耐用、电压稳定、比能量(单位质量释放的能量)高等特点。
取材于这些知识点的试题,由于题材广、信息新、陌生度大,所以,大多数考生认为这类试题难度大,而难在何处又十分迷茫。
实际上这些题目主要考查的是学生对信息的迁移应用能力。
具体有以下几个考查角度:1.新型电池“放电”时正、负极的判断2.新型电池“放电”时,电极反应式的书写首先根据电池反应分析物质得失电子情况,然后再考虑电极反应生成的物质是否跟电解质溶液巾的离子发生反应;对于较复杂的电极反应,可以利用总反幢方程式减去较简单一极的电极反应式,从而得到较复杂一极的电极反应式。
3.新型电池“充电”时阴、阳极的判断首先明确原电池放电时的正、负极,再根据充电时,阳极接正极、阴极接负极的原理进行分析。
4.新型电池充、放电时,电解质溶液中离子移动方向的判断首先分清电池是放电还是充电;再判断正、负极或阴、阳极,进而可确定离子的移动方向。
燃料电池电极反应式书写方法法一:常用方法电极:惰性电极;燃料包含:H2;烃如:CH4;醇如:C2H5OH等。
电解质包含:①酸性电解质溶液如:H2SO4溶液;②碱性电解质溶液如:NaOH溶液;③熔融氧化物如:Y2O3;④熔融碳酸盐如:K2CO3等。
燃料电池及其它新型电池电极反应式的书写一、电极反应遵循的三个守恒观察铅蓄电池的正、负极电极反应负极反应 Pb(s)+SO 2-4(aq)-2e -===PbSO 4(s)正极反应 PbO 2(s)+4H +(aq)+SO 2-4(aq)+2e -===PbSO 4(s)+2H 2O(l) 总反应 Pb(s)+PbO 2(s)+2H 2SO 4(aq)2PbSO 4(s)+2H 2O(l)规律任何一个电极反应等号左、右两边一定遵循:得失电子守恒、电荷守恒、原子守恒1、得失电子守恒(1)n +−−→−-电荷数失电子—ne ,m —电荷数得电子−−→−-+m e(2)元素的化合价每升高一价,则元素的原子就会失去一个电子(3)元素的化合价每降低一价,则元素的原子就会得到一个电子 2、电荷守恒:电极反应左、右两边的正电荷和负电荷数相等 3、原子守恒(质量守恒):电极反应左、右两边同种原子的原子个数一定相等 二、电极反应的书写方法1、直观法:针对比较简单的原电池可以采取直观法,先确定原电池的正、负极,列出正、负极上反应的物质,并标出相同数目电子的得失【微点拨】注意负极反应生成的阳离子与电解质溶液中的阴离子是否共存。
若不共存,则电解质溶液中的阴离子应写入负极反应式中 【对点训练1】装置图Zn ——Cu (稀硫酸)总反应负极反应 正极反应 Al ——Mg (稀盐酸)总反应负极反应 正极反应 Cu ——Ag (硝酸银溶液)总反应负极反应 正极反应 Fe ——Cu (FeCl 3溶液)总反应负极反应 正极反应2、用差值法写电极反应方程式:正、负极反应相加得到电池反应的离子方程式。
反之,若能写出已知电池的总反应的离子方程式,可以减去较易写出的电极反应式,从而得到较难写出的电极反应式复杂电极反应式===总反应式—简单的电极反应式装置图Al——Cu (稀硝酸)总反应负极反应正极反应Al——Cu (浓硝酸)总反应负极反应正极反应Al——Mg (NaOH溶液)总反应负极反应正极反应铅蓄电池总反应负极反应正极反应3、以“甲醇——氧气——KOH溶液”为例第一步:得失电子守恒n+−−→−-电荷数失电子—ne,m—电荷数得电子−−→−-+m e负极的甲醇在碱性环境中变成CO 32-失去6个电子,写成-6e-;正极的O2到底是变成了OH-还是H2O,一定是得到4个电子,写成+4e-,此步称之为得、失电子守恒负极反应:CH3OH—6e-— CO32-;正极反应:O2+4e-—第二步:电荷守恒此时负极反应左边的电荷数为+6,右边的电荷数为-2,电荷显然不守恒,为了使左、右两边电荷守恒必需在左边配8个OH-;正极反应的左边电荷数为-4,右边的电荷数为0,为了使左、右两边电荷守恒必需在右边配4个OH-,此步称之为电荷守恒负极反应:CH3OH—6e—+8OH-—CO32-;正极反应:O2+4e-—4OH-第三步:原子守恒观察负极反应左、右两边的原子个数,C守恒,H、O不守恒,需在右边配6 个H2O;而正极反应H、O不守恒,需在左边配2个H2O,此步称之为原子守恒负极反应:CH3OH—6e-+8OH-+6H2O===CO32-;正极反应:O2+4e-+2H2O===4OH-【微点拨】①该法书写电极是各写各的电极,因此正负极电子数可能不相等,所以最后再用最小公倍数写出总方程式②若为酸性介质,先补H+,另一边补H2O;若为碱性介质,先补OH—,另一边补H2O③有机物中化合价处理方法:“氧-2,氢+1,最后算碳化合价”,并且要注意溶液环境与产物之间的反应,碱性环境下,C元素最终产物应为CO32-④水溶液中不能出现O2-;碱性溶液反应物、生成物中均无H+;酸性溶液反应物、生成物中均无OH-,中性溶液反应物中无H+ 和OH -燃料电池的构成燃料电池装置示意图燃料电池是通过燃料气体与氧气分别在两个电极上发生氧化还原反应,将化学能直接转化为电能的装置。
熔融碳酸盐燃料电池(MCFC)一、MCFC概述1.1 燃料电池简述燃料电池(FC)是一种将贮存在燃料和氧化剂中的化学能直接转化为电能的发电装置,结构如图1-1所示。
它的发电方式与常规的化学电源一样,电极提供电子转移的场所,阳极催化燃料(如氢)的氧化过程,阴极催化氧化剂(如氧)的还原过程,导电离子在将阴阳极分开的电解质内迁移,电子通过外电路作功并构成总的电回路。
在电池内这一化学能向电能的转化过程等温进行,即在燃料电池内,可在其操作温度下利用化学反应的自由能。
但是,燃料电池的工作方式又与常规的化学电源不同,它的燃料和氧化剂并非贮存在电池内。
同汽油发电机相似,它的燃料和氧化剂都贮存在电池之外的贮罐中。
当电池工作时,要连续不断地向电池内送入燃料和氧化剂,排出反应产物,同时排出一定的废热,以维持电池温度的恒定。
燃料电池本身只决定输出功率的大小,其贮能量则由燃料罐和氧化剂罐的贮量决定。
总体上,燃料电池具有以下特点:(l) 不受卡诺循环限制,能量转换效率高。
(2) 燃料电池的输出功率由单电池性能、电极面积和单电池个数决定。
(3) 环保问题少。
(4) 负荷应答速度快,运行质量高。
图 1-1 燃料电池结构示意图由于FC具有以上显著的优点,在50~60年代呈现第一个研制高峰,那时侧重于发展碱性FC,尽管后来未曾象预期的那样在交通工具及大型电厂获得应用,但是FC在航天飞行中取得的成功足以证明它所具有的突出优点。
70年代初,由于投资减少,FC研究进入低潮。
70年代末,由于材料科学的进展和世界性的能源紧缺,开发新的发电技术,提高石油、天然气和煤炭等矿物燃料的利用率又成为人们关注并具有深远意义的课题,这样FC研究又呈现第二个高潮,此时则侧重于发展磷酸盐燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)和固体氧化物燃料电池(SOFC)。
现在,燃料电池作为继水力、火力和原子能之后的第四代电源止受到世界的瞩目。
1.2 熔融碳酸盐燃料电池(MCFC)熔融碳酸盐燃料电池(Molten Carbonate Fuel Cell,首字母缩写为MCFC),通常被称为第二代燃料电池,因为预期它将继磷酸盐燃料电池之后进入商业化阶段。
乙燃料电池电极反应式熔融氧化物乙燃料电池(Ethanol Fuel Cell,简称EFC)是一种利用乙醇作为燃料的电化学设备,其中电极反应式是乙醇的氧化和还原反应。
在乙燃料电池中,乙醇在阳极(氧化剂极)发生氧化反应,生成二氧化碳、水和电子;而在阴极(还原剂极)发生还原反应,将氧气还原为水。
这些反应可用如下的化学方程式表示:阳极反应,C2H5OH + H2O → CO2 + 6H+ + 6e-。
阴极反应,3O2 + 6H+ + 6e→ 6H2O.总反应,C2H5OH + 3O2 → 2CO2 + 3H2O.这些反应在燃料电池内部的电极上发生,其中电极通常由熔融氧化物材料构成。
熔融氧化物是一种高温电解质,它具有良好的离子导电性能,在高温下能够提供良好的电解质传导性能。
常用的熔融氧化物材料包括氧化锆、氧化钇稳定的氧化锆等。
这些材料在高温下能够稳定地传导氧离子,并且具有较高的化学稳定性和机械强度。
乙燃料电池的电极通常采用三明治结构,即将熔融氧化物电解质层夹在两个电极材料之间。
阳极通常采用催化剂,如铂、铑等贵金属,以促进乙醇的氧化反应。
阴极通常采用氧还原催化剂,如铂、钯等,以促进氧气的还原反应。
乙燃料电池的工作原理是通过将乙醇燃料和氧气气体输入到电池的阳极和阴极,利用电解质传导氧离子,使得氧化反应和还原反应在电极上同时进行。
这些反应产生的电子通过外部电路流动,完成电能的转换。
同时,阳极和阴极之间的离子传导使得电荷平衡得以维持,从而使电池能够持续地产生电能。
总的来说,乙燃料电池的电极反应式是乙醇的氧化和氧气的还原反应,其中电极通常采用熔融氧化物材料构成的三明治结构,以实现高温下的电解质传导和反应催化。
这种电池能够将乙醇燃料的化学能转化为电能,并具有较高的能量转换效率和环境友好性。