光纤分布式应变和温度传感器
- 格式:pdf
- 大小:366.78 KB
- 文档页数:6
分布式光纤传感器原理一、分布式光纤传感器原理分布式光纤传感器(Distributed Optical Fiber Sensor,DOFS)是一种新型传感技术,它利用光纤原理监测、测量被测目标的参数。
传感器通过植入光纤改变或分析光纤内传播的光脉冲,根据数学模型和算法从光脉冲的改变中分析出被测参数,从而达到监测或测量的目的。
传统的光纤传感器主要分为单点检测和分布式传感两类。
单点检测只能检测光纤段的一点,而分布式传感则可以同时监测整个光纤段的参数,如压力、温度、振动等。
分布式光纤传感器主要有两种:光纤Brillouin散射传感器(Fiber Brillouin Scattering Sensor)和光纤Raman散射传感器(Fiber Raman Scattering Sensor)。
1. 光纤Brillouin散射传感器光纤Brillouin散射传感器是利用光纤内固有的acoustic-optic 效应(Brillouin散射)来测量光纤内部的物理参数,如压力、温度、拉力等。
光纤Brillouin散射是指一束光线入射至光纤材料或结构中,由于光纤材料的内部固有声子和光子的相互作用,使得光子的波长会发生微小的变化,即光子的波长会发生一个内部固有的 Brillouin 光谱线,里面包含着光纤的特征参数,例如压力、拉力、温度等。
2. 光纤Raman散射传感器光纤Raman散射传感器是基于光纤Raman散射原理,利用激光激发出的光纤中的能量状态的微小变化来测量物理参数,如温度、压力、拉力等。
光纤Raman散射(Fiber Raman Scattering)是指一束激光入射至光纤中,由于光子和光纤中的自由电子的相互作用,使得激光光子中的能量状态发生微小的变化,从而产生一条Raman光谱线。
里面包含着光纤的特征参数,如温度、压力、拉力等。
二、分布式光纤传感器的应用分布式光纤传感器在工程和科学研究中有着广泛的应用,如用于: 1. 架构监测:可为大型结构物提供细节的分布式监测,如桥梁、建筑物等;2. 海洋和河流监测:可以实现实时的海洋流速和河流溯源的监测;3. 地质监测:可以检测地表或地下的地质变化,如地震、地质构造变化等;4. 军事和安全监控:可以检测活动的物体,如坦克、舰船等;5. 工厂设备监控:可以实现机器的实时监控,如机床、发动机等。
光纤温度传感器一、引言光纤温度传感器是一种利用光纤作为传感元件的温度检测设备。
光纤温度传感器的工作原理是基于光纤敏感元件对温度变化的响应,通过测量光纤中的光信号参数来实现对温度的监测和测量。
光纤温度传感器具有结构简单、抗干扰能力强、长距离传输等特点,在工业、科研等领域得到了广泛应用。
二、工作原理光纤温度传感器的工作原理主要基于光纤的热光效应和光纤长度的温度特性。
当光纤受到温度变化时,光纤的折射率会发生变化,从而引起光纤中光信号参数的变化。
利用这种变化,通过检测光信号的特定参数,可以实现对温度的监测和测量。
三、应用领域光纤温度传感器在温度监测领域有着广泛的应用。
其应用领域包括但不限于:1.工业领域:光纤温度传感器可用于工业生产中对温度的监测和控制,如对炉温、熔炼温度等进行实时监测。
2.科研领域:在科研实验中,光纤温度传感器可以准确地监测实验环境中的温度变化,为科学研究提供数据支持。
3.环境监测:光纤温度传感器也可以用于环境温度监测,如对水体温度、土壤温度等的监测。
四、发展趋势随着科学技术的不断发展,光纤温度传感器在精度、便携性、应用范围等方面都将不断提升。
未来,光纤温度传感器有望在医疗、航天等领域得到更广泛的应用,为各行各业提供更为精准和高效的温度监测解决方案。
五、结论光纤温度传感器作为一种新型的温度检测设备,具有结构简单、抗干扰性强等优点,为工业、科研、环境监测等领域提供了实时、准确的温度监测方案。
未来随着技术的不断创新,光纤温度传感器的应用范围将进一步扩大,为人类社会的发展进步带来更多便利和可靠性。
《分布式光纤传感技术在结构应变及开裂监测中的应用研究》篇一一、引言随着现代科技的不断进步,分布式光纤传感技术以其独特的优势在众多领域得到了广泛应用。
特别是在结构健康监测领域,分布式光纤传感技术因其高灵敏度、高空间分辨率和长距离监测能力,成为了结构应变及开裂监测的重要手段。
本文将详细探讨分布式光纤传感技术在结构应变及开裂监测中的应用研究。
二、分布式光纤传感技术概述分布式光纤传感技术是一种基于光纤的光学传感技术,通过在光纤中传输的光信号与外界环境相互作用,实现对温度、应变、振动等物理量的测量。
其核心原理是利用光时域反射技术(OTDR)和光频域反射技术(OFDR)等手段,对光纤中的后向散射光信号进行分析,从而获取沿光纤分布的物理量信息。
三、分布式光纤传感技术在结构应变监测中的应用(一)应用原理在结构应变监测中,分布式光纤传感技术通过将光纤埋设或粘贴在结构物表面或内部,利用光纤对结构物的微小形变进行感知和测量。
当结构物发生形变时,光纤中的光信号会随之发生变化,通过分析这些变化,可以推算出结构物的应变情况。
(二)应用案例以大型桥梁结构为例,通过在桥梁关键部位埋设光纤传感器,可以实时监测桥梁的应变分布情况。
一旦发现异常应变,可以及时采取措施,避免桥梁发生结构性损伤或垮塌事故。
四、分布式光纤传感技术在结构开裂监测中的应用(一)应用原理在结构开裂监测中,分布式光纤传感技术可以通过检测光纤中光信号的突然变化来预测和监测结构的开裂。
当结构发生开裂时,由于裂缝的产生和发展,光纤中的光信号会受到影响,这些变化可以被传感器捕捉并分析,从而实现对结构开裂的监测。
(二)应用案例以建筑物结构为例,通过在建筑物的关键部位布设光纤传感器,可以实时监测建筑物的开裂情况。
这对于预防建筑物因开裂而导致的安全事关重大,能够为建筑物的维护和修缮提供有力支持。
五、结论分布式光纤传感技术在结构应变及开裂监测中具有重要的应用价值。
其高灵敏度、高空间分辨率和长距离监测能力使其成为了现代结构健康监测的重要手段。
光纤传感器在结构健康监测中的应用教程简介:结构健康监测是一种重要的工程技术,能够帮助我们实时监测和评估各类结构物的状况。
光纤传感器作为一种高精度、远程测量的技术,越来越多地被应用于结构健康监测中。
本文将介绍光纤传感器的原理、分类和在结构健康监测中的应用。
一、光纤传感器的原理和分类1. 光纤传感器的原理光纤传感器是一种利用光的特性进行测量的传感器。
它通过光纤的变化来检测和测量温度、应变、压力等物理量。
光纤传感器最常用的原理是光纤布里渊散射原理和光纤尘埃散射原理。
2. 光纤传感器的分类光纤传感器可以根据测量的物理量进行分类。
常见的光纤传感器包括温度传感器、应变传感器、压力传感器等。
其中,布里渊光纤传感器和光纤光栅传感器是结构健康监测中常用的类型。
二、光纤传感器在结构健康监测中的应用1. 布里渊光纤传感器的应用布里渊光纤传感器是一种利用光纤布里渊散射原理进行测量的传感器。
它能够实时监测结构物的温度、应变和拉伸等参数,提供结构健康的评估和预警。
布里渊光纤传感器在桥梁、隧道、建筑物等大型结构的监测中起着重要作用。
2. 光纤光栅传感器的应用光纤光栅传感器是一种利用光纤光栅原理进行测量的传感器。
它能够监测结构物的振动、形变和扭转等参数。
光纤光栅传感器在风力发电机叶片、铁路轨道和航天器等领域的结构健康监测中被广泛采用。
三、光纤传感器在结构健康监测中的优势1. 高精度和灵敏度光纤传感器具有极高的精度和灵敏度,可以实时监测微小的结构变化。
与传统传感器相比,光纤传感器在结构健康监测中更加准确和可靠。
2. 远程测量和分布式监测光纤传感器通过光纤的传输,可以实现远程测量和分布式监测。
它克服了传统传感器布线复杂的问题,能够在较大范围内实现多点监测。
3. 抗干扰性能强光纤传感器在结构健康监测中具有良好的抗干扰性能。
它可以抵抗温度、应变和振动等外界干扰,保证了监测数据的准确性。
四、光纤传感器在结构健康监测中的案例1. 桥梁结构监测光纤传感器可以实时监测桥梁结构的应变和振动情况,及时发现潜在的问题。
光纤温度传感器的技术原理和相关应用研究摘要:随着光纤技术研究的不断发展,人类的生活越来越离不开光纤传感器。
光纤传感器以其体积小、质量轻、灵敏度高、不易受到电磁的干扰等优点,人类开发出了各种类型的光纤传感器,逐渐取代了传统传感器在人类生活中的应用。
本文详细介绍了光纤的三种特性及其各自的特点,光纤传感器的工作原理和其按照不同方式的分类。
重点讲述了光纤温度传感器的特点以及分布式光纤温度传感器、光纤荧光温度传感器、光纤光栅温度传感器、干涉型温度传感器的测温原理与性质特点,并利用它们的工作原理及特点将光纤温度传感器应用到医疗、建筑、电力系统、航空航天等应用上。
利用光纤温度传感器的工作原理,进行基于马赫-泽德尔干涉仪的测温实验。
并根据这次的测温实验得到光纤温度传感器测温的优缺点,并对光纤温度传感器测温方法的改进提出自己的见解。
关键词:光纤光纤传感温度传感器测温Technical principles and fiber optic temperature sensorsrelated researchAbstract:With the continuous development of optical fiber technology research, human life increasingly inseparable fiber optic sensors. Fiber Optic Sensors its small size, light weight, high sensitivity, less susceptible to electromagnetic interference and other advantages, humans developed various types of fiber optic sensors, gradually replaced the traditional sensors in human life.This paper describes the three characteristics of the fiber of their characteristics, working principle of fiber sensor and its classification in different ways. Focuses on the characteristics of the fiber optic temperature sensor, and temperature characteristics and properties of the principle of distributed optical fiber temperature sensors, fiber optic fluorescence temperature sensors, fiber grating temperature sensor, interferometric temperature sensor, and the use of their works and the characteristics of the fiber optic temperature sensors to the medical, construction, power systems, aerospace and other applications.The use of fiber optic temperature sensor works, based Mach - Ze Deer interferometer temperature experiments. And give advantages and disadvantages of fiber optic temperature sensor according to the temperature of the temperature experiment, and suggest improvements fiber optic temperature sensor temperature measurement method of his own views.Key words:Fiber;Fiber optic sensing;Temperature sensor;Applications;Measuring temperature引言随着人类社会的进步,光电子技术发展的越来越快,其中以光纤技术的发展最为迅速,半个多世纪以来,人们充分享用了由光纤技术带来的文明与便利后,有充分的理由使人们相信,人类已逐步进入由光主宰的技术世。
分布式光纤测温系统原理分布式光纤测温系统是近年来发展起来的一种用于实时快速多点测温和测量空间温度场分布的传感系统。
它是一种分布式的、连续的、功能型光纤温度测量系统。
即在系统中,光纤不仅起感光作用,而且起导光作用。
利用光纤后向拉曼散射的温度效应,可以对光纤所在的温度场进行实时的测量;利用光时域反射技术(OTOR)可以对测量点进行精确定位。
如DTS2000 分布式光纤测温系统,可在一条2km长的光纤上实时监测2000个测址点,测温范围达到0- 370oC。
测温的物理基础当光在光纤中传输时,与光纤中的分子、杂质等相互作用而发生散射。
发生的散射有米氏散射、瑞利散射、布里渊散射和拉曼散射等。
其中拉曼散射是由于光纤中分子的热运动与光子相互作用发生能量交换而产生的。
具体地说,当光子被光纤分子吸收后会再次发射出来。
如果有一部分光能转换为热能,那么将发出一个比原来波长大的光,称为Stokes光。
相反,如果一部分热能转换为光能,那么将发出一个比原来波长小的光,称为Anti-Stokes 光。
拉曼散射光就是由这两种不同波长的Stokes 光和Anti-Stokes光组成的,其波长的偏移是由光纤组成元素的固有属性决定的,因此拉曼散射光的强度与温度有关。
分布式光纤测温系统原理框图分布式光纤测温系统的基本框图如图2-83所示。
在同步控制.单元的触发下,光发射器产生一个大电流脉冲,该脉冲驱动半导体激光器产生大功率的光脉冲,并注人激光器尾纤中。
从激光器尾纤输出的光脉冲.经过光路藕合器进人放置在恒温槽中的光纤中,该光纤用于系统标定,之后再进人传感光纤,感受被测对象的温度场。
当激光在光纤中发生散射后,携带有温度信息的拉曼后向散射光返回到光路藕合器中。
光路祸合器不但可以将发射光直接藕合至传感光纤.而且可以将散射回来的不同与发射波长的拉曼散射光祸合至分光器。
分光器分别由两个不同中心波长的光滤波器组成,分别滤出Stokes光和Anti-Stokes光,经接收机送人数据采集与处理单元。
光纤应变传感器应变测量精度测试标准光纤应变传感器是一种利用光纤的光学特性来实现应变测量的高精度传感器。
它能够实现非接触式、远距离和实时监测,具有抗电磁干扰、耐腐蚀和易于安装等优点,因此在结构健康监测、地质灾害预警、航空航天等领域有着广泛的应用前景。
然而,光纤应变传感器的应变测量精度直接影响着其在实际工程中的可靠性和准确性,因此有必要制定相应的测试标准来评估其性能。
在进行光纤应变传感器应变测量精度测试标准制定之前,我们首先需要了解光纤应变传感器的工作原理以及影响其应变测量精度的因素。
光纤应变传感器是基于光纤的光学干涉原理来实现应变测量的,当光纤受到外部应变作用时,其长度和折射率发生变化,导致光的相位发生变化,进而影响干涉信号的参数,从而实现应变测量。
影响光纤应变传感器应变测量精度的因素主要包括光纤的材料和结构、光纤传感器的安装方式、温度和湿度的变化等。
为了评估光纤应变传感器的应变测量精度,有必要制定相应的测试标准。
应当制定光纤应变传感器的基本性能测试标准,包括灵敏度、线性度、分辨率、重复性等参数的测试方法和要求。
还应当考虑光纤应变传感器在不同工作条件下的性能测试标准,包括温度、湿度、振动等环境因素对应变测量精度的影响。
还需制定光纤应变传感器在实际工程中的性能验证测试标准,包括安装方式、外部干扰、长期稳定性等因素的考量。
光纤应变传感器应变测量精度测试标准的制定应该是一个不断探索和完善的过程。
随着光纤应变传感器技术的不断发展和应用领域的不断拓展,对其性能的要求也将不断提高。
测试标准需要与时俱进,不断更新和完善,以确保光纤应变传感器在不同工程应用中能够实现准确、可靠的应变测量。
总结回顾通过对光纤应变传感器应变测量精度测试标准的探讨,我们了解了光纤应变传感器的工作原理,以及影响其应变测量精度的因素。
在制定测试标准时,需要考虑到光纤应变传感器的基本性能、不同工作条件下的性能以及实际工程应用中的性能验证。
制定测试标准是一个不断探索和完善的过程,需要与光纤应变传感器技术的发展和应用需求相结合,不断更新和完善。
光纤温度传感器原理光纤温度传感器是一种利用光纤材料的热敏特性来测量温度的传感器。
它利用光纤的光学特性和热学特性,将温度转换成光学信号,并通过光纤传输到检测端,最终实现温度的测量。
光纤温度传感器的原理主要基于两个基本原理:热敏效应和光纤传输。
热敏效应是指材料的电阻、电容、电导率等在温度变化下发生变化的现象。
光纤温度传感器中常用的热敏材料有热敏电阻、热敏电容和热敏电导率等。
当温度发生变化时,热敏材料的阻值、电容或电导率也会相应变化。
通过测量这些变化,就可以得到温度的信息。
光纤传输是指利用光纤的光学特性进行信息传输的过程。
光纤具有折射率高、传输损耗小、抗干扰能力强等优点。
光纤温度传感器利用光纤的这些特性,将温度信息转换成光学信号,并通过光纤进行传输。
在光纤的一端,通过光源产生一束光信号,经过光纤传输到另一端的检测器。
当光信号经过热敏材料时,由于温度的变化,光信号的强度、频率或相位也会发生变化。
通过检测器对光信号的变化进行测量,就可以得到温度的信息。
光纤温度传感器的工作原理可以简述为:首先,光源产生一束光信号,并通过光纤传输到待测温区域。
在待测温区域,光信号经过热敏材料,由于温度的变化,光信号的强度、频率或相位发生变化。
然后,光信号再经过光纤传输到检测端,通过检测器对光信号的变化进行测量。
最后,根据光信号的变化,利用预先确定的光学特性-温度曲线,就可以得到温度的信息。
光纤温度传感器具有很多优点。
首先,由于光纤本身是绝缘材料,能够在高电压、高电流等环境下工作,具有较好的电磁兼容性和抗干扰能力。
其次,光纤传输的光信号不受电磁场的影响,能够在较恶劣的环境下工作。
再次,光纤温度传感器具有快速响应、高精度和长测距等优点。
最后,光纤温度传感器适用于各种温度测量场合,如石油、化工、医疗、冶金等领域。
光纤温度传感器利用光纤的光学特性和热学特性,通过光纤传输温度信息,实现温度的测量。
其原理是基于热敏效应和光纤传输的。
光纤温度传感器具有快速响应、高精度和抗干扰能力强等优点,适用于各种温度测量场合。
光纤光栅的应力和温度传感特性研究 (1)一 光纤光栅传感器理论基础 (1)1 光纤光栅应力测量 (1)2 光纤光栅温度测量 (2)3 光纤光栅压力测量 (3)二 光纤光栅传感器增敏与封装 (3)1 光纤光栅的应力增敏 (4)2 光纤光栅的温度增敏 (4)3 光纤光栅的温度减敏 (5)4 嵌入式敏化与封装 (5)5 粘敷式敏化与封装 (7)三 光纤光栅传感器交叉敏感问题及其解决方法 (9)1 参考光纤光栅法 (10)2 双光栅矩阵运算法 (10)3 FBG 与LPFG 混合法 (11)4 不同包层直径熔接法 (12)5 啁啾光栅法 (12)光纤光栅的应力和温度传感特性研究一 光纤光栅传感器理论基础1 光纤光栅应力测量由耦合模理论可知,光纤布拉格光栅(FBG)的中心反射波长为:2B eff n λ=Λ (1)式中:eff n 为导模的有效折射率,Λ为光栅的固有周期。
当波长满足布拉格条件式(1)时,入射光将被光纤光栅反射回去。
由公式(1)可知,光纤光栅的中心反射波长B λ随eff n 和Λ的改变而改变。
FBG 对于应力和温度都是很敏感的,应力通过弹光效应和光纤光栅周期Λ的变化来影响B λ,温度则是通过热光效应和热胀效应来影响B λ。
当光纤光栅仅受应力作用时,光纤光栅的折射率和周期发生变化,引起中心反射波长B λ移动,因此有:eff BB effn n λλ∆∆∆Λ=+Λ (2) 式中:eff n ∆为折射率的变化,∆Λ为光栅周期的变化。
光栅产生应力时的折射率变化:()21211112effeff e effn n P P P n μμεε∆=---=-⎡⎤⎣⎦ (3) 式中: ()21211112e eff P n P P μμ=--⎡⎤⎣⎦ (4) ε是轴向应力,μ是纤芯材料的泊松比,11P 、12P 是弹光系数,e P 是有效弹光系数。
假设光纤光栅是绝对均匀的,也就是说,光栅的周期相对变化率和光栅段的物理长度的相对变化率是一致的。
分布式光纤传感器1. 简介分布式光纤传感器(Distributed Fiber Optic Sensor,简称DFOS)是一种利用光纤作为传感器的传感技术。
光纤传感器将光纤作为传感元件,通过测量光纤中的光信号的改变,实现对物理量的测量和监测。
相比传统传感器,分布式光纤传感器具有全光电传输、大范围、高灵敏度、抗电磁干扰等优点,被广泛应用于工业、军事、交通、环境监测等领域。
2. 工作原理分布式光纤传感器的工作原理基于光纤中的光信号的改变。
一般来说,光纤传感器可以通过两种方式实现对物理量的测量:基于光纤的干涉原理和基于光纤的散射原理。
2.1 基于光纤的干涉原理基于光纤的干涉原理是利用光纤中的光信号的干涉现象来测量物理量。
光纤传感器一般采用光纤的两个光束进行干涉,通过测量干涉光信号的强度或相位变化,来获得物理量的信息。
2.2 基于光纤的散射原理基于光纤的散射原理是利用光纤中的光信号的散射现象来测量物理量。
光纤传感器通过测量散射光信号的强度、频谱或时间延迟等参数的变化,来获得物理量的信息。
3. 分类根据传感原理、传感方式和应用领域的不同,分布式光纤传感器可以分为多个分类。
下面将介绍几种常见的分类方式。
3.1 基于传感原理的分类根据传感原理的不同,可以将分布式光纤传感器分为基于干涉原理和基于散射原理的两类。
3.1.1 基于干涉原理的分布式光纤传感器基于干涉原理的分布式光纤传感器主要包括光纤干涉仪、光纤布拉格光栅传感器等。
这类传感器通过测量光纤中的干涉光信号的强度或相位变化,实现对物理量的测量。
3.1.2 基于散射原理的分布式光纤传感器基于散射原理的分布式光纤传感器主要包括光纤布里渊散射传感器、光纤拉曼散射传感器等。
这类传感器通过测量光纤中的散射光信号的强度、频谱或时间延迟等参数的变化,实现对物理量的测量。
3.2 基于传感方式的分类根据传感方式的不同,可以将分布式光纤传感器分为连续式和离散式两类。
3.2.1 连续式分布式光纤传感器连续式分布式光纤传感器是指将光纤作为连续的传感元件,沿着被测量对象的长度方向进行布置,实现对整个长度范围内物理量的测量。
光纤温度传感器摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。
关键字:光纤传感温度应用1引言在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。
光纤温度传感器是20世纪70年代发展起来的一种新型传感器。
与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。
2光纤温度传感器分类光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。
功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。
传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。
目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。
2.1光纤光栅温度传感器光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。
光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。
光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。
Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程:=2nA式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。
光纤温度传感器原理介绍光纤温度传感器是一种基于光纤传输原理的温度测量设备。
它具有高精度、长距离传输能力以及耐高温、抗干扰等特点,被广泛应用于工业、冶金、化工、医疗等领域。
本文将全面、详细、深入地探讨光纤温度传感器的原理和应用。
原理光纤温度传感器利用光纤材料的光学传输特性和温度对光纤特性的影响进行温度测量。
其基本原理如下:1. 热效应光纤温度传感器利用光纤材料的热效应进行温度测量。
当光纤受热时,光纤内部会发生温度变化,进而引起光纤的长度、折射率和透过损耗的变化。
通过测量这些变化,可以获得温度信息。
2. 光纤布里渊散射光纤布里渊散射(Bragg scattering)是光纤温度传感器常用的测温原理之一。
布里渊散射指的是光波在光纤中与光纤中存在的声波产生相互作用,而产生散射现象。
当光纤受温度变化影响时,声波的频率也会随之变化,从而改变布里渊散射的位置和强度。
通过观测布里渊散射光的频移和功率,可以推算出温度。
3. 光纤拉曼散射光纤拉曼散射(Raman scattering)是光纤温度传感器另一种常用的测温原理。
拉曼散射指的是光波在光纤中与光纤中存在的分子或晶格振动产生相互作用,而产生散射现象。
当光纤受温度变化影响时,拉曼散射光的频率也会发生变化。
通过测量拉曼散射光的频移和功率,可以得到温度信息。
应用光纤温度传感器具有许多优点,因此被广泛应用于各个领域,下面我们将介绍其在不同领域的应用。
1. 工业光纤温度传感器在工业领域中,常用于高温、高压、有腐蚀性的环境下的温度测量。
例如,在石油化工行业中,光纤温度传感器可以用于监测炼油装置中的温度变化,为生产过程提供温度数据,以便调节生产参数。
2. 冶金在冶金行业中,光纤温度传感器可以用于铁矿石烧结过程中的温度测量。
通过实时监测烧结过程中的温度变化,可以控制烧结过程,提高产品质量。
3. 化工在化工行业中,光纤温度传感器可以用于监测反应釜、管道等设备中的温度变化。
通过实时测量温度,可以及时发现异常情况,保证生产安全。
光导纤维是利用光的完全内反射原理传输光波的一种介质,它是由高折射率的纤芯和包层所组成。
包层的折射率小于纤芯的折射率,直径大致为0.1mm~0.2mm。
当光线通过端面透入纤芯,在到达与包层的交界面时,由于光线的完全内反射,光线反射回纤芯层。
这样经过不断的反射,光线就能沿着纤芯向前传播且只有很小的衰减。
光纤式传感器就是把发射器发出的光线用光导纤维引导到检测点,再把检测到的光信号用光纤引导到接收器来实现检测的。
按动作方式的不同,光纤式传感也可分为对射式、漫反射式等多种类型。
光纤式传感器可以实现被检测物体在较远区域的检测。
由于光纤损耗和光纤色散的存在,在长距离光纤传输系统中,必须在线路适当位置设立中级放大器,以对衰减和失真的光脉冲信号进行处理及放大。
光纤传感器调试使用方法(1)灵敏度高由于光是一种波长极短的电磁波,通过光的相位便得到其光学长度。
以光纤干涉仪为例,由于所使用的光纤直径很小,受到微小的机械外力的作用或温度变化时其光学长度要发生变化,从而引起较大的相位变化。
假设用1 0米的光纤,l℃的变化引起1000ard的相位变化,若能够检测出的最小相位变化为0.01ard,那么所能测出的最小温度变化为l 0℃,可见其灵敏度之高。
(2)抗电磁干扰、电绝缘、耐腐蚀、本质安全由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输媒质,并且安全可靠,这使它可以方便有效地用于各种大型机电、石油化工、矿井等强电磁干扰和易燃易爆等恶劣环境中。
(3)测量速度快光的传播速度最快且能传送二维信息,因此可用于高速测量。
对雷达等信号的分析要求具有极高的检测速率,应用电子学的方法难以实现,利用光的衍射现象的高速频谱分析便可解决。
(4)信息容量大被测信号以光波为载体,而光的频率极高,所容纳的频带很宽,同一根光纤可以传输多路信号。
(5)适用于恶劣环境光纤是一种电介质,耐高压、耐腐蚀、抗电磁干扰,可用于其它传感器所不适应的恶劣环境中。