太阳能聚光光伏(CPV)聚光光热(CSP)介绍
- 格式:doc
- 大小:1.23 MB
- 文档页数:15
能源领域中的太阳能热发电技术太阳能热发电技术,简称CSP(Concentrating Solar Power),是指利用太阳光线集中的能量进行动力转换,产生电能。
与太阳能光伏发电技术不同的是,CSP将太阳光能转化为热能,先将热能储存,再通过蒸汽轮机产生电能。
太阳能热发电技术是一种非常有潜力的清洁能源,具有重要的应用价值。
太阳能热发电技术的优势太阳能热发电技术相比于其他清洁能源技术,有以下优势:1.可储存性:CSP系统能够将太阳能转化为热能,并将热能储存到热储存设备中,以便在需要时进行使用。
这使得CSP系统成为可控制和可计划的发电方式。
2.稳定性:太阳能热发电系统的运作是需要阳光的,但它可以在晴朗的天气下持续运转,且与太阳光伏发电不同的是,由于其可储存性,CSP系统可以在不充足的日照条件下继续运转,具有更高的稳定性。
3.可靠性:太阳能热发电系统可以在工程寿命内(通常为25年左右)持续运转,并具有较高的可靠性。
4.经济性:CSP系统比普通太阳光伏发电系统具有更高的发电效率,同时成本也比后者低,具有更好的经济性。
太阳能热发电技术的发展太阳能热发电技术是一种相对成熟的技术,但其应用范围相对较窄,主要分布在美国、西班牙和中国等国家。
目前,全球有大约5GW的CSP发电装机容量,相应地,CSP在全球能源供应系统中的占比并不高。
随着清洁能源的不断发展,太阳能热发电技术也逐渐受到重视。
据国际能源机构2015年发布的一份报告称,未来CSP的市场增长潜力非常巨大,到2030年,CSP的电力容量将可能增加至超过100GW。
太阳能热发电技术的应用前景太阳能热发电技术的商业化运营还面临着一些挑战,主要包括成本问题、技术进步和政策支持等。
但随着技术和市场的不断发展,这些问题将得到逐步解决。
未来,太阳能热发电技术有望在以下领域得到广泛应用:1.供电:CSP可以为城市、工业区和农村提供电力,实现清洁能源供应。
2.电池储能:CSP系统可以将热能储存到盐水、蜡和石墨等材料中,形成可逆的热储存,以便在需要时进行使用。
太阳能利用比照 - 光热PK光伏在光伏产业尤其是晶硅太阳能发展遭遇产能过剩、高能耗和高污染的诟病时,太阳能光热发电技术受到关注。
超越光伏、替代光伏……一时间,作为太阳能光伏发电“亲姐妹”的太阳能光热发电,被摆在了竞争台上。
光热技术日益被看重1、光热发电近期发展及政策的动态2006 年,随着发达国家对可再生能源使用比例的强制要求和相关激励性合同电价政策的出台,CSP 在以西班牙和美国为代表的市场开始复兴。
2007年国家发改委《可再生能源中长期规划》中曾做出具体计划,中国到2010年建成太阳能热发电总容量5万千瓦,到2020年达到20万千瓦。
2009 年科技部成立“太阳能光热产业技术创新战略联盟”,开始发动一轮光热攻坚战。
一位接近国家发改委人士此前对媒体透露,2012年之前,国内将有1000兆瓦至2000兆瓦的光热项目启动。
目前,全球运行中和建设中的 CSP 电站已分别超过了800MW 和900MW的装机规模,规划中的工程(包括已签合同或开发协议的2013 年之前动工项目)则高达12.5GW。
发展改革委近日下发的《产业结构调整指导目录(2011年本)》将于6月1日正式施行。
在指导目录鼓励类新增的新能源门类中,太阳能光热发电被放在突出位置。
2、光热发电站实景光热PK光伏1、光热发电原理与太阳能光伏发电有较大不同与 CPV 系统可以分为反射型聚光和投射型聚光类似,CSP 的分类主要也是按照系统使用的不同聚光反射器来区分的;而不同之处在于,CSP 系统后道能量转换部分的结构及其对系统技术特性的影响,在不同类型的系统之间也有比较大的区别。
CSP 发电的技术路线可以分为四大类:技术相对成熟、目前应用最广泛的抛物面槽式;效率提升和成本下降潜力最大的集热塔式;适合以低造价构建小型系统的线性菲涅尔式;效率最高、便于模块化部署的抛物面碟式。
与 CPV 系统可以分为反射型聚光和投射型聚光类似,CSP 的分类主要也是按照系统使用的不同聚光反射器来区分的;而不同之处在于,CSP 系统后道能量转换部分的结构及其对系统技术特性的影响,在不同类型的系统之间也有比较大的区别。
太阳能热发电知识普及●概念太阳能热发电,全称为聚焦型太阳能热发电(英文全称:Concentrating Solar Power,简称CSP),是通过大量反射镜以聚焦的方式将太阳能直射光聚集起来,加热工质,产生高温高压的蒸汽,蒸汽驱动汽轮机发电。
●太阳能利用概述其实人类利用太阳能已有3000多年的历史,非常悠久。
但真正把太阳能作为一种能源和动力加以利用,其历史却只有不到400年。
自17世纪初以来可以按照太阳能利用发展和应用的状况,把现代世界太阳能利用的发展过程大致划分为以下8个阶段。
初始阶段:近代太阳能利用的历史,一般从1615年法国工程师所罗门,德·考克斯发明世界上第一台利用太阳能驱动的抽水泵算起;第二阶段:1901~1920年这一阶段世界太阳能研究的重点,仍然是太阳能动力装置。
但采用的聚光方式多样化,并开始采用平板式集热器和低沸点工质;第三阶段:1921~1945年由于化石燃料的大量开采应用及爆发了第二次世界大战的影响,此阶段太阳能利用的研究开发处于低潮,参加研究工作的人数和研究项目及研究资金大为减少;第四阶段:1946~1965年,太阳能利用的研究开始复苏,加强了太阳能基础理论和基础材料的研究,在太阳能利用的各个方面都有较大进展;第五阶段:1966~1973年此阶段由于太阳能利用技术还不成熟,尚处于成长阶段,世界太阳能利用工作停滞不前,发展缓慢;第六阶段:1973~1980年这一时期爆发的中东战争引发了西方国家的“石油危机”,使得越来越多的国家和有识之士意识到,现时的能源结构必须改变,应加速向新的能源结构过渡,客观上使这一阶段成了太阳能利用前所未有的大发展时期;第七阶段:1981~1991年由于世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力,太阳能利用技术无重大突破;第八阶段:1992年至今,1992年6月联合国“世界环境与发展大会”在巴西召开之后,世界各国加强了对清洁能源技术的研究开发,使太阳能的开发利用工作走出低谷,得到越来越多国家的重视和加强。
2024年聚光光伏CPV模块市场环境分析1. 概述聚光光伏(Concentrated Photovoltaics,简称CPV)是一种利用光学透镜或凸透镜,将太阳光线聚集到小面积的太阳能电池上,提高光伏电池的效率的技术。
聚光光伏模块由高效率太阳能电池、透镜模组、联接模块和机械结构组成。
本文将对聚光光伏CPV模块市场环境进行分析。
2. 市场规模目前,全球光伏市场规模庞大,聚光光伏CPV模块占有一定份额。
根据市场研究数据显示,2019年全球聚光光伏CPV模块市场规模达到XX亿美元。
预计在未来几年内,聚光光伏CPV模块市场将继续保持增长势头。
3. 市场发展趋势3.1 技术创新和提升随着科技的进步和光学材料的研发,聚光光伏CPV模块的效率和稳定性不断提高。
近年来,研究人员不断努力改进CPV模块的光学透镜、太阳能电池和连接技术,以提高模块的转换效率和寿命,降低成本。
这些技术创新和提升推动了聚光光伏CPV模块市场的发展。
3.2 环保意识的增强环境保护意识的增强促使人们对可再生能源的需求不断增加,太阳能作为最重要的可再生能源之一,受到了广泛关注。
聚光光伏CPV模块凭借其高效率和节约资源的特点,成为可再生能源市场的重要组成部分。
3.3 政策支持和补贴政策各国政府纷纷出台政策支持和补贴措施,以推动太阳能产业的发展。
大部分国家都将太阳能列为优先发展的清洁能源,给予相应的政策和财政支持。
这些政策和补贴政策为聚光光伏CPV模块市场的发展提供了有力支持。
4. 市场竞争格局目前,聚光光伏CPV模块市场竞争激烈,主要厂商包括ABC公司、XYZ公司、123公司等。
这些公司通过不断提升产品性能、降低成本以及拓宽渠道等方式来取得竞争优势。
此外,聚光光伏CPV模块市场还存在一些小型厂商进入市场,增加了竞争的复杂性。
5. 市场挑战和机遇5.1 挑战•技术瓶颈:虽然聚光光伏CPV模块在效率和稳定性方面有较大突破,但仍存在技术瓶颈需要克服。
聚光光伏技术聚光光伏技术是一种利用镜子或透镜将太阳光聚焦到太阳能电池上的光伏发电技术。
它可以提高光电转换效率,增加太阳能电池的发电能力。
聚光光伏技术在太阳能领域具有重要的应用前景。
聚光光伏技术的一大优势是可以提高太阳能电池的光电转换效率。
在传统的太阳能电池中,光线只能直接照射到电池表面,而聚光光伏技术则可以将光线通过镜子或透镜聚焦到一个小的区域上,这样可以提高单位面积上的光照强度,从而提高太阳能电池的光电转换效率。
研究表明,通过聚光光伏技术,太阳能电池的光电转换效率可以提高10%以上,这对于提高太阳能发电的经济性和可行性具有重要意义。
聚光光伏技术还可以增加太阳能电池的发电能力。
由于聚光光伏技术可以将光线聚焦到一个小的区域上,因此可以在有限的空间内安装更多的太阳能电池。
相比之下,传统的太阳能电池需要占用较大的面积来实现相同的发电能力。
通过聚光光伏技术,可以在有限的空间内安装更多的太阳能电池,从而提高发电能力。
这对于场地有限的太阳能发电项目来说,具有重要的意义。
聚光光伏技术有多种实现方式。
其中,一种常见的方式是利用平面镜将太阳光聚焦到太阳能电池上。
平面镜具有反射光线的特性,通过合理设计平面镜的形状和角度,可以将光线聚焦到太阳能电池上。
另一种方式是利用透镜将太阳光聚焦到太阳能电池上。
透镜具有折射光线的特性,通过合理设计透镜的形状和曲率,可以将光线聚焦到太阳能电池上。
通过不同的实现方式,可以根据具体的应用需求选择合适的聚光光伏技术。
虽然聚光光伏技术具有很多优势,但也存在一些挑战和限制。
首先,聚光光伏技术需要合理设计和安装光学器件,这对于工程设计和施工来说具有一定的技术要求。
其次,聚光光伏技术对太阳光的追踪和跟踪要求较高,需要配备精密的太阳追踪装置,这增加了系统的复杂性和成本。
此外,聚光光伏技术还存在光热转化损失的问题,即部分光能被转化为热能而无法转化为电能。
尽管存在挑战和限制,聚光光伏技术在太阳能领域具有广阔的应用前景。
太阳能光热发电与光伏发电对比分析太阳能光热发电和光伏发电是目前主要的太阳能利用方式之一,它们都利用太阳的能量来产生电力。
虽然它们的目标相同,但它们的原理、技术和应用领域有所不同。
在本文中,我将对太阳能光热发电和光伏发电进行比较分析。
太阳能光热发电(Concentrated Solar Power,CSP)是利用太阳辐射热能产生电力的一种技术。
它的原理是通过反射镜将太阳能集中到一个集热器或反射器中,使其产生高温热能,然后利用这种热能发电。
典型的光热发电系统包括塔式光热发电和槽式光热发电。
与之相比,光伏发电是利用半导体材料(通常是硅)的光电效应将太阳能直接转化为电能的一种技术。
当太阳光照射到光伏电池上时,光子会激发电子,导致电流产生,这样就可以通过接线将电能转化为电力。
首先,从技术上来讲,太阳能光热发电系统的效率通常更高。
根据统计数据,太阳能光热发电系统的效率可以达到30%以上,而普通光伏电池的效率通常只在10-20%左右。
这是因为太阳能光热系统可以利用太阳能的热能转化为电能,而光伏电池只能利用太阳能的光能。
然而,虽然太阳能光热发电系统的效率较高,但其应用领域受到一定限制。
由于其较高的建设成本和对大面积土地的需求,在目前主要应用于大型的集中式发电站。
而光伏发电系统则更适合分布式应用,可以安装在屋顶、太阳能板和其他空间有限的场所。
此外,光伏发电系统相对较低的成本和较长的使用寿命也使得它更受市场欢迎。
其次,从环境影响上来看,太阳能光热发电相对于光伏发电来说,更容易对生态环境造成一定的负面影响。
光热发电通常需要大面积的镜子或反射器来集中太阳能,这样容易破坏当地的植被和生态系统。
而光伏发电系统通常不需要大面积的土地,对生态环境的影响相对较小。
此外,太阳能光热发电和光伏发电在应对天气变化和季节变化方面也存在一定的差异。
光热发电系统通常可以储存热能,使其可以在夜间或阴天继续发电,从而能够更好地应对天气变化。
而光伏发电系统则需要依赖阳光的直接照射,对天气的依赖性更强。
一、CPV概述聚光光伏(CPV)太阳能是指利用透镜或反射镜等光学元件,将大面积的汇聚到一个极小的面积上,再将汇聚后的太通过高转化效率的光伏电池直接转化为电能。
光伏发电在经历了第一代晶硅电池和第二代薄膜电池之后,目前第三代CPV 发电方式正逐渐成为太阳能领域的投资重点,并且CPV模式相对于前两代具有诸多的优势:(1)节省昂贵的半导体材料:CPV是通过提高聚光倍数的方式,减少光伏电池的使用量,而透光镜及反光镜等光学元件的成本远远低于减少的光伏电池成本。
(2)提升光电转换效率:CPV系统采用砷化镓电池并依靠太阳追踪系统实现了更高的光电转换效率,较前两代光伏系统明显缩短能量回收期。
(3)极高的规模化潜力:CPV系统因其光电转换效率高、占地面积小等特点,是建造大型电源电站的最理想的太阳能发电技术,通过简单复制的规模化部署,单一CPV电厂可较容易的达到MW级规模。
(4)成本下降空间巨大:硅电池和薄膜电池已实现产业化生产,规模化效应已得到充分体现,并且其技术较为成熟,未来成本下降的空间已经有限。
而CPV系统的成本下降仍然较大,大批量生产的规模效应,以及聚光系统、电池、冷却系统等效率的进一步提高是成本下降的两大途径。
二、CPV太阳能系统的结构尽管各大厂商所生产的CPV系统的模式不尽相同,但各类CPV系统的组件主要是由四大部分组成,即聚光系统,光伏电池、太阳追踪系统、冷却系统。
1、聚光系统聚光系统是整个CPV系统的最重要的组成部分,它通常由主聚光器和二次聚光器组成,聚光系统的聚光精度很大程度上决定了整个CPV系统的性能高低。
根据聚光方式的不同,聚光系统可分为透射式聚光系统和反射式聚光系统。
(1)透射式聚光系统透射式聚光系统一般采用菲涅耳透镜聚焦的方式,与普通凸透镜相比,菲涅尔透镜只保留了有效折射面,可节省近80%的材料。
目前用于制作菲涅耳透镜的最常用材料是PMMA(俗称“亚克力”或“有机玻璃”),与玻璃透镜相比,它的优点是重量轻、易加工成型、成本低,而且对自然环境适应性能强,即使长时间在日光照射、风吹雨淋也不会使其性能发生改变。
(2)反射式聚光系统反射式聚光系统主要是采用回转二次反射曲面聚焦方式,聚焦后的光线经过二次匀光处理照射在高效太阳能电池芯片上实现光电转换。
由于反射式聚光系统不存在色散现象,因此其反射效率可接近100%,但反射式聚光系统对反射面的清洁度要求较高,如受到污染,反射效率会大大下降,因此通常在组件的表面还要覆盖一层高透光玻璃以便于清洁;另外,在反射式聚光系统中还有安装于电池表面的二次聚光器,其作用在于提高对入射光角度与聚光器轴线偏离角度的容忍度。
追踪系统的精度和风的作用,都会引起太入射角度得偏差,而轻微的偏差会显著影响光伏电池的转换效率,因此二次聚光器在HCPV系统中是一项必须的组件。
目前,作为反射曲面镜的材料主要是铝材经过精密钣金加工之后镀上反射膜形成。
但考虑到PMMA材料透射率高、耐候性优、容易压铸规模化生产和机械加工方便、质量轻、成本低等诸多优点,PMMA材料替代铝材和高透光玻璃作为反射曲面镜和保护平板具有较好的可行性,而且同样可应用于二次聚光器。
2、光伏电池在CPV太阳能系统中,由于采用了聚焦模式,因此对光伏电池的转换效率和耐高温性能有较高的要求。
目前,CPV系统的光伏电池主要采用了III-V族化合物半导体材料中的砷化镓(GaAs)电池,同硅太阳能电池相比,砷化镓电池具有更好的性能:一是光电转换效率高,目前硅太阳能电池的理论转换效率大概为23%,薄膜电池的转换效率约为10%,而单结的砷化镓电池的理论转换效率可达到27%,并且通过叠层技术,多结砷化镓太阳能电池的理论转换效率可超过50%,目前波音公司的光谱实验室中的三结电池在364倍聚光倍率下的光电转换效率已经达到41.6%;二是耐高温性能好,砷化镓电池的耐高温性能要好于硅电池,砷化镓电池在250℃的条件下仍可以正常工作,但硅电池在200℃的时候就已无常运行。
三是覆盖更宽光谱围,由III-V族化合物制成的三结光伏电池能够转换300-1800纳米光谱围的太,因而能够达到更高的光电转换效率,而硅太阳能电池的基本只能转换500-1100纳米光谱围的太。
3、太阳追踪系统CPV太阳能系统要求太相对于聚光系统垂直入射,否则整套系统的光电转换效率会急剧下降,而且聚光倍数越高的CPV太阳能系统对入射角度的精度要求也越高,因此太阳追踪系统的功能就是追踪太阳的运行轨迹,确保聚光光斑落在砷化镓电池上。
太阳追踪系统通常是一套双轴系统,可实现上下、左右调节角度,其结构主要是由金属支架和控制驱动机组成,目前追踪系统的精度已经达到±0.1度,加上二次聚光器的作用,完全能满足垂直入射的角度要求。
4、冷却系统由于CPV聚光倍数可达数百上千,电池表面会产生很高的温度,而且电池光电转换过程也会产生热量,尽管砷化镓电池的耐高温性能好,但长时间的高温会降低发电效率而且会使电池老化缩短电池寿命,因此必须使用冷却系统来降温。
冷却系统一般采用散热片、水冷、空冷等方式。
5、逆变器若CPV太阳能系统并网发电,则需配备逆变器,以实现光电转换后的直流电转变为交流电。
三、CPV太阳能系统的成本构成以德国Concentrix公司的500倍聚光20MW产能的透射式太阳能系统为例,通常200枚菲尼尔透镜及砷化镓电池构成一个模组,该模组的输出功率为75Wp,其成本大约为198美元(平均为2.64美元/Wp),若以10年使用寿命、每年250天实际有效发电,每天实际发电时间8小时计,则上网电价的成本约为0.14美元/Kwh,具体的建设成本构成为:另外,CPV太阳能电池的成本将因规模效应及系统转换效率的提高而显著下降,当生产规模从20MW提升到200MW时,其每Wp的生产成本将从目前的2.64美元下降到1.33美元,其砷化镓电池的转换效率将从目前的39%提高到42%,CPV 系统的整体效率将从目前的25%,提高到29%-36%四、CPV行业的市场规模截止2010年全球CPV的市场规模大约为500MW,据PV杂志预测,2020、2030、2040年全球的市场容量将分别达到5GW、15GW、35GW。
若2011-2020年CPV系统成本按2.64美元/Wp计,光学元件系统整体成本的7.6%,则未来10年全球CPV 太阳能系统的投资额将达到118.8亿美元,光学元件的市场容量则将为9.03亿美元。
按照中国30%的产能占比,则未来10年中国CPV行业的总投资额为35.64亿美元,光学元件的投资额则为2.71亿美元。
五、CPV行业的主要企业目前,全球围CPV太阳能电站的建设尚处于起步阶段,市场容量尚未有效扩大,并且由于包括砷化镓电池在的各组件的技术门槛较高,因此国外市场的集中度较高,而且国外企业主要采用掌控砷化镓电池的设计、生产环节,其他组件则采用OEM的方式。
目前市场份额主要由美国的Amonix、Emcore、SolFocus、西班牙的Isofoton、德国的Concentrix、以色列的Zenith等公司掌握,其中美国Emcore公司已分别在国和总共安装了三套单台25kw、采用菲涅耳透镜、聚光500倍的CPV系统,并已在设立了CPV电池模块封装厂。
国CPV市场同样处于培育阶段,虽然已有部分企业在聚光系统、太阳追踪系统、散热系统上具有一定的技术优势,但目前国仍未掌握砷化镓电池的核心技术,而且国企业基本处于示项目的建设阶段,尚未真正实现产业化,国CPV产业链的各环节皆未实现自主生产或配套生产。
其中,2010年三安光电在格尔木建造了3MW的CPV太阳能示项目,其中1MW 并网发电项目使用500倍聚光透镜、双轴追日系统,平均转化效率为25%,但其组件全部为进口,仅在国实现拼装。
新曜光电主要自主研发发电模块、光学系统、跟踪系统的研发,据称新曜光电的发电效率、聚光倍数、系统控制已经处于国际领先,目前尚未产业化生产。
2011年1月聚恒在哈工大威海校区建立200Kw的高倍聚光太阳能示电站并网发电,该系统的光电转换效率达到了25%,目前聚恒除了电池技术外,其他设备的技术都已掌握。
在聚光系统方面,目前国具有聚光系统加工能力的企业主要采用铝材的精密加工方式,其中以上市公司东山精密为代表,该公司主要为美国Solfocus公司的CPV系统提供钣金加工。
另由于CPV市场刚起步,以及聚光系统主要采用的PMMA材质较为普通,加工成光学元件的技术门槛较低,因此目前国尚不存在具有显著竞争优势的企业,未来光学聚光系统厂商的发展将主要依赖于整个CPV 市场规模的扩大。
一、CSP概述聚光光热(CSP)的发电原理是利用汇聚的太加热液体或气体介质,然后把这部分介质传导的热量转换为机械能,再从机械能转换为电能。
同传统的发电模式相比,CSP具有一定的优势:(1)规模化能力高:以目前的技术水平,单座槽式或塔式CSP电站的经济装机容量在100MW-250MW,这一规模已经相当于一台中型火电机组的输出功率,随着技术的进步,未来单座CSP的装机规模将会继续增加。
(2)成本下降空间大:以目前应用最广的抛物面槽式CSP电站为例,目前项目的建设成本在4.2美元-8.4美元/Wp之间,发电成本在0.16美元-0.25美元/KWh之间,预计未来技术相对成熟的槽式系统的建设成本还有望下降30%-40%,而火电成本则由于能源价格的提高以及资源税等因素而提高,从而使得CSP电力价格逐步具有竞争优势。
二、CSP系统的分类根据技术路线的不同,CSP发电可分为抛物面槽式、集热塔式、线性菲涅耳式、抛物面碟式四种:1、抛物面槽式抛物面槽式是目前技术最成熟、应用最广泛的技术,系统主要有三大部分组成:由数百行抛物面槽式反射镜构成的太阳能集热场、一套传统的蒸汽涡轮发电装置、储热罐。
其工作原理是通过反射槽及单轴太阳追踪系统将太汇聚到热吸收管,并将管的合成油或融盐等介质加热到一定温度,高温介质又被输送到一个热交换器,通过热交换器产生蒸汽来驱动传统的涡轮发电机,储热罐的作用则是储存部分太阳能,在适当的时候发电以平缓用电的峰谷。
2、集热塔式集热塔式CSP电站的聚光系统是由数以千计带有双轴太阳追踪系统的定日镜和一座中央集热塔构成。
其工作原理同抛物面槽式相同,其中定日镜的面积从1.2平米至120平米不等,聚光倍数则可以达到数百倍至上千倍,目前反射镜主要由铝制薄板制成,但考虑到PMMA材料耐候性优、容易压铸规模化生产和机械加工方便、质量轻、成本低等诸多优点,PMMA材料替代铝材作为反射曲面镜具有较好的可行性。
另外,为了将准确汇聚到集热塔顶的接收器上,需要对每一块定日镜的双轴跟踪系统进行单独控制,因而技术难度较抛物面槽式大。
3、线性菲涅尔式线性菲涅尔式CSP电站采用靠近地面放置的多个带单轴太阳跟踪的线性菲涅尔反射镜,将太反射到上方的聚光器,再由其汇聚到一根长管状的热吸收管,并将其中的水加热到270℃产生的蒸汽直接驱动后端的涡轮发电机。