数字信号处理及其应用试验
- 格式:doc
- 大小:245.26 KB
- 文档页数:31
数字信号处理实验报告班级:****姓名:郭**学号:*****联系方式:*****西安电子科技大学电子工程学院绪论数字信号处理起源于十八世纪的数学,随着信息科学和计算机技术的迅速发展,数字信号处理的理论与应用得到迅速发展,形成一门极其重要的学科。
当今数字信号处理的理论和方法已经得到长足的发展,成为数字化时代的重要支撑,其在各个学科和技术领域中的应用具有悠久的历史,已经渗透到我们生活和工作的各个方面。
数字信号处理相对于模拟信号处理具有许多优点,比如灵活性好,数字信号处理系统的性能取决于系统参数,这些参数很容易修改,并且数字系统可以分时复用,用一套数字系统可以分是处理多路信号;高精度和高稳定性,数字系统的运算字符有足够高的精度,同时数字系统不会随使用环境的变化而变化,尤其使用了超大规模集成的DSP 芯片,简化了设备,更提高了系统稳定性和可靠性;便于开发和升级,由于软件可以方便传送,复制和升级,系统的性能可以得到不断地改善;功能强,数字信号处理不仅能够完成一维信号的处理,还可以试下安多维信号的处理;便于大规模集成,数字部件具有高度的规范性,对电路参数要求不严格,容易大规模集成和生产。
数字信号处理用途广泛,对其进行一系列学习与研究也是非常必要的。
本次通过对几个典型的数字信号实例分析来进一步学习和验证数字信号理论基础。
实验一主要是产生常见的信号序列和对数字信号进行简单处理,如三点滑动平均算法、调幅广播(AM )调制高频正弦信号和线性卷积。
实验二则是通过编程算法来了解DFT 的运算原理以及了解快速傅里叶变换FFT 的方法。
实验三是应用IRR 和FIR 滤波器对实际音频信号进行处理。
实验一●实验目的加深对序列基本知识的掌握理解●实验原理与方法1.几种常见的典型序列:0()1,00,0(){()()(),()sin()j n n n n u n x n Aex n a u n a x n A n σωωϕ+≥<====+单位阶跃序列:复指数序列:实指数序列:为实数 正弦序列:2.序列运算的应用:数字信号处理中经常需要将被加性噪声污染的信号中移除噪声,假定信号 s(n)被噪声d(n)所污染,得到了一个含噪声的信号()()()x n s n d n =+。
数字信号处理第二次实验报告学院:信息工程学院班级:2012级电子信息工程*班姓名:学号:20125507**指导老师:实验四:IIR数字滤波器设计及软件实现一、实验目的1、熟悉双线性变换设计IIR滤波器的原理与方法2、掌握IIR滤波器的MATLAB实现方法二、实验原理简述IIR数字滤波器间接法基本设计过程:1、将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;2、设计过渡模拟滤波器;3、将过渡模拟滤波器系统函数转换成数字滤波器的系统函数三、程序与图形1、%-----------------信号产生函数mstg---------------function st=mstg %功能函数的写法%产生信号序列向量st,并显示st的时域波形和频谱%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600N=1600 %N为信号st的长度。
Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号st=xt1+xt2+xt3; %三路调幅信号相加fxt=fft(st,N); %计算信号st的频谱%-------绘制st的时域波形和幅频特性曲线-----subplot(2,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')subplot(2,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')-10123t/ss (t )(b) s(t)的频谱f/Hz幅度2、%-------实验4-2--------- clear all;close allFs=10000;T=1/Fs; %采样频率%调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st st=mstg;fp=280;fs=450; %下面wp,ws,为fp,fs 的归一化值范围为0-1wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A);y1t=filter(B,A,st); %滤波器软件实现 figure(2);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y1t)-1)*T; plot(t,y1t);%axis([0,1,-80,0])-10123t/ss (t )(b) s(t)的频谱f/Hz幅度-80-60-40-20000.020.040.060.080.10.120.140.16-1-0.500.511.53、%-------实验4-3---------fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y2t=filter(B,A,st);figure(3);subplot(2,1,1);plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y2t)-1)*T; plot(t,y2t);00.20.40.60.81-80-60-40-20000.020.040.060.080.10.120.140.16-2-10124、%-------实验4-4--------- fp=900;fs=550;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs);%调用ellipord 算椭圆DF 阶数N 通带截止频率 [B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y3t=filter(B,A,st);figure(4);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y3t)-1)*T; plot(t,y3t);-80-60-40-20000.020.040.060.080.10.120.140.16-2-1012四、实验结果分析由图可见,三个分离滤波器指标参数选取正确,损耗函数曲线达到所给指标。
实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。
二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。
其延拓周期为采样角频率(T /2π=Ω)。
只有满足采样定理时,才不会发生频率混叠失真。
在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。
公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。
为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。
通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。
二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。
- 利用傅里叶变换(FFT)分析信号的频谱特性。
- 观察并记录信号的时域和频域特性。
2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。
- 通过编程实现上述滤波器,并测试其性能。
- 分析滤波器对信号的影响,并调整参数以优化性能。
3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。
- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。
- 比较重构信号与原始信号的差异,评估处理效果。
三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。
- 生成一系列不同频率和幅度的模拟信号。
- 通过数据采集卡将模拟信号转换为数字信号。
2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。
- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。
3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。
- 利用IFFT对处理后的信号进行重构。
- 通过对比原始信号和重构信号,评估滤波器的性能。
五、实验结果与分析- 展示信号在时域和频域的分析结果。
- 描述滤波器设计参数及其对信号处理的影响。
- 分析重构信号的质量,包括信噪比、失真度等指标。
六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。
- 讨论实验中遇到的问题及其解决方案。
- 提出对实验方法和过程的改进建议。
七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。
实验一:系统响应及系统稳定性1. 实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及判断系统的稳定性。
2. 实验原理与方法描述系统特性有多种方式,时域描述有差分方程和单位脉冲响应,频域描述有系统函数和频率响应。
已知输入信号可以由差分方程、单位脉冲响应、系统函数或频率响应求系统输出信号。
(1)求系统响应 本实验仅在时域求系统响应。
在计算机上,已知差分方程可调用filter 函数求系统响应;已知单位脉冲响应可调用conv 函数计算系统响应。
(2)系统的时域特性 系统的时域特性是指系统的线性、时不变性质、因果性和稳定性。
本实验重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。
(3)系统的稳定性判断 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和条件。
实际中,检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。
(4)系统的稳态响应 系统的稳态输出是指当∞→n 时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零。
3.实验容及步骤(1)已知差分方程求系统响应 设输入信号 )()(81n R n x =,)()(2n u n x =。
已知低通滤波器的差分方程为 )1(9.0)1(05.0)(05.0)(-+-+=n y n x n x n y 。
试求系统的单位冲响应,及系统对)()(81n R n x =和)()(2n u n x =的输出信号,画出输出波形。
(2)已知单位脉冲响应求系统响应 设输入信号 )()(8n R n x =,已知系统的单位脉冲响应分别为)()(101n R n h =,)3()2(5.2)1(5.2)()(2-+-+-+=n n n n n h δδδδ,试用线性卷积法分别求出各系统的输出响应,并画出波形。
【精品】数字信号处理实验报告
1 实验目的
本次实验的目的是在MATLAB软件环境中运用数字信号处理理论,通过实验操作来检验用于数字信号处理的算法的正确性,以便明确数字信号处理理论在实际应用中的重要作用。
2 实验原理
数字信号处理实验的原理是使用MATLAB进行数字信号处理算法实验,首先,设置一些用于数字信号处理的参数,如传输函数、离散时间区间、采样频率、滤波器类型等;其次,按照信号处理的算法进行编程实现,搭建一个数字信号处理系统,在MATLAB下对信号进行处理,包括采样、滤波和量化等;最后,对处理后的信号进行数字分析,监测数字信号处理后的变化趋势,验证数字信号处理算法的正确性。
3 实验步骤
(1) 建立信号处理实验系统:选择一个常见的信号处理算法,运用MATLAB软件分别编写信号发生程序、信号采样程序、滤波程序和信号量化程序;
(2) 运行实验程序:实验同学可以自行设置参数,如传输函数、离散时间区间、采样频率、滤波器类型等,调整完毕后,点击“run”,运行实验程序;
(3) 观察实验结果:运行完毕后,可以观察MATLAB的图形结果,以此来分析信号处理算法的性能;
(4) 对结果进行分析:经过上述实验操作后,可以根据所得到的实验结果来判断信号处理算法的性能,如输出信号的噪声抑制能力、良好的时域和频域性能等,从而验证信号处理理论在实际应用中的价值。
4 总结。
数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。
二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。
2、数据采集卡。
三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。
在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。
2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。
通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。
3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。
四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。
2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。
3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。
4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。
(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。
五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。
通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。
2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。
数字信号处理实验一:FFT算法的应用实验题目:实验1 FFT 算法的应用姓名:学号:上课时间: FFT 算法的应用1.实验目的:离散傅氏变换(DFT )的目的是把信号由时域变换到频域,从而可以在频域分析处理信息,得到的结果再由逆DFT 变换到时域。
FFT 是DFT 的一种快速算法。
在数字信号处理系统中,FFT 作为一个非常重要的工具经常使用,甚至成为DSP 运算能力的一个考核因素。
本实验通过使用MATLAB 函数中的FFT 命令计算离散时间信号的频谱,以加深对离散信号的DFT 的理解及其FFT 算法的运用。
2.实验要求:对实验内容中给定的序列求给定点数N 的FFT 和IFFT ,利用MATLAB 编程完成计算,绘出相应图形。
并与理论计算相比较,说明实验结果的原因。
3.实验原理:一.数字滤波器设计:(一)基—2按时间抽取FFT 算法对于有限长离散数字信号{x[n]},0 ≤ n ≤ N-1,其离散谱{x[k]}可以由离()1,...,1,0][)2(1-==--=∑N k en x k X nk Nj N n π散付氏变换(DFT )求得。
DFT 的定义为可以方便的把它改写为如下形式:不难看出,W N 是周期性的,且周期为N ,即W N 的周期性是DFT 的关键性质之一。
为了强调起见,常用表达式W N 取代W 以便明确其周期是N 。
由DFT 的定义可以看出,在x[n]为复数序列的情况下,完全直接运算N 点DFT 需要(N-1)2次复数乘法和N (N-1)次加法。
因此,对于一些相当大的N 值(如1024)来说,直接计算它的DFT 所作的计算量是很大的。
FFT 的基本思想在于,将原有的N 点序列序列分成两个较短的序列,这些序列的DFT 可以很简单的组合起来得到原序列的DFT 。
例如,若N 为偶数,将原有的N 点序列分成两个(N/2)点序列,那么计算N 点DFT 将只需要约[(N/2)2 ·2]=N 2/2次复数乘法。
1 数 字 信 号 处 理 技 术 及 应 用 实 验
班级 学生姓名 学生学号 指导教师 周春临 2
实验一 I/O实验 实验目的: 熟悉SZ—DSPII实验平台的使用 了解DSP对I/O口的访问方式 熟悉简单的程序设计及指令运用 实验设备: 计算机;DSP硬件仿真器;DSP实验开发平台 实验硬件设置: 在做实验以前,需要接通该实验的硬件电路,本实验为:先将实验箱右侧的船型开关往“I”方向打开电源,然后将系统主板的开关S33往下拨接通+/-5V电源,然后将CPLD/FPGA模块上的电源开关S9往下(ON)拨,开关S10往下拨来选通主板上发光二极管等输出指示设备;将系统主板中“MCU/DSP选择档”选中MCU(往下拨),将“功能键7”拨上去,电击键盘中的RST键,MCU 将对所有发光二极管进行检测,如果所有的发光二极管正常,则将“MCU/DSP选择挡”选中DSP,将功能键1到7都拨下来。然后开始做实验,注意在做实验时开始按了RST硬件复位后,实验不要再按RST键,以免由于DSP复位而失败。如果实验中硬件工作不正常,可按RST对整个系统硬件进行复位。 实验原理: 本程序主要是实现将数据往一个I/O端口送,从而显示一种状态,来验证DSP对I/O口的访问。该实验是由DSP直接编程,往发光二极管送数,运用PORTW指令,观察发光二极管的变化,从而完成基本的I/O实验。 3
硬件框图 实验程序框图
实验程序 .title "ex9" .global _c_int00 .mmregs
FG_ADDR .set 1002H DATA .set 60h ;double ram data .sect ".vectors" reset: B _c_int00 NOP
DSP初始化 DSP送出不同的数据 输出到1002H
DSP CPLD 锁存
8个 指示灯
D8-D15 高八位数据
指示灯的片选 1002H
开始 4 NOP .space 31*4*16
DELAY .macro sec_tenth ;延时 sec_tenth/10 秒 STM sec_tenth-1,AR5 loop1? STM #09h,AR6 loop0? STM #19999,AR7 BANZ $,*AR7- BANZ loop0?,*AR6- BANZ loop1?,*AR5- .endm
.text _c_int00: LD #0h,DP STM #3000h,SP RSBX INTM STM #07FFFh,SWWSR SSBX XF ;XF=1 ST #1007h,CLKMD ;工作在20MHz RPT #0FFh NOP STM #0ffffh,IFR ORM #000h,IMR RSBX SXM ST #8100H,DATA WRDENG: PORTW DATA,FG_ADDR DELAY #10
NOP ST #4200H,DATA PORTW DATA,FG_ADDR DELAY #10 5
ST #2400H,DATA PORTW DATA,FG_ADDR DELAY #10
ST #1800H,DATA PORTW DATA,FG_ADDR DELAY #10
ST #1800H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP ST #2400H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP
ST #4200H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP ST #8100H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP STM #00H,DATA ;;; PORTW DATA,FG_ADDR DELAY #10 NOP 6
ST #100H,DATA PORTW DATA,FG_ADDR DELAY #10
ST #200H,DATA PORTW DATA,FG_ADDR DELAY #10
ST #400H,DATA PORTW DATA,FG_ADDR DELAY #10
ST #800H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP ST #1000H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP
ST #2000H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP ST #4000H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP STM #8000H,DATA 7
PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP
;;; ST #8000H,DATA PORTW DATA,FG_ADDR DELAY #10
ST #4000H,DATA PORTW DATA,FG_ADDR DELAY #10
ST #2000H,DATA PORTW DATA,FG_ADDR DELAY #10
ST #1000H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP ST #800H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP
ST #400H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP 8
ST #200H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP STM #100H,DATA PORTW DATA,FG_ADDR DELAY #10 RPT #10 NOP ST #8100H,DATA
B WRDENG aaa nop b aaa
.end
思考题: 有哪三种以上的寻址方式可以完成上述实验?并描述其原理。 答:直接寻址,间接寻址(位倒序寻址),存储器映像寄存器寻址。
原理:通过立即寻址可以初始化变量,指令中包含有一个固定的立即数,因此没有寻找数据地址的过程。 间接寻址是利用辅助寄存器内容作为地址指针访问存储器,通过位倒序寻址可以提高FFT等算法的效率。 存储器映像寄存器寻址用于修改存储器映像寄存器的值,而不影响当前数据页指针或堆栈指针的值。 9
实验二 数码显示实验 一、实验目的 熟练掌握DSP的各种指令 进一步熟悉DSP的I/O访问方式的操作,通过I/O方式将数据显示到数码管上
二、实验设备 计算机,DSP硬件仿真器,DSP实验开发平台 注意:在做实验以前,需要接通该实验的硬件电路,本实验为:先将实验箱右侧的船型开关往“I”方向打开电源,然后将系统主板的开关S33往下拨接通+/-5V电源,然后将CPLD/FPGA模块上的电源开关S9往下(ON)拨,开关S10往下拨来选通主板上发光二极管等输出指示设备;将系统主板中“MCU/DSP选择档”选中MCU(往下拨),将“功能键6”拨上去,点击键盘中的MON键,MCU将对所用的LED管进行检测。如果所有的LED管正常,将“MCU/DSP选择档”选中DSP(往上拨),将功能键1到7都拨下来,然后开始做实验。注意在做实验时开始按了RST硬件复位后,实验不要再按RST键,以免由于DSP复位而失败。
三、实验原理
此实验是由DSP通过IO方式对数码管进行操作,即是向数码管送数据,高4位为数码管的段码,低4位为数码管的位码,DSP用的数据线是D8~D15,如要在第0位显示一个8,就只要送入80H,其次,该实验中要求熟练运用DSP的各种指令,能使显示数据出现左移或右移等。
四、实验程序框图
开始 10
程序: .title "ex9" .global _c_int00 .mmregs SM_ADDR .set 1003h ;数码管的I/O地址 SM_DATA .set 60h ;段码在数据线的高4位,位码在数据线的次高4位. ;在CPLD模块中程序为DEMO程序的情况下,段码显示已译码,比如:要显示7, ;只要往数据线的高4位发7即可.位码为0-7,在次高位数据线对应的数值也为0-7. .sect ".vectors" reset: B _c_int00 NOP NOP .space 31*4*16 .text _c_int00: LD #0h,DP ;设置数据页指针 STM #2000h,SP ;设置堆栈指针 RSBX INTM STM #07FFFh,SWWSR SSBX XF ST #1007h,CLKMD ;工作在20MHz RPT #0FFh NOP STM #0ffffh,IFR ORM #000h,IMR RSBX SXM aaa nop CALL LED07 ;显示0到7 CALL LED8F ;显示8到F b aaa
初始化DSP,设置I/O等待寄存器 将内存中的数据或采用其他方式将数据发送到数码管去显示,其I/O地址为:1003H。具体显示方法见上述实验原理。
改变数据重复发送