沥青路面冷再生混合料抗磨耗性能评价方法和技术标准-交通运输部
- 格式:pdf
- 大小:367.90 KB
- 文档页数:22
沥青路面全深式就地再生技术一、沥青路面全深式就地冷再生产品和工艺的认识沥青路面全深式就地冷再生技术,是一项新的道路建设工艺,它充分利用旧沥青路面的材料(面层直至基层),在常温下利用专用冷再生机械,对旧沥青路面材料铣刨、破碎,并加入一定量的添加剂和水与其充分拌和,就地整平碾压成型,经养生形成满足路用强度要求的新型路面基层,对旧沥青路面的利用并由此解决旧路改建时“调拱、调坡”的问题,以达到简化施工程序、降低工程造价之目的。
原老路路面原老路路面病害二、再生技术的意义沥青混凝土路面一般设计年限为15年,实际上,通常使用年限仅10年左右。
也就是说,每隔10~15年,沥青混凝土路面就需要翻修一次。
因此,如何处置每年数千万吨的沥青混凝土废料将成为必须面对和解决的问题。
这些废旧混合料是一种可再利用的材料资源,如果废弃,不仅造成资源的严重浪费,同时还会造成环境污染。
沥青路面再生与传统的沥青路面维修方式相比,能够节约大量的沥青、砂石等原材料,节约工程投资,同时有利于废料处理、环境保护,因而具有显著的经济效益和社会效益。
随着人们对环保、社会效益的关注及技术的进步,沥青路面再生利用技术越来越受到人们的重视。
三、再生技术国内外发展状况国外对沥青路面再生利用研究,最早是美国从1915年开始的,到上世纪八十年代底美国再生沥青混合料的用量几乎为全部路用沥青混合料的一半,并且在再生剂开发、再生混合料设计、施工设备等方面的研究也日趋深入。
欧洲国家也十分重视这项技术。
德国是最早将再生料应用于高速公路路面养护的国家,该国1978年就已将全部废弃沥青路面材料加以回收利用。
芬兰几乎所有的城镇都组织旧路面材料的收集和储存工作。
法国现在在高速公路和一些重交通道路的路面修复工程中开始逐步推广应用这项技术。
我国是从1998年开始采用就地冷再生技术进行道路养护工作的。
我国首次在河北邯郸市邯大线进行大修工程使用冷再生技术,随后又在天津津围路、102国道河北廊坊段等多处进行冷再生施工,取得了良好的经济效益和社会效益。
沥青路面冷再生资料一、厂拌冷再生概念沥青路面厂拌冷再生是将旧沥青路面铣刨后运到拌合厂,通过破碎、筛分,并根据旧料中沥青含量、沥青老化度、集料级配等指标, 掺入一定数量的新集料、再生结合料(泡沫沥青或乳化沥青、水泥、矿粉)、进行常温拌和,按常温沥青混凝土的施工工艺重新铺筑,形成路面半柔性、柔性基层或者下面层的一种技术。
二、厂拌冷再生应用方式厂拌再生按再生形式分:油层再生、基层再生、复合式再生;按再生稳定剂分:泡沫沥青再生、乳化沥青再生、水稳再生。
其用于沥青路面裂缝、坑槽、唧浆等结构性损坏的修复,基层材料、面层材料循环利用,用做基层或下面层。
可用于高等级公路和其他等级道路维修,以及道路升级和改扩建。
以目前的施工试验数据看,油层料泡沫沥青再生或乳化沥青再生,可以用在基层和下面层。
基层料的泡沫沥青再生或乳化沥青再生能满足基层的使用要求。
二级以下公路可以把应用层面提高一个层次。
三、厂拌冷再生设备研发由于发泡技术的因素,目前国内乳化沥青冷再生应用较多,泡沫沥青冷再生设备主要是维特根提供,由于设备价格和生产能力等因素的影响,泡沫沥青冷再生应用较少。
我们用了半年时间,于2010 年 2 月研制了一台试验用沥青发泡机,操控性与发泡质量均优于进口机,填补了沥青发泡设备的国家空白。
在此基础上,去年6 月份制造了一套沥青发泡系统,配合发泡技术的特点,对拌和站进行了必要的改造。
同时制作了一套乳化沥青喷洒计量系统,加装在同一套拌和站上。
通过施工使用,泡沫、乳化两套系统工作稳定,计量准确,拌合均匀。
本套厂拌再生设备的特点:特点一,生产能力大、效率高。
本套再生设备生产能力600t 左右/h,大大加快施工进度,缩短工期方面优势明显;特点二,拌合质量好,多级筛分,级配细化, 6 个料仓可同时添加新料和旧料。
对铣刨回收的旧料进行筛分,旧料经筛网过筛后分成3-4 种规格的料,分开堆放存储。
设备配有六个冷料仓,根据生产配比细分添加新料和旧料,保证了再生混合料级配,提高了再生混合料质量及路用性能;特点三,配备水泥、矿粉两套系统,两个过渡仓。
泡沫沥青混合料冷再生技术泡沫沥青混合料冷再生技术是一种能够有效减少环境污染和节省原材料的新型路面修复技术,本文将从原理、优点和应用方面阐述该技术。
一、原理1.1 泡沫沥青混合料泡沫沥青是将热沥青通过控制压缩空气和水的比例,使得热沥青与空气和水形成泡沫体系,可以提高沥青的质量和特性。
而泡沫沥青混合料是在原有的路面基础上,将泡沫沥青与废碎石混合,制成一种新型的路面修复材料。
1.2 冷再生技术传统的路面修复技术往往需要采用大量的原材料,而冷再生技术可以通过对原有路面进行再生,再次利用原有材料,从而实现节约原材料的目的。
二、优点2.1 环保泡沫沥青混合料冷再生技术不需要新的原材料,只需要将原有路面进行再生,从而实现了对资源的节约。
同时,该技术使用的泡沫沥青具有良好的环保性能,能够有效减少污染物的排放,降低环境污染。
2.2 低成本相比于传统的道路修复技术,泡沫沥青混合料冷再生技术在成本上具有明显的优势。
因为该技术不需要大量新增材料,只需要将原有路面进行再生,从而可以有效节约成本。
2.3 维护效果好泡沫沥青混合料冷再生技术使用的废碎石经过处理后,可以与泡沫沥青充分混合,降低了路面修复后被车辆碾压破坏的风险,从而提高了路面的维护效果。
三、应用泡沫沥青混合料冷再生技术可以应用于各种类型的道路和桥梁等工程建设中,可以起到节约原材料、降低污染、提高维护效果等多种作用。
此外,该技术还可以应用于机场、停车场等场所,可以大幅提高路面的维护效果,实现更加高效的使用。
综上所述,泡沫沥青混合料冷再生技术具有环保、低成本、维护效果好等优点,应用广泛且适用于各种道路伸缩缝、交叉口、桥梁等场所。
未来,该技术有望为我国的道路建设提供更加可持续的支持。
再生沥青混凝土的应用概述及技术标准一、概述再生沥青混凝土是一种绿色环保型建筑材料,在道路、桥梁、机场、停车场等公共设施建设中广泛应用。
通过将废旧沥青混合再生,可以节省原材料资源,降低环境污染,具有很高的经济效益和社会效益。
二、再生沥青混凝土的制备1.废旧沥青的筛分和破碎废旧沥青首先需要进行筛分和破碎,将其分离成不同粒径的颗粒,以便于后续的加工处理。
2.再生沥青的加热将废旧沥青颗粒加热至150-180℃,使其软化并释放出挥发物。
3.废旧沥青的加料将加热后的废旧沥青颗粒与新鲜沥青颗粒按一定比例混合后,加入再生剂进行充分混合。
4.混合料的拌和将混合好的料放入拌和机中进行拌和,通常采用热拌工艺。
5.再生沥青混凝土的施工再生沥青混凝土施工与传统沥青混凝土施工相似,包括基层处理、底层、面层施工等。
三、再生沥青混凝土的技术标准1.再生沥青的含量再生沥青混凝土中再生沥青的含量应符合国家标准,一般不超过30%。
2.再生剂的选择再生剂应符合国家标准,主要包括再生促进剂和改性剂。
3.沥青混合料的设计沥青混合料的设计应根据道路使用环境、交通量、气候条件等因素进行科学合理的设计。
4.热拌温度和时间热拌温度和时间应根据沥青混合料的类型和配合比进行合理的调控。
5.质量控制质量控制是确保再生沥青混凝土质量稳定的关键,包括原材料质量控制、生产工艺控制、产品检测控制等。
四、再生沥青混凝土的应用1.道路建设再生沥青混凝土在道路建设中应用广泛,可以用于路面、路基、路肩等部位。
2.桥梁建设再生沥青混凝土可以用于桥梁建设中的道路、人行道、自行车道等部位。
3.机场建设再生沥青混凝土可以用于机场跑道、停机坪、行车道等部位,具有很好的防滑、耐磨、耐久性能。
4.停车场建设再生沥青混凝土可以用于停车场建设中的车道、停车位等部位,具有很好的防滑、耐磨性能,可以有效延长使用寿命。
五、总结再生沥青混凝土是一种绿色环保型建筑材料,具有很高的经济效益和社会效益,可以有效节约资源、降低环境污染。
高节能低排放冷拌冷铺沥青混合料开发与施工技术标准1范围为规范对沥青路面乳化沥青厂拌冷再生混合料的设计、施工、质量管理与验收,保证工程质量,制定本文件。
本文件规定了沥青路面乳化沥青厂拌冷再生技术的术语和定义、材料要求、混合料设计和性能要求、施工准备、混合料施工、施工质量管理和检查验收。
本文件适用于公路、城市道路沥青路面乳化沥青厂拌冷再生。
注1:沥青路面乳化沥青厂拌冷再生应用,除应符合本文件规定外,应符合国家、行业颁布的其他标准、规范的规定。
注2:沥青路面在养护和改扩建施工时产生大量废旧材料,将这些旧料再生,既减轻了环境污染,又减少了材料消耗,是实现公路交通运输可持续发展的重要手段和迫切需要。
2规范性引用文件JTG/T 5521-2019 公路沥青路面再生技术规范。
3术语和定义3.1沥青路面回收料 reclaimed asphalt pavement (RAP)经铣刨或挖除沥青路面所得的回收材料,运至拌和厂(场、站),经破碎、筛分后的路面材料,统称为沥青路面回收料(RAP)。
3.2乳化沥青厂拌冷再生 central plant cold recycling by emulsified asphalt将沥青路面回收料(RAP)以一定的比例与新集料、乳化沥青、矿粉、水泥、水等进行常温拌和,常温铺筑形成路面结构层的沥青路面再生技术。
3.3沥青路面回收料(RAP)级配 graduation of RAP将风干或烘干至恒重的沥青路面回收料(RAP)进行筛分试验测得的级配。
分为干筛级配和湿筛级配。
3.4最佳液体含量 optimum liquid content (OLC)在最佳乳化沥青掺量和最佳外加水量条件下,乳化沥青质量、外加水、RAP中的水、新集料、矿粉中的水共同占烘干RAP、烘干新集料、烘干矿粉组成的骨料质量的百分比。
3.5最佳乳化沥青掺量 optimum emulsion content (OEC)在混合料的体积性能、力学性能、经济性等综合最佳时,混合料中乳化沥青的质量与烘干RAP、烘干新集料、烘干矿粉组成的骨料质量的百分比。
一、冷再生施工要点1、施工准备⑴旧路结构状况调查沥青混凝土旧路路面冷再生是利用旧路沥青混凝土及上基层(石灰土)经破碎加入水泥均匀拌和,在最佳含水量条件下碾压获得的半刚性结构。
1)对旧路进行弯沉检测,每车道每公里40~50个点,详细了解旧路承载能力。
2)对旧路结构材料进行现场冷再生机破碎取样,确定旧路沥青层的厚度、基层材料及基层厚度等,掌握结构强度;在实验室做级配和配合比试验并确定不同配合比的最大干密度(重型击实)和最佳含水量,取点频率每1000米取三点。
3)对旧路结构材料进行土质分析后,确定添加剂为强度等级为32.5级路用普通硅酸盐水泥。
⑵机具准备工程开工前,应保证设备机具完好并满足施工需要1)冷再生机;2)平地机;3)洒水车;4)运送水泥汽车;6)振动压路机、胶轮压路机、三轮压路机;7)推土机;⑶材料要求1)经破碎旧路面沥混凝土面层及上基层获得的混合料作为冷再生结构的骨料及填充料,大于5mm的骨料含量应在40~75%之间,否则应采取增加骨料或填充料的措施。
2)水泥:采用强度等级32.5级的路用普通硅酸盐水泥,初凝时间4小时以上和终凝时间较长(宜在6小时以上)的水泥,建议采用缓凝“海工牌”。
3)水:采用不含有害物质或饮用水。
⑷级配和配合比1)对取好的混合料由实验人员编号后筛分,确认混合料的实际级配,参考试验级配如下表:2)抗压强度:根据级配对每一编号试块在实验室按含水泥量5%、6%、7%(重量比)试配获取三种水泥含量的最大干密度和最佳含水量,并在规定温度下,试件保湿养生6天,浸水24小时后,按《公路工程无机结合料稳定材料试验规程》进行无侧限抗压强度试验获取7天标准抗压强度,根据试验结果最终确定设计添加水泥量。
2、施工程序⑴路面清理冷再生施工前应对旧路路面实施清理,清除路面垃圾、拆除旧路侧石,由测量人员根据设计要求进行高程测量标线,确保规定铣刨宽度及深度。
⑵人工摊铺水泥按设计含灰量计算每平方米应摊铺水泥用量。
才到达浅层弃渣范围内,此时的大量降水沿弃渣场坡面流走,并未对弃渣坡体深处的孔隙水压力造成较大的影响。
在停雨后48h内,弃渣稳定性持续下降,这是因为破体汇集的雨水继续向深部入渗,这些部位的岩土孔隙水压力发生变化,含水率提高,导致其强度软化。
降雨后4天时弃渣边坡的稳定系数已经开始增加,坡体稳定性增强。
总的来看,弃渣边坡得稳定性系数在降雨开始时下降,并在降雨结束的2天内保持渗流并持续降低,稳定性系数总趋势为先减小再增大。
综上所述,在正常和暴雨1~3h工况下,计算所得的弃渣场边坡安全系数均大于规范所规定的边坡允许安全系数,综合考虑弃渣边坡强度、渗透特性及雨季该区降水特征等因素,可认为此弃渣场边坡稳定性较好,且具有一定的安全储备。
4结论通过室内外试验研究,对该隧道弃渣场的稳定性分析和计算,得到以下结论:4.1颗粒组成分析试验表明,该弃渣场土样为砾类土。
原位直剪试验测得该砾类土弃渣的强度参数为粘聚力c=0kPa,内摩擦角φ均值为43.1°。
4.2通过数值模拟分析了弃渣场边坡暴雨3h时的渗流场,发现在降雨过后的一段时间内雨水还在缓慢的向边坡内部迁移。
总的来看,降雨条件下该隧道弃渣场边坡的降雨影响深度在12m左右的范围。
4.3对弃渣场边坡的整体稳定性和局部稳定性进行验算,发现弃渣场边坡的安全系数在暴雨结束时并不是最低的,降雨过程的结束并不意味着渗流过程的结束,在雨后水分的入渗过程中,边坡安全系数呈先减小再增加的趋势,总的来看降雨对边坡的安全系数影响不大。
4.4无论是整体还是局部,在正常和降雨条件下的安全系数均大于规范要求,弃渣场处于稳定状态,稳定性较好且具有一定安全储备。
参考文献[1]银晓鹏.降雨条件下的边坡渗流数值模拟及稳定性分析[D].兰州:兰州理工大学,2008.[2]潘思渝.降雨条件下土质边坡渗流场及稳定性分析[J].中外公路,2014,34(3):17-21.[3]王保林,何忠明.降雨入渗条件下多层顺层软弱夹层土坡稳定性分析[J].长沙理工大学学报(自然科学版),2018(1). [4]马吉倩,付宏渊,王桂尧等.降雨条件下成层土质边坡的渗流特征[J].中南大学学报(自然科学版),2018(2).[5]胡庆国,袁宁,刘登生等.多层结构土质边坡降雨入渗过程及稳定性影响分析[J].中国公路学报,2018,31(2).[6]唐岩岩,付厚利,秦哲.基于ABAQUS饱和渗流作用下岩质边坡稳定性分析[J].煤炭技术,2018(3).[7]刘建伟,史东梅,马晓刚,等.弃渣场边坡稳定性特征分析[J].水土保持学报,2007,21(5):192-195.[8]田永铸.中南部铁路通道沿线黄土隧道弃渣场边坡稳定性评价[J].铁道建筑技术,2017(9):28-32.[9]柏淼.某隧道出口弃渣场边坡稳定性分析[J].露天采矿技术, 2017,32(4):81-83.[10]吴谦,毛雪松,刘龙旗等.某弃渣场边坡稳定性的可靠度分析[J].桂林理工大学学报,2017,37(3):475-480.[11]王光辉.降雨入渗条件下弃渣场边坡稳定性分析[J].铁道建筑,2017(6):147-151.[12]毛雪松,宋玉品,吴谦等.渗流条件下弃渣场边坡的稳定性分析[J].兰州理工大学学报,2018,44(2):139-143.[13]陈忠达.公路挡土墙设计[M].北京:人民交通出版社,2001.[14]中华人民共和国交通部.公路土工试验规程:JTGE40-2007[S].北京:北京人民交通出版社,2007.作者简介:许贵生(1976,10,9-),男,内蒙古兴安盟科右前旗,职称:高级工程师,长期从事公路与桥梁管理相关工作。