羧基化纳米金刚石修饰电极的电化学及电催化性质研究
- 格式:pdf
- 大小:174.77 KB
- 文档页数:1
碳纳米管应用前景和制备方法浅析
1991年NEC公司的电镜专家在用高分辨电子显微镜(HRTEM)检查
C60分子时,意外地发现了一些完全由碳原子构成的直径为纳米级的管状物,后来人们把这种管状物称为碳纳米管(carbonnanotubes,简称CNTs碳纳米管),其分子结构图见下图:
自发现碳纳米管以来,其超强的力学性能、优异的场发射性能、极高的储氢性能、潜在的化学性能等使碳纳米管的研究和制备一直是国际纳米技术和新材料领域的研究热点。
一、碳纳米管的前景应用领域
1、信息存储
由于碳纳米管作为信息写入及读出探头,其信息写入及读出点可达
1.3nm(当存储信号的斑点为10nm时,其存储密度为1012bits/cm2,称其为超高密度,比目前市场上的商品高4个数量级),从而实现信息的超高密度存储,该技术将会给信息存储技术带来革命性变革。
2、制造微电子元件及电路
研究表明,利用化学蒸气沉积,催化剂粒子尺寸控制,碳纳米管定向自组装技术,可以在硅基体上成功实现自定向单分散性的碳纳米管的大规模排列。
通过实验发现这些碳纳米管具有电子场发射特性,同时样品显示了低操作电压和高电流稳定性。
这种制造方法与当前半导体的制作法是一致的,因此这种技术的推广可促进应用于微电子技术的碳纳米管装置的发展。
单电子晶体管是一种可以替代传统微电子元件而应用于未来微电子技术的理想元件。
随着碳纳米管组成的分子导线、二极管、场效应管、单电。
Hans Journal of Chemical Engineering and Technology 化学工程与技术, 2020, 10(2), 111-118Published Online March 2020 in Hans. /journal/hjcethttps:///10.12677/hjcet.2020.102016Preparation of ZIF-67 DerivativeMicro-Nano Flower-Like Co3O4 Catalystand Its OER Catalytic PerformanceShunzheng Ren, Lijuan Feng, Shuo Yao*College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao ShandongReceived: Mar. 2nd, 2020; accepted: Mar. 16th, 2020; published: Mar. 23rd, 2020AbstractUsing ZIF-67 as a precursor, micro-nano flower-like ZIF-67(f) was obtained based on the morpho-logical evolution of ZIF-67 based on ion-assisted solvothermal conditions, and micro-nano flow-ers-like Co3O4(f) was prepared in an air atmosphere by heat treatment. Electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), Fourier infrared spectro-meter (FT-IR), and gas adsorption instrument (BET) were used to characterize the morphology and structure of the material. The electrochemical performance of the material was tested using an electrochemical workstation, and the oxygen evolution reaction (OER) performance of the cat-alyst prepared at different temperatures was discussed. The results show that the electrocatalytic performance of the prepared flower-like Co3O4(f) is greatly improved compared with commercial Co3O4 and Co3O4(r). The micro-nano flower-like Co3O4(f) material prepared by calcination at 450˚C has the most excellent electrocatalytic performance. Its overpotential at a current density of 10 mA∙cm−2 is 390 mV, and the Tafel slope is 60 mV∙dec−1.KeywordsElectrocatalysts, MOFs, Co3O4, Oxygen Evolution Reaction, ZIF-67ZIF-67衍生物微纳米花状Co3O4催化剂的制备及其OER催化性能研究任顺政,冯丽娟,姚硕*中国海洋大学化学化工学院,山东青岛*通讯作者。
羧基碳纳米管热电
羧基碳纳米管热电是一种新型的热电材料,其制备方法包括以下步骤:
1. 羧基化处理:将碳纳米管与酸反应,使碳纳米管表面引入羧基基团。
2. 热解处理:将羧基化的碳纳米管在惰性气氛中加热至一定温度,使其热解生成碳和二氧化碳。
3. 热处理:将热解后的碳纳米管在保护气氛中加热至一定温度,以进一步除去其中的残余杂质和气体。
4. 热电性能测试:对所制备的羧基碳纳米管热电材料进行性能测试,以评估其热电转换效率。
以上是羧基碳纳米管热电的制备方法,供您参考。
请注意,如果您想了解更加详细的信息,建议咨询专业人士。
循环伏安法研究利福平的电化学行为龚兰新;翁之望;文琛【摘要】Electrochemical behavior of the antibiotic, rifampicin was studied by cyclic voltammetry using multi-wall carbon nanotubes modified CA2E (MWCNT' s/GCE) as working electrode, SCE as reference electrode and Pt-electrode as counter electrode. It was shown that in a supporting electrolyte of 0. 2 mol · L^-1 H2 SO4-Na2 SO4 solution of pH 1. 2, significant catalytic action on rifampicin by the modified electrode, MWCNT' s/GCE, was observed, leading to remarkable enhancement of the redox peak currents. Linear relationships between values of reduction peak current and concentration of rifampicin were obtained in the ranges of 6.6×10^-8~6.8×10^-6 mol · L^-1 and 6.8×10^-6~4.8×10^-5mol·L^-1 separately. Value of detection limit (3S/N)found was 3.0 × 10^-8mol · L^-1. The electro-chemokinetics of the electrode reaction of rifampicin at the MWNCT's/GCE was also studied.%采用循环伏安法研究了利福平在多壁碳纳米管修饰电极(MWCNT’s/GCE)上的电化学行为。
1 引言纳米材料是纳米技术的基础,而碳纳米管又可称为纳米材料之王。
碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域。
碳纳米管的发现是碳团簇领域的又一重大科研成果,本文探讨了碳纳米管的结构、特性、活化方法,评述了这种纳米尺寸的新型碳材料在电化学器件、氢气存储、场发射装置、碳纳米管场效应晶体管、催化剂载体、碳纳米管修饰电极领域的应用价值,展望了碳纳米管的介入对全球性物理、化学及材料等学科界所带来的美好前景。
在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。
1993年。
S.Iijima等和DS。
Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。
1997年,AC.Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。
相关的实验研究和理论计算也相继展开。
初步结果表明:碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。
适当加热,氢气就可以慢慢释放出来。
研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。
据推测,单壁碳纳米管的储氢量可达10%(质量比)。
此外,碳纳米管还可以用来储存甲烷等其他气体。
利用碳纳米管的性质可以制作出很多性能优异的复合材料。
例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。
使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。
碳纳米管增强陶瓷复合材料强度高,抗冲击性能好。
碳纳米管上由于存在五元环的缺陷,增强了反应活性,在高温和其他物质存在的条件下,碳纳米管容易在端面处打开,形成一个管子,极易被金属浸润、和金属形成金属基复合材料。