羧基化纳米金刚石修饰电极的电化学及电催化性质研究
- 格式:pdf
- 大小:174.77 KB
- 文档页数:1
碳纳米管应用前景和制备方法浅析
1991年NEC公司的电镜专家在用高分辨电子显微镜(HRTEM)检查
C60分子时,意外地发现了一些完全由碳原子构成的直径为纳米级的管状物,后来人们把这种管状物称为碳纳米管(carbonnanotubes,简称CNTs碳纳米管),其分子结构图见下图:
自发现碳纳米管以来,其超强的力学性能、优异的场发射性能、极高的储氢性能、潜在的化学性能等使碳纳米管的研究和制备一直是国际纳米技术和新材料领域的研究热点。
一、碳纳米管的前景应用领域
1、信息存储
由于碳纳米管作为信息写入及读出探头,其信息写入及读出点可达
1.3nm(当存储信号的斑点为10nm时,其存储密度为1012bits/cm2,称其为超高密度,比目前市场上的商品高4个数量级),从而实现信息的超高密度存储,该技术将会给信息存储技术带来革命性变革。
2、制造微电子元件及电路
研究表明,利用化学蒸气沉积,催化剂粒子尺寸控制,碳纳米管定向自组装技术,可以在硅基体上成功实现自定向单分散性的碳纳米管的大规模排列。
通过实验发现这些碳纳米管具有电子场发射特性,同时样品显示了低操作电压和高电流稳定性。
这种制造方法与当前半导体的制作法是一致的,因此这种技术的推广可促进应用于微电子技术的碳纳米管装置的发展。
单电子晶体管是一种可以替代传统微电子元件而应用于未来微电子技术的理想元件。
随着碳纳米管组成的分子导线、二极管、场效应管、单电。
Hans Journal of Chemical Engineering and Technology 化学工程与技术, 2020, 10(2), 111-118Published Online March 2020 in Hans. /journal/hjcethttps:///10.12677/hjcet.2020.102016Preparation of ZIF-67 DerivativeMicro-Nano Flower-Like Co3O4 Catalystand Its OER Catalytic PerformanceShunzheng Ren, Lijuan Feng, Shuo Yao*College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao ShandongReceived: Mar. 2nd, 2020; accepted: Mar. 16th, 2020; published: Mar. 23rd, 2020AbstractUsing ZIF-67 as a precursor, micro-nano flower-like ZIF-67(f) was obtained based on the morpho-logical evolution of ZIF-67 based on ion-assisted solvothermal conditions, and micro-nano flow-ers-like Co3O4(f) was prepared in an air atmosphere by heat treatment. Electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), Fourier infrared spectro-meter (FT-IR), and gas adsorption instrument (BET) were used to characterize the morphology and structure of the material. The electrochemical performance of the material was tested using an electrochemical workstation, and the oxygen evolution reaction (OER) performance of the cat-alyst prepared at different temperatures was discussed. The results show that the electrocatalytic performance of the prepared flower-like Co3O4(f) is greatly improved compared with commercial Co3O4 and Co3O4(r). The micro-nano flower-like Co3O4(f) material prepared by calcination at 450˚C has the most excellent electrocatalytic performance. Its overpotential at a current density of 10 mA∙cm−2 is 390 mV, and the Tafel slope is 60 mV∙dec−1.KeywordsElectrocatalysts, MOFs, Co3O4, Oxygen Evolution Reaction, ZIF-67ZIF-67衍生物微纳米花状Co3O4催化剂的制备及其OER催化性能研究任顺政,冯丽娟,姚硕*中国海洋大学化学化工学院,山东青岛*通讯作者。
羧基碳纳米管热电
羧基碳纳米管热电是一种新型的热电材料,其制备方法包括以下步骤:
1. 羧基化处理:将碳纳米管与酸反应,使碳纳米管表面引入羧基基团。
2. 热解处理:将羧基化的碳纳米管在惰性气氛中加热至一定温度,使其热解生成碳和二氧化碳。
3. 热处理:将热解后的碳纳米管在保护气氛中加热至一定温度,以进一步除去其中的残余杂质和气体。
4. 热电性能测试:对所制备的羧基碳纳米管热电材料进行性能测试,以评估其热电转换效率。
以上是羧基碳纳米管热电的制备方法,供您参考。
请注意,如果您想了解更加详细的信息,建议咨询专业人士。
循环伏安法研究利福平的电化学行为龚兰新;翁之望;文琛【摘要】Electrochemical behavior of the antibiotic, rifampicin was studied by cyclic voltammetry using multi-wall carbon nanotubes modified CA2E (MWCNT' s/GCE) as working electrode, SCE as reference electrode and Pt-electrode as counter electrode. It was shown that in a supporting electrolyte of 0. 2 mol · L^-1 H2 SO4-Na2 SO4 solution of pH 1. 2, significant catalytic action on rifampicin by the modified electrode, MWCNT' s/GCE, was observed, leading to remarkable enhancement of the redox peak currents. Linear relationships between values of reduction peak current and concentration of rifampicin were obtained in the ranges of 6.6×10^-8~6.8×10^-6 mol · L^-1 and 6.8×10^-6~4.8×10^-5mol·L^-1 separately. Value of detection limit (3S/N)found was 3.0 × 10^-8mol · L^-1. The electro-chemokinetics of the electrode reaction of rifampicin at the MWNCT's/GCE was also studied.%采用循环伏安法研究了利福平在多壁碳纳米管修饰电极(MWCNT’s/GCE)上的电化学行为。
1 引言纳米材料是纳米技术的基础,而碳纳米管又可称为纳米材料之王。
碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域。
碳纳米管的发现是碳团簇领域的又一重大科研成果,本文探讨了碳纳米管的结构、特性、活化方法,评述了这种纳米尺寸的新型碳材料在电化学器件、氢气存储、场发射装置、碳纳米管场效应晶体管、催化剂载体、碳纳米管修饰电极领域的应用价值,展望了碳纳米管的介入对全球性物理、化学及材料等学科界所带来的美好前景。
在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。
1993年。
S.Iijima等和DS。
Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。
1997年,AC.Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。
相关的实验研究和理论计算也相继展开。
初步结果表明:碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。
适当加热,氢气就可以慢慢释放出来。
研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。
据推测,单壁碳纳米管的储氢量可达10%(质量比)。
此外,碳纳米管还可以用来储存甲烷等其他气体。
利用碳纳米管的性质可以制作出很多性能优异的复合材料。
例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。
使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。
碳纳米管增强陶瓷复合材料强度高,抗冲击性能好。
碳纳米管上由于存在五元环的缺陷,增强了反应活性,在高温和其他物质存在的条件下,碳纳米管容易在端面处打开,形成一个管子,极易被金属浸润、和金属形成金属基复合材料。
超细氧化铜纳米颗粒修饰二维金属有机框架协同增强二氧化碳电化学还原生成乙烯王琳琳;李欣;郝磊端;洪崧;Alex W.Robertson;孙振宇【期刊名称】《催化学报》【年(卷),期】2022(43)4【摘要】为了促进CO_(2)电化学还原(ECR)制备燃料和高值化学品,开发高活性、低成本和高选择性催化剂至关重要.本文通过简单的溶剂热法一步合成超细氧化铜(CuO)纳米颗粒修饰的二维Cu基金属有机框架(CuO/Cu-MOF)复合催化剂.并采用X射线衍射、X射线光电子能谱、傅里叶变换红外光谱、高角环形暗场像-扫描透射电镜、N_(2)吸附/脱附、元素分析谱、CO_(2)吸附等方法进行表征,对CuO/Cu-MOF复合材料的组成、形貌和孔结构等进行了系统研究.结果表明,超细CuO纳米粒子的尺寸为1.4到3.3 nm,均匀修饰在二维Cu-BDC MOF表面.由于其结构中丰富的孔道结构,CuO/Cu-MOF在常压下的CO_(2)吸附量可达5.0mg_(CO2) g_(cat).^(–1),明显优于商业CuO纳米颗粒.进一步在H型电解池、0.1 mol/L KHCO_(3)电解质溶液中研究了CuO/Cu-MOF的ECR性能;结果表明,在CO_(2)饱和的0.1 mol/L KHCO_(3)电解质溶液中,反应产物包括CO,H_(2),HCOOH和C_(2)H_(4).在-1.0至-1.2 V(相对于可逆氢电极,下同)电势范围内,ECR占主导地位;生成C_(2)H_(4)的起始电位为-0.85 V,在-0.9至-1.2 V电势范围内,C_(2)H_(4)是主要产物;电势高于-0.9 V时,CO和HCOOH是主要产物;电势低于-0.9 V时,开始生成CH_(4),且其含量随过电势增加而增加.通过改变材料合成时的前驱体配比、配体种类和反应温度等可调节CuO/Cu-MOF催化剂对ECR产物的活性和选择性,当对苯二甲酸:硝酸铜摩尔比为3:1、温度为100°C时,制得的CuO/Cu-MOF可在-1.1 V电势下将CO_(2)还原为C_(2)H_(4),其法拉第效率可达50.0%,显著优于许多文献报道的Cu基电催化剂以及所合成的纯Cu-MOF和纯CuO,其在相同电解条件下生成C_(2)H_(4)的法拉第效率分别为37.6%和25.5%.此外,生成C_(2)H_(4)的几何分电流密度约为7.0 mA cm^(-2),生成速率为21.0μmol mg_(cat).^(–1) h^(–1),阴极能量效率达到27.7%.催化剂的稳定性测试结果表明,在连续电解10 h后,C_(2)H_(4)的法拉第效率仍保持在45.0%以上.进一步的机理研究表明,CuO/Cu-MOF复合材料中二维金属铜有机框架主体和超细CuO纳米颗粒在ECR反应过程中可协同实现对CO_(2)的吸附和活化,促进C-C耦合,从而高选择性生成C_(2)H_(4).本文为提高ECR生成C_(2)H_(4)的选择性和活性提供了有效策略.【总页数】9页(P1049-1057)【作者】王琳琳;李欣;郝磊端;洪崧;Alex W.Robertson;孙振宇【作者单位】北京化工大学有机无机复合物国家重点实验室;牛津大学材料系;中国科学院上海高等研究院低碳转化科学与工程重点实验室【正文语种】中文【中图分类】O64【相关文献】1.基于原位生成的铜纳米颗粒修饰的羧基化多壁碳纳米管构建同时检测抗坏血酸、多巴胺、尿酸的电化学传感器2.铂纳米颗粒修饰的多孔卟啉基金属-有机框架化合物高效光催化产氢3.基于银纳米颗粒/还原氧化石墨烯的复合物修饰玻碳电极对对硝基苯酚的电化学检测4.二维金属有机框架纳米片的合成及在超电容和电催化领域的应用5.金属有机框架苯丙氨酸铜衍生的氧化铜负极的电化学储锂性能因版权原因,仅展示原文概要,查看原文内容请购买。
几种常用的纳米材料在电化学生物传感器中的应用姚惠琴;黄珊;甘倩倩【摘要】基于纳米材料独特的物理和化学性质,使其构建的电化学生物传感器在线性范围、检测限、响应时间等方面均表现出良好的性能,已成为发展新型电化学生物传感器的研究热点.该文主要介绍了几种常用的纳米材料如碳纳米管、石墨烯、金纳米在电化学生物传感器中的应用,并对其应用前景进行了展望.【期刊名称】《化学传感器》【年(卷),期】2016(036)001【总页数】7页(P10-16)【关键词】纳米材料;生物传感器;应用【作者】姚惠琴;黄珊;甘倩倩【作者单位】宁夏医科大学药学院,宁夏银川750004;宁夏医科大学药学院,宁夏银川750004;宁夏医科大学药学院,宁夏银川750004【正文语种】中文纳米材料是指其在三维空间中至少有一维处于纳米尺度范围(1~100 nm)或由它们作为基本结构单元所构成的材料,正是由于这一尺寸的特殊,使得其具有优异的物理化学特性、量子尺寸效应、表面效应、小尺寸效应和宏观量子隧道效应。
自从1984年被德国的物理学家Gleiter[1]发现,研究者们就对其产生了浓厚的兴趣,目前纳米材料已经深入到各个不同的科学领域,并成为近年来科学界的研究热点。
纳米材料除了拥有特殊的五种基本功能特性外,还具有非常特殊的化学反应性质、光电性质、催化性质、光电化学性质、特殊的物理机械性质和化学反应动力学性质[2]。
用纳米材料制成的电化学生物传感器有许多优异的性能,例如检测灵敏度更高、体积更小和可靠性更好等。
一些纳米材料如铂纳米粒子、石墨烯、金纳米粒子、钯纳米粒子被证实对于特定的底物有良好的催化活性,将这些纳米粒子作为传感器的固载物质或者标记物在提高生物传感器的响应性能方面有很大的帮助[3]。
纳米材料这些特殊的性质使其在电化学生物传感器的构建和发展中占据非常重要的地位。
该文将对纳米材料及电化学生物传感器进行概述,并介绍几种常见的纳米材料及其在电化学生物传感器中的应用。
羧基多壁碳纳米管
羧基多壁碳纳米管(carboxylated multi-walled carbon nanotubes,简称c-MWCNTs)是一种经过化学修饰的多壁碳纳米管。
在原始的多壁碳纳米管(MWCNTs)基础上,通过强酸氧化等方法引入了羧基(-COOH)官能团,从而改善了其在水中或其他溶剂中的溶解性和分散性,并增加了与其他材料的反应活性。
由于羧基的引入,c-MWCNTs的表面性质变得更加亲水,这有助于它们在复合材料制备、生物医学应用以及传感器开发等领域的应用。
例如,在聚合物基复合材料中,c-MWCNTs可以更均匀地分散在聚合物基质中,从而提高材料的机械强度和电导率。
在生物医学领域,c-MWCNTs可以作为药物载体或用于组织工程支架的构建。
羧基化处理也使得碳纳米管更容易与其他功能分子结合,为制备具有特定功能的纳米材料提供了可能。
然而,需要注意的是,羧基化过程可能会对碳纳米管的本征结构和电子性质产生一定影响,因此在实际应用中需要根据具体需求进行平衡和优化。
碳纳米管的性质与应用【摘要】本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。
【关键词】碳纳米管场发射复合材料优良性能【前言】自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。
由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。
目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。
【正文】一、碳纳米管的结构碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π键,碳纳米管外表面的大π键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。
对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。
一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。
以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。
内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。
由于具有物理结构和化学结构的不均匀性,碳纳米管中大量的表面碳原子具有不同的表面微环境,因此也具有能量的不均一性[2]。
碳纳米管不总是笔直的,而是局部区域出现凸凹现象,这是由于在六边形编制过程中出现了五边形和七边形。