电力系统次同步振荡分析
- 格式:docx
- 大小:361.95 KB
- 文档页数:10
风电场接入引发电力系统次同步振荡机理综述摘要:随着电力系统中风电渗透率不断提升,大容量风电场并网运行将加剧系统次同步振荡的风险,不利于系统的可靠运行。
关键词:风电接入;电力系统次;同步振荡;机理1风电场接入引发电力系统次同步振荡问题分析方法1.1频域分析法结合奈圭斯特稳定判据的频域分析法主要包括复转矩系数法和阻抗法。
频域分析法由开环子系统频率响应特性判断闭环系统稳定性,通过建立2个开环子系统之间的次同步动态交互与闭环系统稳定性的联系,能够从物理意义角度揭示次同步振荡的成因。
复转矩系数法是阻尼转矩分析法在次同步振荡领域的延展,即关注点从系统的机电振荡模式扩展到系统的次同步振荡模式。
复转矩分析法为机电耦合交互作用引发系统次同步振荡问题的成因给出了物理解释,即电气系统对同步机机械系统的作用等效成了负阻尼的效应。
一般情况下,复转矩系数法主要应用于分析传统次同步振荡问题上,通过分析同步发电机和串联补偿输电系统之间相互作用产生次同步振荡的现象并提出了一种抑制措施,将复转矩系数法推广至多机电力系统。
基于实际电力系统中出现的弱阻尼次同步振荡问题,应用复转矩系数法提出了一种适用于工程实践的次同步振荡抑制策略。
传统的复转矩系数法的应用领域是分析同步发电机轴系模式参与的次同步振荡问题,而随着当前电力系统电压源换流器(VSC)的大规模应用和新能源电力系统的大规模汇入,新形态的次同步振荡问题也随之在电力系统中出现(如SSCI)。
由于研究表明DFIG风机机械系统的轴系模式一般不会引发系统发生次同步振荡,因而复转矩系数法在新形态次同步振荡问题上的适用性等问题需要进行研究和验证。
为扩展复转矩系数法的应用领域进行了探索。
应用复转矩系数法分析DFIG控制系统引发的SSCI问题,从理论上推导了定子、转子电磁转矩与转速的关系式,从机理上对DFIG串补输电系统中出现的SSCI问题进行解释,并设计了抑制策略。
但与阻抗法和模式分析法相比,复转矩分析法在风电场接入引发系统次同步振荡方面的应用并不广泛。
次同步振荡数据分析方法及应用在电力系统中,有很多情况会发生次同步振荡,我们如何对其进行有效分析是研究次同步振荡问题的关键。
1.理论基础:对于次同步振荡的问题,我们在研究这个问题的时候应该首先了解次同步振荡的常见基本类型和分析方法。
1.1常见的基本类型:第 1 类形态源于旋转电机的轴系扭振,中旋转电机包括大型汽轮机组、水轮机组、1-3 型风电机组和大型电动机;系统中的串联电容、高速控制装备/器(包括SVC、LCC-HVDC、VSC-HVDC、PSS/电液调速)以及进行投切操作的开关等对机械扭振做出反应,能导致机组在对应扭振模式上的阻尼转矩减弱乃至变负,成振荡的持续乃至放大。
第2 类形态源于电网中电感(L)-电容(C)构成的电气振荡,交流串补电网、各种滤波电路以及并联补偿都存在构成L-C 振荡的电路元件,从电网来看,于网络元件具正电阻特性,会导致该L-C振荡的持续或发散,旋转电机(包括同步/异步发电/电动机)或者电力电子变流器在特定工况下可能对该振荡模式呈现“感应发电机/负电阻”效应,负电阻超过电网总正电阻时,可能导致L-C 振荡发散;当然,机或变流器也会改变等值电感/电容参数,而在一定程度上改变振荡频率。
第 3 类形态则源于电力电子变流器之间或其与交流电网相互作用产生的机网耦合振荡,第1、2类形态不同,这一形态往往难以从机组或电网侧找到初始的固有振荡模态,果基于阻抗模型来解释,也可以看作是多变流器与电网构成的“虚拟阻抗”在特定频率上出现串联型(阻抗虚部、实部或并联型(阻抗无穷大)谐振的现象。
1.2次同步振荡分析的基本分析方法:1.2.1筛选法包括机组作用系数分析法;阻抗扫描分析法,主要用于定性分析与筛选,从众多发电机中筛选出存在次同步振荡风险的机组及运行工况,其计算方法简单,速度快,所需要的基础数据较少,不需要发电机组轴系等详细参数,但是分析结果误差较大。
1)机组作用系数分析法:2i i 1⎪⎪⎭⎫ ⎝⎛-=TOT HVDCi SC SC S S UIF其中i UIF 为第i 台发电机与直流输电之间的作用系数;HVDC S 为直流输电系统的额定容量(MW );i S 为第i 台发电机组的额定容量(MVA );i SC 为直流输电整流站交流母线上的三相短路容量,计算该短路容量时不包括第i 台发电机组的贡献,同时不包括交流滤波器的作用;TOT SC 为直流输电整流站交流母线上包括第i 台发电机组贡献的三相短路容量,计算该短路容量时不包括交流滤波器的作用。
电力系统低频振荡分析与抑制文献综述一.引言“西电东送、南北互供、全国联网、厂网分开”己成为21世纪前半叶我国电力工业发展的方向。
大型电力系统互联能够提高发电和输电的经济可靠性,但是多个地区之间的多重互联又引发了许多新的动态问题,使系统失去稳定性的可能性增大。
随着快速励磁系统的引入和电网规模的不断扩大,在提高系统静态稳定性和电压质量的同时,电力系统振荡失稳问题也变得越来越突出。
电力系统稳定可分为三类,即静态稳定、暂态稳定、动态稳定。
电力系统发展初期,静态稳定问题多表现为发电机与系统间的非周期失步.电力系统受到扰动时,会发生发电机转子间的相对摇摆,表现在输电线路上就会出现功率波动。
如果扰动是暂时性的,在扰动消失后,可能出现两种情况,一种情况是发电机转子间的摇摆很快平息,另一种情况是发电机转子间的摇摆平息得很慢甚至持续增大,若振荡幅值持续增长,以致破坏了互联系统之间的静态稳定,最终将使互联系统解列。
产生第二种情况的原因一般被认为是系统缺乏阻尼或者系统阻尼为负。
由系统缺乏阻尼或者系统阻尼为负引起的功率波动的振荡频率的范围一般为0。
2~2。
5Hz,故称为低频振荡。
随着电网的不断扩大,静态稳定问题越来越表现为发电机或发电机群之间的等幅或增幅性振荡,在互联系统的弱联络线上表现的尤为突出.由于主要涉及转子轴系的摆动和电气功率的波动,因此也称为机电振荡。
低频振荡严重影响了电力系统的稳定性和机组的运行安全。
如果系统稳定遭到破坏,就可能造成一个或几个区域停电,对人民的生活和国民经济造成严重的损失。
最早报道的互联电力系统低频振荡是20世纪60年代在北美WSCC成立前的西北联合系统和西南联合系统试行互联时观察到的,由于低频振荡,造成联络线过流跳闸,形成了西北联合系统0。
05Hz左右、西南联合系统0。
18Hz的振荡。
随着电网的日益扩大,大容量机组在网中的不断投运,快速、高放大倍数励磁系统的普遍使用,低频振荡现象在大型互联电网中时有发生,普遍出现在各国电力系统中,已经成为威胁电网安全的重要问题。
基于特征值分析法的电力系统次同步振荡研究于云霞;李娟【摘要】本文以基准模型为研究对象,利用特征值分析法对电力系统次同步振荡问题进行了深入的分析,计算得到了次同步振荡的频率和阻尼参数等,进一步用特征值分析法计算了系统的参数的改变对于次同步振荡阻尼的影响,通过仿真验证了特征值分析算法的正确性.【期刊名称】《电气技术》【年(卷),期】2017(000)004【总页数】6页(P44-48,119)【关键词】次同步振荡;特征值分析法;电气参数;状态空间方程【作者】于云霞;李娟【作者单位】北京信息科技大学自动化学院,北京 100192;北京信息科技大学自动化学院,北京 100192【正文语种】中文次同步振荡一般发生在具有串联电容补偿的电力系统,高压交直流输电系统、电力系统稳定器或者静止无功补偿装置的控制设备等也可能引起这种振荡。
这是由于在特定条件下,大型汽轮发电机组的转子轴系具有弹性,又因为机械和电气的相互作用引发振荡,从而使整个电力系统运行不稳定[1]。
现在特征值分析法已被广泛用于线性系统的分析,文献[2]中通过计算特征值分析了串补电容对次同步振荡产生的影响。
文献[3]分析了基于特征值法的次同步阻尼守恒特性。
文献[4]介绍了20阶和27阶系统的特征值分析结果与以前文献分析结果的误差。
文献[5]通过求取最小特征值的灵敏度来分析对静态电压稳定的影响。
上述文献都有效的利用了特征值的特性分析了对系统稳定性的影响,但是对于计算特征值的状态方程的推导结果方面介绍甚少,以及改变电气参数分析对次同步振荡的影响,此方面的文献鲜见。
故文章对这两方面做了详细的研究,用PSCAD仿真验证了算法的有效性。
当有串补电容的电力系统在某一稳态运行情况下,发电机轴系有一个小的扰动,该扰动会在发电机的定子中产生次同步频率为(1-wm)与超同步频率为(1+wm)的电压分量。
定子回路中电感与电容的谐振频率都是(1-wm)时,定子回路中频率为(1-wm)的电流分量与频率为(1+wm)的电压分量同相位,三相次同步电流将会于空间中形成一个转速大小是(1-wm)的旋转磁场,该磁场产生的电磁转矩将会对轴系频率为wm的振荡分量呈负阻尼作用,当电气谐振频率同发电机轴系自然频率互补时,串补电路产生最大的负阻尼,进而引发次同步振荡。
问:系统振荡是怎么回事?振荡是由失步引起的吗?对系统来说会有多大的危害?谭程文答:振荡就是发电机与系统电源之间或系统两部分电源之间的功角的摆动现象。
电力系统振荡分同步振荡和异步振荡两种情况:能保持同步而稳定运行的振荡为同步振荡;导致失去同步而不能正常运行的振荡为异步振荡。
当电力系统稳定破坏后,电网内的发电机组将失去同步,转入非同步的运行状态,此时电网将发生异步振荡。
危害:当电网发生振荡时,电网内的发电机不能维持正常运行,电网电流、电压和功率将大幅度波动,严重时使电网解列,造成部分发电厂停电及大量负荷停电。
短路电流、电压是突变的,振荡变化速度较慢,也是周期性的;短路电流、电压之间角度基本不变,而振荡随功角的变化而变化;短路时有负序、零序分量,而振荡没有负序、零序分量。
影响电流、电压和阻抗继电器,会造成误动,也因为振荡不含负序、零序分量,所以采用其来启动振荡闭锁。
(1)系统振荡时,由于两侧电源的夹角在0~360度间变化,线路上的电流、电压作大幅变化;夹角在180度时振荡电流达最大值;振荡过程中电压最低的一点称为振荡中心。
(2)全相振荡时系统保持对称性,系统中不会出现负序和零序分量,只有正序分量;短路时会有负序或零序。
对保护装置来说,要求(1)系统发生振荡时,应可靠闭锁保护,即使是激烈的振荡,闭锁保护也不能开放。
(2)系统发生短路时,应快速开放保护;(3)外部短路故障切除后紧跟发生振荡,保护不应误动作。
(4)振荡过程中发生短路时,保护应能正确动作。
一般指电力系统受到扰动或调节控制的诱发,由本身的电磁特性和机械特性而产生的一种动态过程,表现为电力系统中发电机的转速、并列运行的发电机间的相对角度、系统的频率、母线上的电压、支路中的电流和功率产生波动、偏离正常值,振荡中心的电压有大幅度的跌落。
不衰减和增幅的振荡会破坏电力系统的正常运行,甚至损坏电工设备,导致系统的崩溃。
所以通过分析,掌握电力系统的动态特性,采取措施,预防发生振荡,抑制和消除已发生的振荡,是保证电力系统安全运行的重要内容。
电力系统振荡的结果及处理方式2012/7/13 15:35:41当发生短路或突然有大负荷切除或投入时,发电机与大系统之间的功角会发生变化,发电机的输出功率就会沿着发电机的功角特性曲线来回摆动,这就是电力系统的振荡。
电力系统振荡的结果有两种:一个是发电机的输出功率和负载能重新在一个点上实现平衡,经过一段时间的振荡后重新达到稳定,保持同步运行。
一个是发电机的输出功率和负载能无法再在任何一个点上实现平衡,从而导致发电机失去同步。
发电机的原动机输入力矩突然变化,如:水轮机调速器不正常动作;系统发生突然短路;大机组或大容量线路突然变化等。
通常,短路是引起系统振荡,破坏稳定运行的主要原因。
电力系统振荡的预防:预防是多方面的,有继电保护上的要求,如快速切断故障线路;也有运行操作上的要求,如避免使发电机的容量大于被投入空载线路的充电功率,避免发电机带空载线路启动和以全电压向空载线路合闸;也有设计上的考虑,如避免发生发电机的次同步共振。
系统振荡有多种:异步振荡、同步振荡、低频振荡异步振荡——其明显特征是,系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。
如发电机、变压器和联络线的电流表,功率表周期性地大幅度摆动;电压表周期性大幅摆动,振荡中心的电压摆动最大,并周期性地降到接近于零;失步的发电厂间的联络的输送功率往复摆动;送端系统频率升高,受端系统的频率降低并有摆动。
引起电力系统异步振荡的主要原因:1、输电线路输送功率超过极限值造成静态稳定破坏;2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间发生较大突变等造成电力系统暂态稳定破坏;3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步;4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏;5、电源间非同步合闸未能拖入同步。
异步系统振荡的一般现象:(1)发电机,变压器,线路的电压,电流及功率周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声。
某地区电网全电磁暂态仿真分析及次同步谐振风险分析亢朋朋,宋朋飞,樊国伟(国网新疆电力有限公司,新疆乌鲁木齐830000)前言为解决和田地区电网冬季电采暖负荷增长的需求,提升莎车-和田750千伏和叶城-皮山220千伏断面下网输电能力,计划在220千伏皮山变、洛浦变、于田变的35千伏侧各配置一套SVG,容量为±52Mvar。
鉴于和田电网光伏并网比例高,需对配置SVG后振荡风险开展分析。
本研究采用时域仿真法,是通过电磁暂态仿真程序PSCAD[1-3],建立包括光伏站、光伏站SVG、系统网络、发电机和新投运SVG在内的仿真系统。
通过时域求解的方法模拟系统故障或扰动过程,观察系统状态量[4-5],判断是否存在次同步谐振问题,研究电网次同步振荡风险。
1和田地区全电磁暂态建模1.1交流电网电磁暂态建模为更精确地建立和田电网全电磁模型,校核了所收资的线路参数和主变参数。
根据校核后参数,在PSCAD软件中建立了和田地区电网全电磁交流网络(图1)。
1.2开关器件换流器和平均值换流器的一致性研究因和田地区光伏站数量多,若换流器采用开关元件建模仿真效率太低,本研究采用基于等效受控电压源和电流源的平均值建模。
为验证基于等效受控源的平均值建模换流器同开关器件在电磁暂态仿真中的一致性,首先建立了基于开关器件换流器的光伏并网单元,然后建立了同开关换流器参数一致的平均值换流器,最后对比了两者在控制器指令跃变和交流故障时的响应情况。
图2为基于开关器件的光伏并网单元,图3为基于等效受控源的平均值的光伏并网单元,两者控制部分一致。
基于开关器件换流器和平均值换流器的光伏并网单元参数如下,逆变器额定容量0.5MW;逆变器直流侧额定电压0.617kV;逆变器交流侧额定电压0.315kV;直流电容7560μf;交流侧滤波器LCL型滤波器,L1=100μh,C(角型)=200μf,L2=20μh;并网变压器额定电压/容量/阻抗,38.5kV±2*2.5/0.315/0.315,1MVA,6.43%;控制器基准容量0.5MVA,基准电压0.315kV及38.5kV。
电力电子化电力系统的振荡问题及其抑制措施摘要:伴随着我国电力事业的不断发展以及相关技术的进步,电力电子化电力系统的发展中,所遇到的振荡问题也寻求到了有效的抑制措施。
基于此,本文针对电力电子装置引起振荡的原因分析进行分析,并且利用增加虚拟阻尼、改进控制目标、减小测量环节延时以及增加抑制振荡的电力电子装置关键词:电力电子化;电力系统;振荡问题引言:伴随着电力电子装置的应用,我国电力系统的整体质量不断提升,并且电力系统的电力电子化趋势越来越明显。
在电力电子设备应用时,会对整体的电力系统造成一定的振荡,这一现象产生已经有了较长的历史,并且直接影响到了电力系统的整体稳定。
为了保证电力电子装置以及电力系统的整体稳定,必须要能够针对电力电子装置引起振荡的原因进行分析,并保证寻求正确的抑制方法。
1.电力电子装置引起振荡的原因分析电力电子装置对于电力系统的建设以及使用具有十分重要的意义,在当前的电力半导体技术发展过程中,已经能够从单个电子开关发展到多个串并联的应用,适合在高压大电流的环境下进行应用。
电力电子装置连入到了电力系统之中以后,如果不能够安稳运行,就会产生电流的不稳定现象,电力电子装置实际应用时,由于以下的原因产生振荡,降低了整体的电力系统使用质量。
1.1振荡产生的数学机理当前较为常见的电力电子装置引发的振荡,其可以有效利用数学机理开展分析。
结合非线性动力学的理论针对电力电子装置进行分析,一般情况下非线性的系统振荡可以分为四个主要类型,分别为系统周期性振荡、准周期振荡、系统混沌解对应的非周期振荡以及平衡点附近运动轨迹对应的负/弱阻尼振荡。
在实践当中,周期性振荡的发生过程电流电压变化如图1所示。
图 1 振荡发生时母线、电压、系统电流变化示意图混沌引起的非周期性震荡则是体现在了经典的两机系统当中,其中两台发电机的电动势幅值以及相位都会出现直轴暂态电抗。
现阶段的电力振荡分析都需要能够立足于平衡点的线性化理论,同时要能够结合低频振荡以及次同步振荡进行有效的分析,在这种前提之下,能够了解到电力系统周期当中的一些规律,从而探索电力系统振荡的机理[1]。
第40卷第9期2020年9月电力自动化设备Electric Power Automation Equipment Vol.40No.9 Sept.2020电力系统次同步振荡检测与在线定位技术综述吴熙1,陈曦1,吕万1,袁超2,杨宏宇2(1.东南大学电气工程学院,江苏南京210096;2.江苏方天电力技术有限公司,江苏南京211102)摘要:随着电网规模扩大以及新能源发电并网容量增加,次同步振荡(SSO)问题日益凸显,对电网安全稳定运行造成了较大的威胁。
及时检测出系统中的SSO并对其进行在线定位,对保障电力设备安全与系统稳定运行具有重要意义。
首先对SSO的检测方法进行了介绍,并归纳总结了各类方法的优缺点。
然后,介绍了SSO定位方法,并对现有研究存在的不足进行了探讨。
最后,介绍了适用于SSO在线检测定位的量测系统架构以及相量测量单元/广域测量系统(PMU/WAMS)升级改造方案,并对SSO检测与定位技术未来的发展趋势进行了展望。
关键词:电力系统;次同步振荡;检测技术;在线定位;相量测量单元;广域测量系统中图分类号:TM71文献标志码:A DOI:10.16081/j.epae.2020090320引言随着能源改革的深化推进,新能源发电逐步进入大规模发展阶段,电网中风力、光伏发电等新能源并网容量不断增加[1]。
与此同时,电力系统中还存在大量的高压直流输电设备、串联补偿设备以及动态无功补偿设备[2-5],这些设备可以提高电网输电能力,改善系统稳定性,为大规模新能源的并网奠定了基础[2],但也使得电力系统内的薄弱环节增多,导致次同步振荡SSO(Sub-Synchronous Oscillation)问题日渐凸显[6]。
近年来,美国德州[7]、美国Buffalo Ridge地区[8]、我国华北沽源地区[9]、我国新疆哈密地区[10]和我国吉林通榆[11]等地风电场发生了多起SSO 事故,SSO不仅会造成谐波污染,影响电能质量[10],还可能导致新能源设备损坏和新能源大面积脱网[12-13],严重影响新能源的并网消纳,甚至可能导致火电机组轴系疲劳,致使发电机轴系断裂[14],进而诱发区域电网连锁事故,对电网中机组、电力设备的安全和整个电力系统的稳定运行构成了巨大威胁,应予以高度重视。
PMU次同步振荡监测功能的检测方法研究摘要: PMU因其量测具有同步性与快速性的优势,成为电力系统动态过程监测的重要技术手段。
然而,近年来随着新能源集中并网以及高压直流输电工程的大量投运,电力系统逐渐呈现出电力电子化特征,系统机理特征、动态过程发生了改变。
其中,新能源场站附近出现的大量间谐波及其大范围的传播已成为严重影响电网安全的一个问题。
这对PMU的量测提出了新的要求与挑战。
针对这一问题,本文对PMU监测功能进行了挖掘,对风电次同步振荡产生的秒级运行信息进行了分析,提出了PMU装置次同步振荡监测功能扩展方案,完善PMU装置的监测功能,扩充PMU装置在电力系统中的深化,制定了PMU次同步振荡监测功能的检测方案与评估方法,为基于PMU的间谐波准确监测提供了基础。
关键词:相量测量单元;次同步振荡;间谐波;检测方案;动态监测,暂态录波1引言近年来,同步相量测量单元(phasor measurement unit,PMU)的广泛安装,推动了基于PMU的电力系统动态安全监视和控制的发展[1-4],例如事故后期分析[5]、低频振荡监测[6-7]、参数辨识[5]等。
PMU对基频相量的同步、快速和精确的测量带动了一场动态安全监测和控制的革新[8]。
然而, 新能源集中并网以及高压直流输电工程的大量投运,使得越来越多的电力电子设备接入电网。
这导致了大量非整数次倍于基频的间谐波的引入,从而改变了基频相量的量测,并可能进一步威胁电力系统的安全。
其中,对电力系统极大的威胁包括次同步振荡。
从2015年下半年开始,在中国的风力发电和高压直流输电汇集地区发生了多次由间谐波引起的次同步振荡事件[13]。
触发了直流配套火电机组的扭振保护动作。
次同步振荡事件的间谐波包括次同步谐波和超同步谐波,其频率范围从10Hz到100Hz。
本文提出了PMU需具有次同步振荡监测功能的要求。
制定了PMU装置关于次同步振荡监测功能的扩展监测功能,增加了连续录波和暂态录波功能,实现12000Hz采样率连续记录电压、电流原始波形,和检测方案与评估方法,为基于PMU的间谐波准确监测提供了基础。
电力系统次同步振荡的检测技术综述张付国发布时间:2021-08-26T05:53:02.501Z 来源:《福光技术》2021年8期作者:张付国[导读] 第二次同步振动的在线传感分析对网络和机器的安全至关重要。
身份证号码:372922198710246XXXX摘要:第二次同步振动的在线传感分析对网络和机器的安全至关重要。
同步振动在线检测与传统的网络测量相比,速度要求很高,因此在不影响定性分析的情况下不需要绝对精度。
本文用于分析电力系统第二次同步振动的检测方法。
关键词:电力系统;次同步振荡;检测技术引言140 多年来,能源系统发展成为现代社会生产的基本支柱。
安全稳定是电力系统运行和电力技术不断发展的基本条件。
概述现有的二次同步振动检测方法主要用于检测补偿串联引起的子同步共振 (SSR)。
该检测主要在发电厂进行,监测信号主要取自发电机组,根据测量信号将测量方法分为机械和电气两种测量方法。
第二同步振动检测的机械计算测量技术的应用仅限于一组发电机,这些发电机虽然能够实时检测一个力机轴系统是否有共振,但不能发出警告。
现有的电磁二次同步振动检测方法理论上可以推断和警告电磁振动的模式,但现有算法 ( 如基于总大小最小二乘法的常规快速傅立叶变换 (FFT)、 Prony、波长分析 ) 则使用恒定旋转复杂、计算密集型、噪声或信号估计 (TLS spirit) 方法加载。
电力系统次同步振荡检测的数学模型电力系统的第二次同步振动是电力系统的运行状态。
在这种状态下,电气系统和发电机组用一个或多个低于同步频率的自然振动频率交换能量。
任何能够在同步振动的辅助频率范围内快速控制能量或速度变化的装置都是触发辅助振动的潜在来源。
例如,带有电源开关和灵活交流电源 (FACTS) 的交流电源设备会产生一个非常高带宽、未频繁使用的输入电流,这可能导致电机轴。
SSO 检测方法基于数字信号分解的检测方法FT 是一种常用的信号分析方法,它将信号从时域转换为频域,以分析其模态参数信息。
浅析电力系统次同步振荡抑制措施作者:曾鑫来源:《中国科技博览》2018年第26期[摘要]随着电力系统的不断改革,分布式电网的应用改变了传统配电网模式,推动了配电网的更新与发展,但在一定程度上增加了配电网运行难度。
大量电力电子器件的应用会引起电力系统中次同步振荡现象,严重影响了电力系统的运行稳定性。
本文简单分析了电力系统次同步振荡现象及相关的抑制措施。
[关键词]电力系统;同步振荡;抑制措施中图分类号:S254 文献标识码:A 文章编号:1009-914X(2018)26-0244-01引言近年来,电网建设规模不断扩张,供电难度和设备负荷随之提高,越来越多的分布式新能源接入配电网。
分布式新能源具有环保的优点,应用在电力系统中可以满足社会发展对于电力的需求,有效降低电力运输过程中的损耗,提高供电质量,对我国电力事业的发展有重要的意义。
分布能源系统模型高维性、运行方式的不确定性、元件的强非线性、扰动的随机性,使得电力系统稳定现象多变,稳定机理十分复杂,电力系统动态机理与控制越来越困难。
此外,由于电网的运行形式不断变化,规模越来越大,大量电力电子设备及系统的应用会使电网呈现不稳定的运行状态,产生低于基波的次同步振荡现象,其安全稳定运行面临严峻挑战。
1 电力系统次同步振荡分析1.1 基本概念通过串联电容的形式进行无功补偿可以提高输电线路的输送能力,优化输电线路间的功率分布,并提高电力系统的稳定性,是交流输电系统中广泛采用的方法。
但这种方法也可能引发电气系统或汽轮发电机组以小于同步频率的振动频率进行能量交换,称为次同步振荡。
在电力系统运行中,针对电网的运行状态,在不同带宽频率下,控制的环节有所不同,如图1所示,在额定频率附近,属于电网同步和电流控制环节,当电力系统受到扰动后,系统平衡点偏移,在这种运行状态下,电网与发电机组之间存在一个或多个低于系统同步频率的频率,在该频率下进行显著能量交换,因而出现次同步谐振现象。
关于哈密风电基地某风场次同步振荡事件的原因分析及处理摘要:密风电基地某风场次同步振荡属于系统稳定性问题,在许多大规模新能源系统中都检测到次同步振荡现象。
本文首先对密风电基地某风场次同步振荡的事件经过及数据进行介绍,包括风电场电网录波数据和风电机组数据等。
在此基础上,探讨密风电基地某风场次同步振荡设备配置及参数,包括风电机组、SVG及AVC系统。
最后针对相关问题提出整改措施。
关键词:哈密风电基地某风场;次同步振荡事件;原因分析及处理2019年03月18日02:27:02,某风电场发生电网振荡现象,在约25s之后,220kV风电汇集站稳控装置启动,发出指令切除全场6条35kV集电线路。
一、事件经过及数据分析:1、风电场电网录波数据分析1.1 对110kV母线电压实时波形进行FFT分析,见图1。
可看出110kV母线包含29.2Hz/70.8Hz谐波分量。
图1对110kV母线电压有效值波形进行分析,如图2。
可看出振荡前母线电压有较大幅度波动。
当110kV母线电压被调整到较低值约1s后,波形发散,电网开始振荡。
图2注:红色曲线为AVC调控母线电压目标值,蓝色曲线为实际110kV母线电压1.2对35kV线路及各支路电流电压实时波形进行FFT分析,如图3。
可看出35kV线路依然包含29.25Hz/70.75Hz谐波分量(因数据分辨率不同,略有差异)。
图32、风电机组数据分析某风场共计50台风电机组,各机组数据基本一致,提取35kV集电四线B10号机组数据分析如下:2.1 电网数据图4从图4可看出,电网振荡时,电网电压约370V(0.925Pu),处于较低值。
图5从图5可看出,在电网电压降至370V后约1s,出现电网电压和电流、有功功率、无功功率较大幅度的波动。
2.2变频器DCLink频谱图6从图6可看出,变频器直流母线上包含次同步振荡分量。
2.3 转速频谱图7从图7可以看出,发电机转速上包含次同步振荡分量。
3 设备配置及参数3.1风电机组除风轮直径外,风电机组配置、变频器硬件、软件与周边某风电场机组配置一致(周边某电场曾2017年发生过类似事件)。
含规模化新能源的电力系统次同步振荡研究我国能源赋存与负荷中心呈逆向分布,为实现大容量、远距离输送电能往往采用特高压交流或特高压直流输电技术。
串联电容补偿做为提高大容量远距离交流输电能力的一种主要手段得到了大量的应用,但可能引发次同步振荡问题,威胁大型火电机组和系统的安全稳定运行。
随着风电、光伏等新能源并网发电规模的不断增大,次同步振荡问题也变得更为复杂。
本文针对含规模化新能源的电力系统次同步振荡问题,开展了如下研究:阐述双馈风力发电机组的运行原理及运行特性,建立了风力机模型、传动轴系模型、感应发电机模型、变流器及其控制系统模型以及全风速范围内风力机控制系统模型,给出了标幺值情况下双馈风力发电机组各组成部分的方程,为后续的次同步振荡研究奠定基础。
针对双馈风电场经串补送出系统的次同步振荡问题,在MATLAB和PSCAD中分别建立了适用于次同步振荡研究的小信号分析模型、时域仿真模型,利用特征值分析法和时域仿真法阐述了全风速范围内系统的次同步振荡特性,研究了风速、串补度、转子侧变换器PI参数、网侧变换器PI参数、线路电阻对次同步振荡的影响,并利用时域仿真法对频域分析结果进行了验证。
针对风火打捆经串补送出系统的次同步振荡问题,在PSCAD中建立了适用于次同步振荡研究的仿真模型,利用时域和频域分析法分析了风火打捆系统的次同步振荡特性,研究了风电渗透率、风速、风电场接入位置对火电机组次同步振荡的影响。
为研究光伏、火电打捆经串补送出系统的次同步振荡问题,以IEEE次同步振荡第一标准模型为基础,在PSCAD中建立了加入并网光伏的修改模型,利用复转矩系数法和时域仿真法分析了无附加阻尼控制器时并网光伏对系统次同步振荡特性的影响。
设计了多通道有功型附加阻尼控制器、无功型附加阻尼控制器以及混合型附加阻尼控制器。
研究了光伏容量、附加阻尼控制器类型对次同步振荡抑制效果的影响。
间谐波引起电力系统次同步振荡——工程实例、机理、作用形式及应对措施金维刚;刘会金;李智敏【摘要】例举分析了两个由间谐波引起电力系统次同步振荡的工程实例.应用调制理论分析了两交流侧额定频率相同的异步HVDC系统产生间谐波的机理;指出间谐波的频率如果与汽轮机转子轴系自然频率相匹配,并且具有一定的幅值,就可能激发次同步振荡,这就是间谐波引起电力系统次同步振荡的机理.归纳了间谐波引起电力系统次同步振荡的两种作用形式,第一种作用形式表现为剧烈的轴系扭振,第二种则可以称为轴系的长期累积疲劳寿命损耗;对两种作用形式的激发条件和特点进行了分析;同时指出,第二种作用形式普遍存在并且对汽轮机轴系的危害甚至比三相对地故障更严重.探讨了间谐波引起次同步振荡的应对措施.【期刊名称】《电力系统保护与控制》【年(卷),期】2010(038)009【总页数】6页(P31-36)【关键词】间谐波;次同步振荡;工程实例;机理;作用形式;长期累积疲劳寿命损耗;应对措施【作者】金维刚;刘会金;李智敏【作者单位】武汉大学电气工程学院,湖北,武汉,430072;武汉大学电气工程学院,湖北,武汉,430072;三门峡供电公司,河南,三门峡,472000【正文语种】中文【中图分类】TM710 引言电力系统是一个由发电机组(含发电机控制设备,如励磁机、原动机、调速器等)、变压器、输配电系统和用电设备等很多单元组成的统一大系统[1]。
电力系统的次同步振荡则是指汽轮发电机组在运行(平衡)点受到扰动后处于特殊运行状态下出现的一种异常状态,在这种运行状态下,电气系统与汽轮发电机组之间在一个或多个低于系统同步频率的频率下进行能量交换。
按照IEEE工作组对次同步振荡的定义,次同步振荡过程不包括汽轮发电机转子轴系的刚体振荡模态[2-3]。
各国学者对于电力系统次同步振荡问题进行了大量的研究,具体可归纳为以下几个方面,即次同步振荡产生的机理、次同步振荡的表现形式、次同步振荡的分析方法以及次同步振荡的预防和控制措施等。
新能源电力系统多模态振荡识别技术分析汤茗茗(北京安诺创达电力工程有限公司)摘 要:新能源及其电力电子装置接入电网后,极易诱发宽频振荡,给电力装置的正常运行及电网安全带来严重威胁。
宽频振荡有着诸多的特征,如多模态、时变的振动频率等,基于此,新能源电力系统所面临的一个关键问题就是如何实现对宽频振荡进行在线识别和分析。
目前的广域监控系统可以对电网的低频振荡进行实时监控和分析,但是不能覆盖到宽频电磁振荡。
针对这一问题,本文开展了新能源发电系统的多模式振动识别技术研究,提出了一种新能源电力系统的多模式振荡识别架构,该架构既能满足已有的广域监控系统的要求,又能对新能源背景下的宽频电磁振荡进行监控与分析。
在此基础上,还对多模式振动识别方法、振动溯源方法等进行了研究,设计了多模态振荡识别系统,并在仿真环境下对所提方法进行验证,证明该方法是有效的。
关键词:新能源电力系统;多模态振荡识别;电力电子设备0 引言高比例新能源的并网、高压直流输电网络的形成以及电力电子负载的投入,使得新能源与其电力电子装置成为了现代电力系统的重要组成部分。
在新能源电力系统中,由于电力电子器件和电网的交互作用,会引起几赫兹至上千赫兹的宽波段振荡[1]。
宽频振荡的多模态问题会引起电力设备的损伤,甚至造成新能源发电机的停运,对设备的安全和系统的稳定运行产生很大的影响,这也是限制新能源有效消纳的一个主要原因[2]。
如何理解宽频振荡的行为特性,研究其产生的机制,并对其进行有效的控制,是当前迫切需要解决的问题[3]。
由于电力电子装置具有异构性、非线性、时变性、不确定性及复杂性等特点,给新能源电力系统的宽频振荡分析提出了诸多挑战[4]。
针对这一问题,本文研究了一种基于多模式振动的新能源电力系统辨识方法与体系结构。
1 多模态电磁振荡识别方法常用的电磁振荡识别方法见表。
表 电磁振荡常用识别方法序号技术名称技术原理应用场景优势缺点1频域分析基于频域信号处理方法,通过对电力系统振荡信号的频谱进行分析,来识别系统中的多模态振荡。
电力系统次同步振荡(Power system synchronization oscillation) ➢ 产生机理和条件 次同步震荡基本概念:大型汽轮发电机组的转子轴系具有弹性,由于机械和电气的相互作用,在特定条件下会自发振荡。输电线路的串联电容补偿、直流输电、电力系统稳定器的不当加装,发电机励磁系统、可控硅控制系统、电液调节系统的反馈作用等,均有可能诱发、导致次同步振荡(SSO)现象。有时也发生在发电机非同期并列或系统发生不对称短路等大扰动后的暂态过程中。
根据次同步谐振产生的原因可从4个方面加以描述: 1)感应发电机效应:假设发电机转子以常速旋转,由于转子的转速高于由次同步电流分量引起的旋转磁场的转速,在次同步频率下从电枢终端看去转子电阻呈负值。当这个视在负值电阻超过电枢和电网在次同步频率下的等效电阻的总和时,就会发生电气自振荡,这种自激振荡认为是由过电压和过电流引起的。 2)扭转相互作用:设发电机转子在一个扭转频率fm下发生振荡,fm能导出电枢电压分量频率fem,其表达式为fem=fo+fm,当其中的次同步频率分量接近电气谐振频率fer时,电枢电流产生一个磁场,该磁场能产生使发电机转子振荡加强的转矩,这使次同步电压分量导致的次同步转矩得以维持。如果次同步频率分量和转子转速增量的相位相同,而且等于或超过转子固有机械阻尼转矩时,就会使轴系的扭振加剧。电气和机械系统之间的相互作用就被认为是扭转相互作用。 3)暂态力矩放大作用:当系统发生干扰时,电磁转矩就会施加于发电机转子上,使发电机轴段承受转矩压力。串联电容补偿输电系统中的干扰,会造成在fo-fer频率下的电磁转矩振荡。如果此频率接近于任何转子段的自然振荡频率fn,会导致转子转矩远远大于无串补系统的三相故障转矩,这是由电气和机械自然频率之间的振荡引起的,称为暂态转矩放大效应。 4)由电气装置引起的次同步振荡:最初发现HVDC及其控制系统会引起汽轮发电机组的轴系扭振,随后发现其他如电力系统稳定器(PSS)、静止无功补偿器(SVC)、汽轮机高速电液调速系统、电机调速用换流器等有源快速控制装置在一定条件下均可能引起汽轮发电机组次同步振荡。一般地说,任何对次同步频率范围内的功率和速度变化响应灵敏的装置,都是潜在的次同步振荡激发源,而由此引起的发电机组次同步扭振问题统称为“装置引起的次同步振荡”。
归纳成两类次同步震荡产生原因分析: 交流输电产生次同步震荡的原因分析 输电系统为了提高输电能力和增加瞬态稳定性,有时在电网中串联补偿电容,使整个电网形成R-L-C 回路,此回路将发生次同步谐振。次同步谐振是电力系统的一种运行状态,在这种状态下,电气系统与汽轮发电机组以低于同步频率的某个或多个网机(电网或电机)联合系统的自然振荡频率交换能量。由次同步谐振导致的感应发电机效应,可能出现负阻尼,使次同步电气振荡不衰减或增强。当次同步电气振荡频率e f 与机组轴系某阶扭振固有频率n f 互相耦合,即 e n N f + f = f ( N f 为工频),将产生次同步机电谐振。 直流输电产生次同步振荡的原因分析 高压直流输电(HVDC)引起SSO 的原因在于直流控制器的作用。发电机转子上微小的机械扰动,将引起换相电压尤其是其相位的变化。在等间隔触发的HVDC 系统中,换相电压相位的偏移,会引起触发角发生等量的偏移,从而使直流电压、电流及功率偏离正常工作点。HVDC 闭环控制系统会对这种偏离做出响应而影响到直流输送功率,并最终反馈到机组轴系,造成发电机电磁转矩的摄动△Te。如果发电机电磁转矩摄动量与发电机转速变化量△W 之间的相角差超过了90°,就会出现负阻尼,是否会出现SSO 决定于相应频率下的机械阻尼与电气负阻尼的相对大小。影响电气阻尼的因素较多,如发电机与直流系统耦合的紧密程度,直流功率水平、触发角的大小、直流控制器的特性以及直流线路的参数等。 由直流输电引起的汽轮发电机组的轴系扭振与由串联电容补偿引起的汽轮发电机组的轴系扭振在机理上是不一样的,因为前者并不存在谐振回路,故不再称为次同步谐振(SSR),而称为次同步振荡(SSO),使含意更为广泛。
➢ 危害 危害:出现次同步震荡后,轴系中产生很大扭矩,在严重情况下可能导致大轴出现裂纹甚至断裂,或因反复承受较大扭矩造成疲劳累积,使轴承寿命降低 产生历史:次同步振荡是电力系统中的一个专用术语。关于次同步振荡问题的最早讨论始于1937年,但直到1971年,有关轴系扭振的问题皆被忽略。1970年12月和1971年10月,美国Mohave电站先后两次因次同步谐振而引起发电机组大轴损坏。 事故分析:两次事故都是断开该电厂两回500KV 线路中的一回时开始发生,在控制室内,运行人员发现,闪光信号延续约两分钟,控制室内地板震动,转子电流表由正常的1220A上升到满刻度4000A,同时发出了转子接地.负序继电器动作与异常震动的信号,运行人员立即手动停机,发电机解列。发电机滑环间以及滑环对轴发生延续20 秒的弧光放电,滑环间的轴被烧损,深约1 英寸。发电机与励磁机间及中压缸两侧的靠被轮皆因强烈震动而损坏。 从此以后,高电压远距离交流输电中加装串联补偿电容器引发次同步振荡的问题进入世界电力科学的研究领域,成为目前困扰电力发展的科研难题之一。由直流输电引起的汽轮发电机组的次同步振荡问题,1977年首先在美国SquareButte直流输电工程调试时被发现。后来,在美国的CU、IPP,印度的Rihand-Deli,瑞典的Fenno-Skan等高压直流输电工程中,都表明有或可能导致次同步振荡。
➢ 抑制对策: 由于次同步震荡的危害,应通过对sso进行准确分析和计算,采取监视,防止,保护和抑制措施。 两类分析方法: 筛选法:用于分析电力系统是否会发生次同步振荡以及哪些机组会发生次同步振荡。这类方法可以从众多的发电机组中逐机筛选出确实需要进行次同步振荡研究的机组。
筛选法特点: 所需要的原始数据较少,例如不需要发电机组的轴系参数; 计算方法简单,物理概念明确;所得结果是近似的,可以作为进一步精确分析次同步振荡问题的基础。 典型代表:用于分析串联电容补偿引起的次同步谐振问题的“频率扫描分析法”和用于研究由直流输电引起的次同步振荡问题的“机组作用系数法”。 另一类方法可以比较精确和定量地研究次同步振荡的详细特性。这类方法的典型代表是“复转矩系数法”、“特征值分析法”和“时域仿真法”。这类方法的共同特点是需要较详细和精确的原始数据,如发电机组的轴系参数,直流输电系统控制器的结构和参数等。采用“特征值分析法”和“时域仿真法”,所能研究的网络规模不能太大,通常需要对实际网络作一定的简化后才能进行分析。由于一座新电厂机组的轴系参数或一个新直流输电工程控制系统的结构和参数在规划阶段是很少能准确知道的。因此,在规划阶段,采用此类方法进行实际的计算和分析是比较困难的。
次同步震荡分析步骤:第一步,用“筛选法”筛选出需要进行次同步振荡研究的机组,这一步通常在系统规划阶段进行;第二步,在取得详细和精确参数的前提下用“复转矩系数法”或“特征值分析法”或“时域仿真法”进一步研究该问题,并提出和校核可能的预防及控制措施。
分析方法:
1.频率扫描分析法 频率扫描分析法是一种近似的线性方法,利用该方法可以筛选出具有潜在SSR问题的系统条件,同时可以确认不对SSR问题起作用的系统部分。 频率扫描分析法的具体做法[3,4]为:需要研究的相关系统用正序网来模拟;除待研究的发电机之外的网络中的其它发电机用次暂态电抗等值电路来模拟;待研究的发电机用图1中的虚线部分来模拟,其中的电阻和电感随频率而变化。频率扫描法针对某一特定的频率,计算从待研究的发电机转子后向系统侧看进去的等效阻抗,即从图1的端口N向系统侧看进去的等值阻抗,通常称该等值阻抗为SSR等值阻抗。频率扫描法计算的结果可以得到两条曲线,一条是SSR等值阻抗的实部(SSR等值电阻)随频率而变化的曲线,另一条是SSR等值阻抗的虚部(SSR等值电抗)随频率而变化的曲线。根据这两条曲线,可对次同步谐振的三个方面问题(即异步发电机效应、机电扭振互作用和暂态力矩放大)作出初步的估计。 图1 异步发电机效应的等值电路 Fig.1 Equivalent circuit for induction generator effecct 频率扫描法也许是确定是否存在异步发电机效应的最好方法。如果SSR等值电抗等于零或接近于零所对应的频率点上的SSR等值电阻小于零,则可以确认存在异步发电机效应。而等值电阻负值的大小则决定着电气振荡发散的速度。该电气振荡并不意味着会引起轴系的负阻尼振荡,但对电气设备而言,可能是不能容忍的。如果已经知道机组机械系统的参数(如固有扭振频率及其固有机械阻尼),则采用频率扫描法还能对机电扭振互作用及暂态力矩放大作用进行分析。 机电扭振互作用可以使轴系中的弱阻尼扭振模式不稳定,而对应频率下的SSR等值导纳的大小直接与该扭振模式的负阻尼相关,因此可以通过频率扫描法进行估计。 频率扫描法也可用来确定是否存在暂态力矩放大作用。如果SSR等值电抗达到极小值的频率点与机组的固有扭振频率接近互补,就有可能存在暂态力矩放大作用。在这种情况下,就应该用EMTP程序作进一步的研究。同样,如果等值电抗达到极小值的频率点与机组的固有扭振互补频率相差大于3Hz,则可以排除暂态力矩放大作用。 SSR的分析通常从频率扫描开始,因为它是一种最省力而有效的方法。利用频率扫描程序分析多种系统结构和多种串联补偿度的SSR问题所需要的成本比采用其它模型要低得多。对用频率扫描法已确认的SSR问题,其严重程度还需要通过其它模型来加以校核。 2.机组作用系数法 对于一个规划好了的直流输电系统,估计其是否会引起次同步振荡问题,相对来说是比较简单的。 IEC 919-3标准提出了一种定量的筛选工具,用来表征发电机组与直流输电系统相互作用的强弱。这种方法称为机组作用系数法(UIF,Unit Interaction Factor)。该方法的具体内容为[5]: 直流输电整流站与第i台发电机组之间相互作用的程度可用下式表达
(1) 式中UIFi为第i台发电机组的作用系数;SHVDC为直流输电系统的额定容量,MW;Si为第i台发电机组的额定容量,MVA;SCi为直流输电整流站交流母线上的三相短路容量,计算该短路容量时不包括第i台发电机组的贡献,同时也不包括交流滤波器的作用;STOT为直流输电整流站交流母线上包括第i台发电机组贡献的三相短路容量,计算该短路容量时不包括交流滤波器的作用。 判别准则:若UIFi<0.1,则可以认为第i台发电机组与直流输电系统之间没有显著的相互作用,不需要对次同步振荡问题作进一步的研究。