高温下GFRP筋力学性能的试验研究
- 格式:pdf
- 大小:524.35 KB
- 文档页数:7
玻璃纤维增强塑料力学性能分析与应用玻璃纤维增强塑料(GFRP)是一种具有优异力学性能的复合材料,由玻璃纤维和塑料基体组成。
它的广泛应用领域包括航空航天、汽车制造、建筑结构等。
本文将从材料的力学性能、制备工艺和应用等方面进行分析和探讨。
首先,我们来看一下GFRP的力学性能。
由于玻璃纤维的高强度和刚度,以及塑料基体的韧性和耐腐蚀性,GFRP具有优异的综合力学性能。
在拉伸强度方面,GFRP的强度可以达到几百MPa,远远高于普通塑料。
而在弯曲强度方面,GFRP的表现也非常出色,能够承受较大的弯曲应力而不断裂。
此外,GFRP还具有较好的疲劳性能和抗冲击性能,这使得它在复杂工况下的应用更加可靠。
其次,制备工艺对GFRP的力学性能有着重要影响。
常见的制备工艺包括手工层叠、预浸法和注塑成型等。
手工层叠是最传统的制备方法,但由于工艺复杂、生产效率低和产品质量难以保证等问题,逐渐被其他工艺所替代。
预浸法是一种将玻璃纤维预先浸渍于树脂中,然后通过热固化得到成品的方法。
这种工艺可以提高产品的质量和生产效率,但成本相对较高。
注塑成型是一种将玻璃纤维和树脂混合后注入模具中成型的方法,可以实现大规模、高效率的生产。
不同的制备工艺会对GFRP的力学性能产生不同的影响,因此在实际应用中需要根据具体情况选择适合的工艺。
最后,我们来看一下GFRP在实际应用中的情况。
由于其优异的力学性能和轻质化特点,GFRP在航空航天领域得到了广泛应用。
例如,飞机的机身和翼面板等结构部件常采用GFRP材料制造,可以降低飞机的重量,提高燃油效率。
在汽车制造领域,GFRP也被用于制造车身和零部件,可以提高汽车的安全性和燃油经济性。
此外,GFRP还可以用于建筑结构的加固和修复,提高结构的抗震性能和耐久性。
综上所述,玻璃纤维增强塑料具有优异的力学性能,广泛应用于航空航天、汽车制造和建筑结构等领域。
在实际应用中,需要根据具体要求选择合适的制备工艺,以确保产品的质量和性能。
FRP复合材料高温拉伸力学性能张超;张京街;林文修【摘要】该文介绍了聚合材料性能随温度变化的内在机理,通过对国内外学者在FRP复合材料高温拉伸性能方面一些有代表性的试验和理论研究成果进行梳理汇总,发现:(1)FRP复合材料的拉伸性能整体随着温度的升高而降低,但目前还没有标准的试验方法,试验结果之间很难进行定量的比较分析;(2)已经有不同的FRP复合材料高温条件下拉伸性能的理论模型,但相关模型参数大都需要针对性的试验数据来获取.【期刊名称】《重庆建筑》【年(卷),期】2018(017)003【总页数】5页(P45-49)【关键词】FRP;温度;拉伸力学性能;复合材料【作者】张超;张京街;林文修【作者单位】重庆市建筑科学研究院,重庆 400016;重庆市建筑科学研究院,重庆400016;重庆市建筑科学研究院,重庆 400016【正文语种】中文【中图分类】TU746.3引言纤维增强(FRP,Fiber Reinforced Polymer)复合材料是由纤维与树脂等聚合材料基体混合后形成的高性能材料。
纤维材料强度高,是FRP复合材料(拉伸)强度和刚度的主要来源和保障;树脂基体的作用是纤维定位和纤维间荷载的传递以保证纤维间的协调和整体受力,同时保护纤维不受环境损害和损伤。
在土木工程领域应用比较多的纤维材料是碳纤维和玻璃纤维,结构加固中碳纤维用的最多;树脂基体则以环氧树脂、乙烯基酯树脂和聚酯树脂最为常见。
粘贴FRP进行抗弯加固用的片材,在欧洲和北美多用FRP板,而在我国和日本,纤维布应用更广泛些。
FRP布本身由连续的长纤维编织而成,使用前不浸渍树脂,用于结构加固时,用树脂浸渍后粘贴于结构表面;FRP板是将纤维经过层铺、浸渍树脂、固化成型等工序制成,本身含有浸渍树脂,使用时用粘接剂(通常是环氧树脂或者改性环氧树脂)粘贴于结构表面。
纤维材料耐高温性能都比较好,玻璃纤维在温度达到其融化点(约1000℃)之前强度都不会有明显变化,碳纤维在温度超过500~650℃时会发生氧化,但在2000℃时仍能保持较高的强度。
消防科学与技术2019年3月第38卷第3期1.11.00.90.80.70.60.50.40.30.20.10.0403530252015105t /aR (t )t :11,R (t ):0.996 2t :15,R (t ):0.900 0t :20,R (t ):0.621 7t :25,R (t ):0.274 3t :30,R (t ):0.095 1图4可靠度变化曲线图论将KPCA 算法作为数据预处理系统,无需求解非线性优化问题,能有效降低变量间的多重相关性并降低数据维数。
基于时间尺度函数改进Wiener 用于管道可靠性拓宽了Wiener 在非线性领域的应用范围,程的防腐设计提供了理论支撑。
由于深海环境下管道的可靠性研究尚处于初期阶数据量小,分析具有一定的局限性,同时笔者只考虑输气管道处于海水环境中的腐蚀,未涉及处于海泥管段的可靠性评估,有待后期进行更深入研究。
参考文献:王小完,骆济豪,袁宏伟,等.海底天然气管道疲劳破坏泄漏灾害研究消防科学与技术,2018,37(6):729-732.B J ,NAESS A ,NAESS O E B.Reliability analysis pipelines by enhanced Monte Carlo simulation[J].Journal of Pressure Vessels &Piping ,2016,144:11-17.陈典斌,韩东霏,张二保,等.腐蚀管道剩余寿命预测及结构可靠度分VB/MATLAB 程序实现[J].科技创新导报,2014,(12):83-86.C I ,BOSWELL B ,DAVIES I.Markov chain time evolution of internal pitting corrosion distribution pipelines[J].Engineering Failure Analysis,2016,60:209-骆正山,蒋丽云.基于概率神经网络的油气管道的可靠性评估防科学与技术,2015,34(11):1517-1520.El-ABBASY M S ,SENOUCI A ,ZAYED T ,et al .Artificial network models for predicting condition of offshore pipelines[J].Automation in Construction ,2014,45:50-65.王新颖,宋兴帅,杨泰旺,等.LS-SVM 模型在城市燃气管道风险评估中的应用[J].消防科学与技术,2017,36(11):1598-1601.LNG 海底输气管道腐蚀因素与防护技术探讨[J].(4):34-37.海底管线腐蚀检测与腐蚀预测的研究[D].重庆:JIANG Q C ,YAN X F.Weighted kernel principal analysis based on probability density estimation and moving and its application in nonlinear chemical process Chemometrics and Intelligent Laboratory Systems (15):121-131.毕傲睿,骆正山,王小完,等.基于土壤腐蚀主成分的金属管道退化维纳过程研究[J].材料保护,2018,51(1):37-42.。
高温高压条件下材料力学性能测试及模拟随着科技的发展和工业的进步,越来越多的材料被广泛应用于高温高压环境中,如航空航天、能源、化工等领域。
在这些极端条件下,材料的力学性能对设备的安全性和寿命有着重要的影响。
因此,高温高压条件下材料力学性能的测试和模拟研究变得尤为重要。
首先,高温高压条件下材料力学性能测试是评估材料性能的关键环节。
材料的力学性能包括强度、刚度、韧性等指标。
在高温环境下,材料的强度和刚度往往会下降,而韧性则会增加。
因此,通过精确的实验测试,可以获得材料在高温高压条件下的力学性能数据,为材料的选用和工程设计提供参考依据。
一种常见的高温高压条件下材料力学性能测试方法是拉伸测试。
在这种测试中,材料试样会被加载到高温高压条件下,然后施加拉伸力,测量材料的应力和应变。
通过分析应力-应变曲线,可以得出材料的弹性模量、屈服强度、断裂强度等参数。
此外,在高温高压条件下,还可以通过压缩、扭转、剪切等不同加载方式进行力学性能测试。
然而,高温高压条件下材料力学性能的测试也面临一些挑战。
首先,高温高压条件对测试设备的要求非常高,需要能够承受极端环境下的温度、压力和应力。
其次,材料在高温环境下往往会出现蠕变现象,即材料会随时间发生形变,导致测试结果不准确。
因此,在测试过程中需要考虑蠕变的影响,并采取相应的措施来校正测试数据。
除了实验测试,模拟研究也是研究高温高压条件下材料力学性能的重要手段。
通过数值模拟方法,可以在计算机上对材料在高温高压环境下的力学行为进行模拟。
常用的数值模拟方法包括有限元法、分子动力学方法等。
这些方法可以预测材料的应力分布、变形过程和破坏机制,进而指导材料的设计和效果评估。
在进行数值模拟时,需要考虑材料的本构关系和物理特性。
例如,材料的热膨胀系数、热导率、塑性变形行为等都会对模拟结果产生影响。
因此,需要准确地测量和输入这些材料参数,以获得可靠的模拟结果。
此外,模拟过程还需要考虑边界条件、加载方式和温度梯度等因素,以使模拟结果与实际情况尽可能接近。
FRP约束混凝土柱力学性能研究纤维增强复合材料(FRP)在土木工程中的应用是国内外研究热点,本文综述了FRP的特性及近年在的研究应用状况和发展前景。
0前言随着建筑业的发展,商品混凝土结构是当今世界上使用最多的一种结构,其使用寿命可达数十年,甚至上百年。
但在使用寿命内,结构会遭受多方面的作用,大致有以下:设计不周、施工缺陷;年久老化;腐蚀、超载、意外灾害等。
将直接导致商品混凝土粉化、疏松、剥落、开裂和钢筋锈蚀,使裂缝增大、刚度降低、挠度增大,承载力削弱甚至丧失[25]。
限于我国国情,其中的大部分不可能推倒重建,继续使用就必须进行补强加固处理。
如果没有根本性的技术革新,社会将负担庞大的基础设施的维修和管理费用[1][29]。
在建筑构件中,柱类构件对上部结构起着承重作用,一发生破坏会导致整个结构的倒塌,所以对此类构件的加固已成为急待解决的问题[27]。
传统加固方法常用的有加大截面法、置换法、预应力加固法、粘钢法等。
这些方法虽然对改善结构的强度、刚度以及抗震性能起到了一定的作用,但也存在着许多缺点:①自重大,可能会造成连锁补强问题;②对建筑物的使用功能、美观造成很大影响;③抗腐蚀性能差,易丧失应有功能,在厂房中应用显得尤为突出;④施工复杂且周期长,影响了正常工作及生活,社会效益差。
纤维增强复合材料(FiberReinforcedPlastic,简称FRP)加固修补商品混凝土结构技术,根据约束混凝上原理间接提高结构的承载力[2]。
经过研究表明,不仅可以提高构件的承载力,而且也可改善构件的延性,将有效地解决上述问题[21][22]。
所以现在多用此法来加固柱类构件。
综合比较,各种加固方法由于所用材料的不同,在力学性能、施工技术及工程造价等方面也各有优缺点。
如图1所示,将各种约束商品混凝土的应力应变关系曲线做出比较,纤维增强材料加固性能最好,具有很大的工程价值,应该进行大力推广[31]。
1特点纤维增强复合材料加固修补商品混凝土结构技术是利用环氧树脂将纤维材料粘贴于商品混凝土表面,从而提高被加固结构的承载力或刚度等的目的。
混凝土在高温环境下的性能变化研究一、引言混凝土是建筑结构中最常用的材料之一,但是在高温环境下,混凝土的性能会发生变化,因此对混凝土在高温环境下的性能变化进行研究具有重要的意义。
本文将从混凝土在高温环境下的力学性能、物理性能、化学性能等方面进行探讨。
二、混凝土在高温环境下的力学性能变化1. 强度变化混凝土在高温环境下,其强度会发生变化。
研究表明,当混凝土在高温环境下暴露时间较短时,强度会有所提高。
但是,当暴露时间超过一定阈值时,强度反而会下降。
这是因为在高温作用下,混凝土中的水分会蒸发,混凝土中的孔隙会扩大,导致混凝土的强度下降。
2. 变形性能变化混凝土在高温环境下,其变形性能也会发生变化。
研究表明,当混凝土在高温环境下暴露时间较短时,其变形性能会有所提高。
但是,当暴露时间超过一定阈值时,混凝土的变形性能会下降。
这是因为在高温作用下,混凝土中的水分蒸发,孔隙扩大,导致混凝土的变形性能下降。
3. 断裂韧度变化混凝土在高温环境下,其断裂韧度也会发生变化。
研究表明,在高温环境下,混凝土的断裂韧度会下降。
这是因为在高温作用下,混凝土中的水分蒸发,孔隙扩大,导致混凝土的断裂韧度下降。
三、混凝土在高温环境下的物理性能变化1. 密度变化混凝土在高温环境下,其密度会发生变化。
研究表明,在高温环境下,混凝土的密度会下降。
这是因为在高温作用下,混凝土中的水分蒸发,孔隙扩大,导致混凝土的密度下降。
2. 吸水性变化混凝土在高温环境下,其吸水性也会发生变化。
研究表明,在高温环境下,混凝土的吸水性会下降。
这是因为在高温作用下,混凝土中的孔隙扩大,导致混凝土的吸水性下降。
3. 热膨胀性变化混凝土在高温环境下,其热膨胀性也会发生变化。
研究表明,在高温环境下,混凝土的热膨胀性会增加。
这是因为在高温作用下,混凝土中的水分蒸发,孔隙扩大,导致混凝土的热膨胀性增加。
四、混凝土在高温环境下的化学性能变化1. pH值变化混凝土在高温环境下,其pH值也会发生变化。
高温高压条件下材料力学性能测试及模拟在高温高压条件下,材料的力学性能变化显著,对于工程应用至关重要。
因此,对材料在这种极端条件下的力学性能进行测试和模拟具有重要的意义。
本文将介绍高温高压条件下材料力学性能测试及模拟的基本原理和方法。
一、高温高压条件对材料力学性能的影响高温高压条件下,材料的力学性能可能会发生显著的变化,这是因为高温和高压会改变材料的晶体结构、晶界特性以及原子相互作用力等。
这些变化会对材料的力学性能产生重要的影响。
首先,高温高压条件下,材料的硬度和强度往往会增加。
高温使得材料的晶界固溶度增加,使得晶界的强度增强,从而提高材料的整体强度。
同时,高温下材料的自扩散速率增加,使得晶界缺陷更容易扩散和修复,从而减少晶界的活动位错密度,提高材料的硬度。
其次,高温高压条件下,材料的韧性和延展性往往会降低。
高温高压会使得材料的晶体结构发生相变或者退火,从而导致晶界的位错密度增加和晶界的位错结构变化,使得材料的韧性和延展性下降。
同时,高温下材料的弹性模量降低,增加了材料在受力时的形变和塑性变形。
最后,高温高压条件下,材料的疲劳寿命往往会减少。
高温高压会加速材料中的位错运动和扩散过程,引起位错与位错及位错与杂质之间的相互作用,从而增加材料的塑性变形和疲劳损伤过程。
因此,在高温高压环境下,材料的疲劳寿命会明显降低。
二、高温高压条件下材料力学性能测试的方法针对高温高压条件下材料力学性能的变化,科学家们研发了一系列测试方法来评估材料的力学性能。
以下是一些常用的测试方法:1. 高温高压下的拉伸和压缩实验:通过将材料置于高温高压环境下,进行拉伸和压缩实验,测量材料的应力-应变曲线,以及确定材料的屈服强度、延展性等力学性能指标。
2. 超声波测试:利用超声波在材料中传播的特点,通过测量超声波的传播速度和衰减系数等参数,来评估材料的硬度、弹性模量等力学性能。
3. 压入实验:将材料压入硬度规定的压头中,测量压头下降的深度,从而计算材料的硬度。
玻璃纤维增强塑料的力学性能分析玻璃纤维增强塑料(FRP)是一种具有优异力学性能的复合材料,其由树脂基体和玻璃纤维增强料组成。
该材料具有耐腐蚀、轻质、高强度等优点,在建筑、汽车、航空、船舶等领域有广泛应用。
本文旨在分析FRP的力学性能,并探讨其在不同领域的应用。
1. 强度与韧性FRP的强度与韧性是其两大重要力学性能。
强度是指材料抵抗断裂的能力,而韧性是指材料抵抗断裂后继续承受载荷的能力。
根据测试,FRP的强度通常在500MPa到1000MPa之间,韧性在10到20 J/cm²之间。
由于FRP的强度高于传统金属材料,因此在建筑结构中应用广泛。
举例来说,在土木工程领域中,FRP常用于加固和修复受损混凝土梁、柱和桥梁等结构。
此外,当FRP与钢筋组合时,还可以增强混凝土结构的抗震性能。
2. 疲劳性能疲劳性能是指材料在长期受到交替或周期性载荷时的性能表现。
FRP的优异疲劳性能是其广泛应用的重要基础。
由于FRP的高韧性,所以在受到重复载荷的时候,其可能会有微小的裂纹产生,但是裂纹对FRP的整体性能影响较小,且容易被发现和修复。
在船舶制造中,FRP的良好疲劳性能意味着其能够承受海浪和潮汐等周期性载荷,从而具有更长的使用寿命。
在航空航天领域中,FRP常用于制造机翼、机身和舱壳等飞行部件,其疲劳强度也得到证实。
3. 抗冲击性能FRP的抗冲击性能是指其抵抗外力冲击的能力。
由于树脂基体和增强料的特性,FRP在受到骨折等外部撞击时可以承担更多的应变能,从而具有较好的防护能力。
在汽车制造中,FRP的高强度和轻质特性使其成为制造汽车车身的理想材料。
在国际汽联赛车竞赛中,FRP车身不仅保证了车体高强度和质量轻量化,还能够在高速碰撞等紧急情况下提供更好的保护。
总结综上所述,FRP作为一种优秀的复合材料,具有良好的强度、韧性、疲劳性能和抗冲击性能等特点。
在建筑、土木、汽车、航空航天和船舶等领域中,FRP都有广泛的应用前景。
混凝土受高温作用后的力学性能试验研究一、研究背景混凝土是一种广泛应用于建筑和基础设施工程中的材料,但在高温作用下其力学性能会发生变化,可能导致结构破坏。
因此,对混凝土在高温作用下的力学性能进行研究具有重要意义,可以为建筑设计和安全评估提供依据。
二、研究目的本研究旨在通过实验研究混凝土在高温作用下的力学性能变化规律,包括抗压强度、抗拉强度、弹性模量和变形性能等,为混凝土在高温环境下的应用提供参考。
三、实验设计1.试验材料本试验选用普通混凝土作为试验材料,水灰比为0.5,28天强度等级为C30。
试件采用标准圆柱体和标准长方体,直径为100mm,高度为200mm的圆柱体和边长为150mm,高度为300mm的长方体。
2.试验方法将试件置于高温炉内,经过不同的高温作用时间,分别进行抗压强度、抗拉强度、弹性模量和变形性能的测试。
3.试验参数试验参数包括高温温度、高温作用时间和试件尺寸等,其中高温温度分别为100℃、200℃、300℃、400℃和500℃,高温作用时间为1h、2h、3h、4h和5h,试件尺寸为标准圆柱体和标准长方体。
四、实验结果与分析1.抗压强度试验结果表明,随着高温温度和高温作用时间的增加,混凝土的抗压强度逐渐降低,且降低幅度随温度升高而增加。
当高温温度为500℃时,混凝土的抗压强度降低幅度最大,达到了50%左右。
这是由于高温作用下,混凝土中的水分被蒸发,导致水泥石体变得松散,从而降低了抗压强度。
2.抗拉强度试验结果表明,混凝土的抗拉强度随着高温温度和高温作用时间的增加而降低,但降低幅度较抗压强度小。
当高温温度为500℃时,混凝土的抗拉强度降低幅度约为30%左右。
这是由于高温作用下,混凝土中的钢筋受到热膨胀和热软化的影响,从而导致混凝土的抗拉强度降低。
3.弹性模量试验结果表明,混凝土的弹性模量随着高温温度和高温作用时间的增加而降低。
当高温温度为500℃时,混凝土的弹性模量降低幅度约为40%左右。
FRP筋与混凝土粘结性能试验研究王强;金清平;姜天华【摘要】FRP筋与混凝土的粘结性对工程结构的耐久性有着至关重要的影响。
粘结性的影响因素有:筋直径、粘结长度、筋表面情况等。
通过制作13个拉拔试块进行粘结性的试验研究,试验采用中心拉拔方式进行。
试验采用直径ϕ20和ϕ25的FRP筋,埋置深度为直径的3~5倍,观察试验中的试件破坏形态有 FRP 筋拔出破坏和混凝土劈裂片破坏,根据拔出荷载来计算二者的粘结强度。
分析 GFRP 筋拉拔承载力与直径和埋深的关系表明:拉拔承载力随着直径和埋深的增大而增大,而增长率逐渐减小。
随着直径与粘结长度的增大,GFRP筋与混凝土之间的粘结强度逐渐减小。
%The bonding performance between FRP bars and concrete have a crucial impact on the durability of engi-neering structure.The influence factors of bonding are:diameter,length,steel surface conditions.The bonding perform-ance was investigated by conducting the pullout tests which was constructed by 1 3 test specimens.The pullout tests were done by the way of center drawing,and it’s variables involve diameter of the FRP bars and the length of FRP bars embedded in concrete.Diameters of FRP bars are 20 and 25.The length of FRP bars embedded in concrete was 3 to 5 times the diameter.The failure modes were recorded in the pullout tests,it’s mainly including the damage of FRP bars were p ulled out and the splitting of concrete.Bond strength was calculated by the pulloutload .It was found that the FRP bars were pullouted or the concrete broken.It shows that the bearing capacity of drawing increase with the in-crease of the diameter of the FRP bars and the length of FRP barsembedded in concrete,and the growth rate decrea-ses.The bonding strength between FRP bars and concrete decreases as the bars diameter and embedment depth in-crease.【期刊名称】《建材世界》【年(卷),期】2014(000)006【总页数】3页(P44-46)【关键词】FRP筋;粘结;混凝土;拉拔试验【作者】王强;金清平;姜天华【作者单位】武汉科技大学城市建设学院,武汉 430065;武汉科技大学城市建设学院,武汉 430065;武汉科技大学城市建设学院,武汉 430065【正文语种】中文由于钢筋的锈蚀,导致混凝土结构的破坏,此类工程事件屡见不鲜。
高温对塑料材料力学性能的影响研究引言:塑料材料在现代工业生产中扮演着重要的角色。
然而,塑料材料在高温环境中的使用非常普遍,但高温对塑料材料的力学性能产生了显著的影响。
本文旨在研究高温对塑料材料力学性能的影响,并探讨其中的原因和可能的解决方案。
1. 塑料材料的力学性能塑料材料通常以其良好的机械性能而被广泛应用。
这些机械性能包括强度、刚度、韧性以及抗磨损性等。
然而,在高温环境中,这些力学性能可能会受到严重的破坏。
2. 高温对塑料材料力学性能的影响2.1 强度和刚度降低高温环境会导致塑料材料的强度和刚度降低。
这是由于高温下分子热振动增大,导致分子间距离增加,产生分子间力减弱。
因此,塑料材料的强度和刚度受到降低。
2.2 韧性下降在高温环境下,塑料材料的韧性也会下降。
高温会引起塑料材料分子链的断裂和失去原有的弯曲弹性。
因此,塑料材料在高温下易发生脆性断裂,韧性下降。
2.3 抗磨损性降低高温环境还会使塑料材料的抗磨损性降低。
高温下,分子的热运动空间增大,摩擦引起的热量也增加,从而导致塑料材料表面的聚合物链断裂,最终导致抗磨损性降低。
3. 影响的原因3.1 分子热运动高温环境下分子的热运动会增加,导致分子间的力减弱。
这会影响塑料材料的力学性能,使其强度、刚度和韧性降低。
3.2 分子链的断裂高温环境会加速塑料材料中分子链的断裂。
分子链的断裂会导致材料的韧性下降,表现为脆性断裂。
3.3 聚合物链的断裂高温环境下,聚合物链的断裂增加。
这会导致材料表面的聚合物链断裂,进而降低材料的抗磨损性。
4. 可能的解决方案4.1 材料选择选择耐高温的塑料材料,可以减小高温环境对力学性能的影响。
例如,聚醚酮(PEEK)和尼龙等塑料具有出色的耐高温性能,可以在高温环境中应用。
4.2 添加剂通过添加耐高温的添加剂,可以改善塑料材料在高温环境中的力学性能。
例如,添加稳定剂可以减少分子热运动,降低分子间力的变化。
4.3 结构改善对塑料材料的结构进行改善,可以提高其在高温环境中的力学性能。