几种馈线自动化方式

  • 格式:docx
  • 大小:310.14 KB
  • 文档页数:19

下载文档原格式

  / 19
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.集中控制式

集中控制式的故障处理方案是基于主站、通信系统、终端设备均已建成并运行完好的情况下的一种方案,它是由主站通过通信系统来收集所有终端设备的信息,并通过网络拓扑分析,确定故障位置,最后下发命令遥控各开关,实现故障区域的隔离和恢复非故障区域的供电。

优点:非故障区域的转供有着更大的优势,准确率高,负荷调配合理。

缺点:终端数量众多易拥堵,任一环节出错即失败。

案例:

假设F2处发生永久性故障,则

变电站1处断路器CB1因检测到故障电流而分闸,重合不成功然后分闸闭锁。定位:位于变电站内的子站或配电监控中间单元因检测到线路上各个FTU的状态及信息,发现只有FTU1流过故障电流而FTU2~FTU5没有。子站或配电监控中间单元判断出故障发生在FTU1~FTU2之间。

隔离:子站或配电监控中间单元发出命令让FTU1与FTU2跳闸,实现故障隔离。恢复:子站或配电监控中间单元发出命令让FTU3合闸,实现部分被甩掉的负荷的供电。子站或配电监控中间单元将故障信息上传配调中心,请求合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。配调中心启动故障处理软件,产生恢复供电方案,自动或由调度员确认。配调中心下发遥控命令,合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。等故障线路修复后,由人工操作,遥控恢复原来的供电方式。

2.就地自动控制

2.1负荷开关(分段器)

主要依靠自具一定功能的开关本身来完成简单的自动化,它与电源侧前级开关配合,在线路具备其本身特有的功能特性时,在失压或无流的情况下自动分闸,达到隔离故障恢复部分供电的目的。

这种开关一般或者有“电压-时间”特性,或者有“过流脉冲计数”特性。前者是凭借加压、失压的时间长短来控制其动作的,失压后分闸,加压后合闸或闭锁。后者是在一段时间内,记忆前级开关开断故障电流动作次数,当达到其预先设定的记录次数后,在前级开关跳开又重合的间隙分闸,从而达到隔离故障区域的目的。

在“电压-时间”方案中,开关动作次数多,隔离故障的时间长,变电站出口开关需重合两次,转供时容易有再次故障冲击,但它的优点是控制简单。

(1)基于重合器与电压-时间分段器方式的馈线自动化

基于电压延时方式,对于分段点位置的开关,在正常运行时开关为合闸状态,当线路因停电或故障失压时,所有的开关失压分闸。在第一次重合后,线路分段一级一级地投入,投到故障段后线路再次跳闸,故障区段两侧的开关因感受到故障电压而闭锁,当站内断路器再次合闸后,正常区间恢复供电,故障区间通过闭锁而隔离。

而对于联络点位置的开关,在正常时感受到两侧有电压时为常开状态,当一侧电源失压时,该联络开关开始延时进行故障确认,在延时时间完成后,联络开关投入,后备电源向故障线路的故障后端正常区间恢复供电。两侧同时失压时,开关为闭锁状态。

特点:造价低,动作可靠。该系统适合于辐射状、“手拉手”环状和多分段多连接的简单网格状配电网,一般不宜用于更复杂的网架结构。应用该系统的关键在于重合器和电压–时间型分段器参数的恰当整定,若整定不当,不仅会扩大故障隔离范围,也会延长健全区域恢复供电的时间。

(2)基于重合器与过流脉冲计数分段器方式的馈线自动化

当发生故障时重合器跳闸,分段器维持在合闸位置,但是经历了故障电流的分段器的过流脉冲计数器加一,若计数值达到规定值,则该分段器在无电流间隙分断,当重合器再次重合时,即达到隔离故障区段和恢复健全区段供电的目的。

案例:

在处理如图2所示配电网结构,A为重合器,B、C、D为过电流脉冲计数分段器,其计数次数均整定为2次。

正常运行时,重合器A,分段器B、C、D均为合,当C之后的区段发生故障时,重合器A跳闸,分段器C计过电流一次,由于没有达到事先整定的2次,因此分段器保持合闸,经过一段时间后,重合器进行第一次重合。若为瞬时性故障,重合成功,恢复系统正常供电,再经过一段确定的时间(与整定有关)后,分段器C的过电流计数值清零,又恢复至其初始状态,为下一次做好准备;若为永久性故障,再次重合到故障点,重合器A再次跳闸,分段器第二次过电流而达到整定值,于是,分段器在重合器跳闸后无电流时期分闸;再经过一段时间,重合器A进行第二次重合,由于此时分段器C处于分闸状态,从而将故障区段隔离开,恢复对健全区段的供电。

(3)电压-电流型

通信方式和通信协议:

选用GPRS+VPN(虚拟专用网)的通信传输通道,优点为:数据传输速率高;永久在线,空间网络数据传输透明;运行费用低廉,运行经济;安全性高,采用加密技术实现数据的安全传输。在传输过程中(见图1),FTU与GPRS通信模块之间采用RS-232接口,数据通过GPRS通信网络传输后,再通过移动通信网关、VPN专线传输到GPRS通信服务器,最后再传输到配电网主站。FTU传输协议采用IEC60870-5-101通信协议,由于是准实时数据传输,因此,协议数据召唤频度可以适当放慢。

FTU电压—电流型特点:

开关本体虽采用电压型自动负荷开关,但FTU具有电压—电流型特点。电压型特点是指FTU具有电压型开关控制器功能:在馈线全线停电的情况下,当FTU检测到开关一侧带电时,在开关没有被闭锁分闸的情况下,经过Δt延时,自动将开关合闸,而不需要主站发遥控命令;如果开关被闭锁分闸,则开关保持在分闸位置。电流型特点是指FTU故障检测依据电流检测判据,而不是依据电压和时延判据。当线路发生故障时,FTU根据流过的故障电流大小,记录故障标志,并通过GPRS向主站系统发送。在电压型馈线自动化方案中,由于是利用电压和时限配合进行故障检测,Δt一般设置不小于5s;而电压—电流型馈线自动化方案中,由于利用电流信号检测故障,为尽快缩短停电时间恢复供电,Δt 可设置为0。FTU需要配置一定容量的蓄电池,确保失电情况下FTU和通信的正常工作,并采用浮充技术提高电池寿命。由于开关操作采用交流电源,因此,蓄电池容量可以很小。

实现策略:

电压—电流型馈线自动化实现策略是指故障的检测、定位、隔离等功能的实现采用电流检测判据,而开关的操作采用交流操作电源。当线路发生故障时,由配电网主站通过GPRS方式收集线路上相关FTU的故障信息,同时,根据线路拓扑关系,进行故障分析,定位故障。由于电压型自动负荷开关具有“失压脱钩”的特点,此时,处于失电的开关位于分闸位置,远方主站只需发出开关闭锁分闸命令,把故障点两侧开关闭锁在分闸,就可以实现故障区域的隔离。对于馈线上